Search results for: state of learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14026

Search results for: state of learning

10426 Higher Education in India Strength, Weakness, Opportunities and Threats

Authors: Renu Satish Nair

Abstract:

Indian higher education system is the third largest in the world next to United States and China. India is experiencing a rapid growth in higher education in terms of student enrollment as well as establishment of new universities, colleges and institutes of national importance. Presently about 22 million students are being enrolled in higher education and more than 46 thousand institutions’ are functioning as centers of higher education. Indian government plays a 'command and control' role in higher education. The main governing body is University Grants Commission, which enforces its standards, advises the government, and helps coordinate between the centre and the state. Accreditation of higher learning is over seen by 12 autonomous institutions established by the University Grants Commission. The present paper is an effort to analyze the strength, weakness, opportunities and threat (SWOT Analysis) of Indian Higher education system. The higher education in India is progressing ahead by virtue of its strength which is being recognized at global level. Several institutions of India, such as Indian Institutes of Technology (IITs), Indian Institutes of Management (IIMs) and National Institutes of Technology (NITs) have been globally acclaimed for their standard of education. Three Indian universities were listed in the Times Higher Education list of the world’s top 200 universities i.e. Indian Institutes of Technology, Indian Institute of Management and Jawahar Lal Nehru University in 2005 and 2006. Six Indian Institutes of Technology and the Birla Institute of Technology and Science - Pilani were listed among the top 20 science and technology schools in Asia by the Asia Week. The school of Business situated in Hyderabad was ranked number 12 in Globe MBA ranking by the Financial Times of London in 2010 while the All India Institute of Medical Sciences has been recognized as a global leader in medical research and treatment. But at the same time, because of vast expansion, the system bears several weaknesses. The Indian higher education system in many parts of the country is in the state of disrepair. In almost half the districts in the country higher education enrollment are very low. Almost two third of total universities and 90% of colleges are rated below average on quality parameters. This can be attributed to the under prepared faculty, unwieldy governance and other obstacles to innovation and improvement that could prohibit India from meeting its national education goals. The opportunities in Indian higher education system are widely ranged. The national institutions are training their products to compete at global level and make them capable to grab opportunities worldwide. The state universities and colleges with their limited resources are giving the products that are capable enough to secure career opportunities and hold responsible positions in various government and private sectors with in the country. This is further creating opportunities for the weaker section of the society to join the main stream. There are several factors which can be defined as threats to Indian higher education system. It is a matter of great concern and needs proper attention. Some important factors are -Conservative society, particularly for women education; -Lack of transparency, -Taking higher education as a means of business

Keywords: Indian higher education system, SWOT analysis, university grants commission, Indian institutes of technology

Procedia PDF Downloads 903
10425 Student Perceptions on Administrative Support in the Delivering of Open Distance Learning Programmes – A Case Study

Authors: E. J. Spamer, J. M. Van Zyl, MHA Combrinck

Abstract:

The Unit for Open Distance Learning (UODL) at the North-West University (NWU), South Africa was established in 2013 with its main function to deliver open distance learning (ODL) programmes to approximately 30 000 students from the Faculties of Education Sciences, Health Sciences, Theology and Arts and Culture. Quality operational and administrative processes are key components in the delivery of these programmes and they need to function optimally for students to be successful in their studies. Operational and administrative processes include aspects such as applications, registration, dissemination of study material, availability of electronic platforms, the management of assessment, and the dissemination of important information. To be able to ensure and enhance quality during these processes, it is vital to determine students’ perceptions with regards to these mentioned processes. A questionnaire was available online and also distributed to the 63 tuition centres. The purpose of this research was to determine the perceptions of ODL students from NWU regarding operational and administrative processes. 1903 students completed and submitted the questionnaire. The data was quantitatively analysed and discussed. Results indicated that the majority of students are satisfied with the operational and administrative processes; however, the results also indicated some areas that need improvement. The data gathered is important to identify strengths and areas for improvement and form part of a bigger strategy of qualitative assurance at the UODL.

Keywords: administrative support, ODL programmes, quantitative study, students' perceptions

Procedia PDF Downloads 276
10424 The Impact of Neonatal Methamphetamine on Spatial Learning and Memory of Females in Adulthood

Authors: Ivana Hrebickova, Maria Sevcikova, Romana Slamberova

Abstract:

The present study was aimed at evaluation of cognitive changes following scheduled neonatal methamphetamine exposure in combination with long-term exposure in adulthood of female Wistar rats. Pregnant mothers were divided into two groups: group with indirect exposure (methamphetamine in dose 5 mg/ml/kg, saline in dose 1 ml/kg) during early lactation period (postnatal day 1–11) - progeny of these mothers were exposed to the effects of methamphetamine or saline indirectly via the breast milk; and the second group with direct exposure – all mothers were left intact for the entire lactation period, while progeny was treated with methamphetamine (5 mg/ml/kg) by injection or the control group, which was received needle pick (shame, not saline) at the same time each day of period of application (postnatal day 1–11). Learning ability and memory consolidation were tested in the Morris Water Maze, which consisted of three types of tests: ‘Place Navigation Test ‘; ‘Probe Test ‘; and ‘Memory Recall Test ‘. Adult female progeny were injected daily, after completion last trial with saline or methamphetamine (1 mg/ml/kg). We compared the effects of indirect/direct neonatal methamphetamine exposure and adult methamphetamine treatment on cognitive function of female rats. Statistical analyses showed that neonatal methamphetamine exposure worsened spatial learning and ability to remember the position of the platform. The present study demonstrated that direct methamphetamine exposure has more significant impact on process of learning and memory than indirect exposure. Analyses of search strategies (thigmotaxis, scanning) used by females during the Place Navigation Test and Memory Recall Test confirm all these results.

Keywords: methamphetamine, Morris water maze, neonatal exposure, strategies, Wistar rats

Procedia PDF Downloads 270
10423 Fraud Detection in Credit Cards with Machine Learning

Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf

Abstract:

Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.

Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine

Procedia PDF Downloads 153
10422 Computational Quantum Mechanics Study of Oxygen as Substitutional Atom in Diamond

Authors: K. M. Etmimi, A. A. Sghayer, A. M. Gsiea, A. M. Abutruma

Abstract:

Relatively few chemical species can be incorporated into diamond during CVD growth, and until recently the uptake of oxygen was thought to be low perhaps as a consequence of a short surface residence time. Within the literature, there is speculation regarding spectroscopic evidence for O in diamond, but no direct evidence. For example, the N3 and OK1 EPR centres have been tentatively assigned models made up from complexes of substitutional N and substitutional oxygen. In this study, we report density-functional calculations regarding the stability, electronic structures, geometry and hyperfine interaction of substitutional oxygen in diamond and show that the C2v, S=1 configuration very slightly lower in energy than the other configurations (C3v, Td, and C2v with S=0). The electronic structure of O in diamond generally gives rise to two defect-related energy states in the band gap one a non-degenerate a1 state lying near the middle of the energy gap and the other a threefold-degenerate t2 state located close to the conduction band edges. The anti-bonding a1 and t2 states will be occupied by one to three electrons for O+, O and O− respectively.

Keywords: DFT, oxygen, diamond, hyperfine

Procedia PDF Downloads 380
10421 Creative Experience and Revisit Intention of Handmade Oriental Parasol Umbrella in Kaohsiung

Authors: Yi-Ju Lee

Abstract:

This study identified the hypothesised relationship between creative experience, and revisit intention of handmade oriental parasol umbrella in Kaohsiung, Taiwan. A face-to-face questionnaire survey was administered in Meinong town, Kaohsiung. The components of creative experience were found as “sense of achievement”, “unique learning” and “interaction with instructors” in creative tourism. The result also revealed significant positive relationships between creative experience and revisit intention in handmade activities. This paper provides additional suggestions for enhancing revisit intention and guidance regarding creative tourism.

Keywords: creative tourism, sense of achievement, unique learning, interaction with instructors, folk art

Procedia PDF Downloads 281
10420 Using SMS Mobile Technology to Assess the Mastery of Subject Content Knowledge of Science and Mathematics Teachers of Secondary Schools in Tanzania

Authors: Joel S. Mtebe, Aron Kondoro, Mussa M. Kissaka, Elia Kibga

Abstract:

Sub-Saharan Africa is described as the second fastest growing mobile phone penetration in the world more than in the United States or the European Union. Mobile phones have been used to provide a lot of opportunities to improve people’s lives in the region such as in banking, marketing, entertainment, and paying various bills such as water, TV, and electricity. However, the potential of using mobile phones to enhance teaching and learning has not been explored. This study presents an experience of developing and delivering SMS quizzes questions that were used to assess mastery of the subject content knowledge of science and mathematics secondary school teachers in Tanzania. The SMS quizzes were used as a follow up support mechanism to 500 teachers who participated in a project to upgrade subject content knowledge of science and mathematics subjects. Quizzes of 10-15 questions were sent to teachers each week for 8 weeks and the results were analyzed using SPSS. The results showed that chemistry and biology had better performance compared to mathematics and physics. Teachers reported some challenges that led to poor performance, invalid answers, and non-responses and they are presented. This research has several practical implications for those who are implementing or planning to use mobile phones for teaching and learning especially in rural secondary schools in sub-Saharan Africa.

Keywords: mobile learning, elearning, educational technolgies, SMS, secondary education, assessment

Procedia PDF Downloads 287
10419 Evolving Convolutional Filter Using Genetic Algorithm for Image Classification

Authors: Rujia Chen, Ajit Narayanan

Abstract:

Convolutional neural networks (CNN), as typically applied in deep learning, use layer-wise backpropagation (BP) to construct filters and kernels for feature extraction. Such filters are 2D or 3D groups of weights for constructing feature maps at subsequent layers of the CNN and are shared across the entire input. BP as a gradient descent algorithm has well-known problems of getting stuck at local optima. The use of genetic algorithms (GAs) for evolving weights between layers of standard artificial neural networks (ANNs) is a well-established area of neuroevolution. In particular, the use of crossover techniques when optimizing weights can help to overcome problems of local optima. However, the application of GAs for evolving the weights of filters and kernels in CNNs is not yet an established area of neuroevolution. In this paper, a GA-based filter development algorithm is proposed. The results of the proof-of-concept experiments described in this paper show the proposed GA algorithm can find filter weights through evolutionary techniques rather than BP learning. For some simple classification tasks like geometric shape recognition, the proposed algorithm can achieve 100% accuracy. The results for MNIST classification, while not as good as possible through standard filter learning through BP, show that filter and kernel evolution warrants further investigation as a new subarea of neuroevolution for deep architectures.

Keywords: neuroevolution, convolutional neural network, genetic algorithm, filters, kernels

Procedia PDF Downloads 192
10418 Early Prediction of Cognitive Impairment in Adults Aged 20 Years and Older using Machine Learning and Biomarkers of Heavy Metal Exposure

Authors: Ali Nabavi, Farimah Safari, Mohammad Kashkooli, Sara Sadat Nabavizadeh, Hossein Molavi Vardanjani

Abstract:

Cognitive impairment presents a significant and increasing health concern as populations age. Environmental risk factors such as heavy metal exposure are suspected contributors, but their specific roles remain incompletely understood. Machine learning offers a promising approach to integrate multi-factorial data and improve the prediction of cognitive outcomes. This study aimed to develop and validate machine learning models to predict early risk of cognitive impairment by incorporating demographic, clinical, and biomarker data, including measures of heavy metal exposure. A retrospective analysis was conducted using 2011-2014 National Health and Nutrition Examination Survey (NHANES) data. The dataset included participants aged 20 years and older who underwent cognitive testing. Variables encompassed demographic information, medical history, lifestyle factors, and biomarkers such as blood and urine levels of lead, cadmium, manganese, and other metals. Machine learning algorithms were trained on 90% of the data and evaluated on the remaining 10%, with performance assessed through metrics such as accuracy, area under curve (AUC), and sensitivity. Analysis included 2,933 participants. The stacking ensemble model demonstrated the highest predictive performance, achieving an AUC of 0.778 and a sensitivity of 0.879 on the test dataset. Key predictors included age, gender, hypertension, education level, urinary cadmium, and blood manganese levels. The findings indicate that machine learning can effectively predict the risk of cognitive impairment using a comprehensive set of clinical and environmental exposure data. Incorporating biomarkers of heavy metal exposure improved prediction accuracy and highlighted the role of environmental factors in cognitive decline. Further prospective studies are recommended to validate the models and assess their utility over time.

Keywords: cognitive impairment, heavy metal exposure, predictive models, aging

Procedia PDF Downloads 9
10417 Quasistationary States and Mean Field Model

Authors: Sergio Curilef, Boris Atenas

Abstract:

Systems with long-range interactions are very common in nature. They are observed from the atomic scale to the astronomical scale and exhibit anomalies, such as inequivalence of ensembles, negative heat capacity, ergodicity breaking, nonequilibrium phase transitions, quasistationary states, and anomalous diffusion. These anomalies are exacerbated when special initial conditions are imposed; in particular, we use the so-called water bag initial conditions that stand for a uniform distribution. Several theoretical and practical implications are discussed here. A potential energy inspired by dipole-dipole interactions is proposed to build the dipole-type Hamiltonian mean-field model. As expected, the dynamics is novel and general to the behavior of systems with long-range interactions, which is obtained through molecular dynamics technique. Two plateaus sequentially emerge before arriving at equilibrium, which are corresponding to two different quasistationary states. The first plateau is a type of quasistationary state the lifetime of which depends on a power law of N and the second plateau seems to be a true quasistationary state as reported in the literature. The general behavior of the model according to its dynamics and thermodynamics is described. Using numerical simulation we characterize the mean kinetic energy, caloric curve, and the diffusion law through the mean square of displacement. The present challenge is to characterize the distributions in phase space. Certainly, the equilibrium state is well characterized by the Gaussian distribution, but quasistationary states in general depart from any Gaussian function.

Keywords: dipole-type interactions, dynamics and thermodynamics, mean field model, quasistationary states

Procedia PDF Downloads 212
10416 Students' Experience Perception in Courses Taught in New Delivery Modes Compared to Traditional Modes

Authors: Alejandra Yanez, Teresa Benavides, Zita Lopez

Abstract:

Even before COVID-19, one of the most important challenges that Higher Education faces today is the need for innovative educational methodologies and flexibility. We could all agree that one of the objectives of Higher Education is to provide students with a variety of intellectual and practical skills that, at the same time, will help them develop competitive advantages such as adaptation and critical thinking. Among the strategic objectives of Universidad de Monterrey (UDEM) has been to provide flexibility and satisfaction to students in the delivery modes of the academic offer. UDEM implemented a methodology that combines face to face with synchronous and asynchronous as delivery modes. UDEM goal, in this case, was to implement new technologies and different teaching methodologies that will improve the students learning experience. In this study, the experience of students during courses implemented in new delivery mode was compared with students in courses with traditional delivery modes. Students chose openly either way freely. After everything students around the world lived in 2020 and 2021, one can think that the face to face (traditional) delivery mode would be the one chosen by students. The results obtained in this study reveal that both delivery modes satisfy students and favor their learning process. We will show how the combination of delivery modes provides flexibility, so the proposal is that universities can include them in their academic offer as a response to the current student's learning interests and needs.

Keywords: flexibility, new delivery modes, student satisfaction, academic offer

Procedia PDF Downloads 107
10415 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 140
10414 Using Gene Expression Programming in Learning Process of Rough Neural Networks

Authors: Sanaa Rashed Abdallah, Yasser F. Hassan

Abstract:

The paper will introduce an approach where a rough sets, gene expression programming and rough neural networks are used cooperatively for learning and classification support. The Objective of gene expression programming rough neural networks (GEP-RNN) approach is to obtain new classified data with minimum error in training and testing process. Starting point of gene expression programming rough neural networks (GEP-RNN) approach is an information system and the output from this approach is a structure of rough neural networks which is including the weights and thresholds with minimum classification error.

Keywords: rough sets, gene expression programming, rough neural networks, classification

Procedia PDF Downloads 388
10413 A Study of Hamilton-Jacobi-Bellman Equation Systems Arising in Differential Game Models of Changing Society

Authors: Weihua Ruan, Kuan-Chou Chen

Abstract:

This paper is concerned with a system of Hamilton-Jacobi-Bellman equations coupled with an autonomous dynamical system. The mathematical system arises in the differential game formulation of political economy models as an infinite-horizon continuous-time differential game with discounted instantaneous payoff rates and continuously and discretely varying state variables. The existence of a weak solution of the PDE system is proven and a computational scheme of approximate solution is developed for a class of such systems. A model of democratization is mathematically analyzed as an illustration of application.

Keywords: Hamilton-Jacobi-Bellman equations, infinite-horizon differential games, continuous and discrete state variables, political-economy models

Procedia PDF Downloads 381
10412 The Social Perception of National Security Risks: A Comparative Perspective

Authors: Nicula Valentin, Andrei Virginia

Abstract:

Nowadays, the individual plays a central role in the state’s architecture. This is why the subjective dimension of the security represents a key concept in risk assessment. The paper’s scope is to emphasize the discrepancy between expert and lay evaluations of national security hazards, which is caused by key factors like emotions, personal experience, knowledge and media. Therefore, we have chosen to apply, using these two different groups of respondents, the Q-sort method, which reveals individual beliefs, attitudes, preferences hidden behind the subjects’ own way of prioritizing the risks they are confronted with. Our study’s conclusions are meant to unveil significant indicators needed to be taken into consideration by a state’s leadership in order to understand the social perception of national security hazards, to communicate better with the public opinion and prevent or mitigate the overestimation of the severity or probability of these dangers.

Keywords: risk perception, Q-sort method, national security hazards, individual beliefs

Procedia PDF Downloads 315
10411 Beyond Personal Evidence: Using Learning Analytics and Student Feedback to Improve Learning Experiences

Authors: Shawndra Bowers, Allie Brandriet, Betsy Gilbertson

Abstract:

This paper will highlight how Auburn Online’s instructional designers leveraged student and faculty data to update and improve online course design and instructional materials. When designing and revising online courses, it can be difficult for faculty to know what strategies are most likely to engage learners and improve educational outcomes in a specific discipline. It can also be difficult to identify which metrics are most useful for understanding and improving teaching, learning, and course design. At Auburn Online, the instructional designers use a suite of data based student’s performance, participation, satisfaction, and engagement, as well as faculty perceptions, to inform sound learning and design principles that guide growth-mindset consultations with faculty. The consultations allow the instructional designer, along with the faculty member, to co-create an actionable course improvement plan. Auburn Online gathers learning analytics from a variety of sources that any instructor or instructional design team may have access to at their own institutions. Participation and performance data, such as page: views, assignment submissions, and aggregate grade distributions, are collected from the learning management system. Engagement data is pulled from the video hosting platform, which includes unique viewers, views and downloads, the minutes delivered, and the average duration each video is viewed. Student satisfaction is also obtained through a short survey that is embedded at the end of each instructional module. This survey is included in each course every time it is taught. The survey data is then analyzed by an instructional designer for trends and pain points in order to identify areas that can be modified, such as course content and instructional strategies, to better support student learning. This analysis, along with the instructional designer’s recommendations, is presented in a comprehensive report to instructors in an hour-long consultation where instructional designers collaborate with the faculty member on how and when to implement improvements. Auburn Online has developed a triage strategy of priority 1 or 2 level changes that will be implemented in future course iterations. This data-informed decision-making process helps instructors focus on what will best work in their teaching environment while addressing which areas need additional attention. As a student-centered process, it has created improved learning environments for students and has been well received by faculty. It has also shown to be effective in addressing the need for improvement while removing the feeling the faculty’s teaching is being personally attacked. The process that Auburn Online uses is laid out, along with the three-tier maintenance and revision guide that will be used over a three-year implementation plan. This information can help others determine what components of the maintenance and revision plan they want to utilize, as well as guide them on how to create a similar approach. The data will be used to analyze, revise, and improve courses by providing recommendations and models of good practices through determining and disseminating best practices that demonstrate an impact on student success.

Keywords: data-driven, improvement, online courses, faculty development, analytics, course design

Procedia PDF Downloads 64
10410 Using Satellite Images Datasets for Road Intersection Detection in Route Planning

Authors: Fatma El-Zahraa El-Taher, Ayman Taha, Jane Courtney, Susan Mckeever

Abstract:

Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated.

Keywords: satellite images, remote sensing images, data acquisition, autonomous vehicles

Procedia PDF Downloads 151
10409 Distributed Cyber Physical Secure Framework for DC Microgrids: DC Ship Power System Applications

Authors: Grace karimi Muriithi, Behnaz Papari, Ali Arsalan, Christopher Shannon Edrington

Abstract:

Complexity and nonlinearity of the control system design is increasing for DC microgrid applications when the cyber concept associated with the technology constraints will added to the picture. Controllers’ functionality during the critical operation mode is required to guaranteed specifically for a high profile applications such as NAVY DC ship power system (SPS) as an small-scaled DC microgrid. Thus, SPS is susceptible to cyber-attacks and, accordingly, can provide the disastrous effects. In this study, a machine learning (ML) approach is demonstrated to offer the promising performance of SPS for developing an effective and robust functionality over attacks time. Simulation results analysis demonstrate that the proposed method can improve the controllability successfully.

Keywords: controlability, cyber attacks, distribute control, machine learning

Procedia PDF Downloads 119
10408 Impact of Socio-Cultural Attributes of Imo Communities on Widowhood Practice in Imo State, Nigeria

Authors: Otuu O. Obasi, Jude C. Ajaraogu, Happiness C. Anthony-Ikpe

Abstract:

Women in Igbo land generally experience culture-related mistreatment in the event of the death of their husbands. The mistreatment ranges from scraping of widows’ hair to denial of the right to see their husbands’ corpses. The objectives of the study were to determine the forms and prevalence of widowhood practice in the studied communities, the effects of the socio-cultural attributes of the people on the practice, and the perceived effect of the practice on the victims. Data for the study were collected from 64 randomly selected communities out of 640 communities in Imo State, Nigeria. 450 copies of the researcher-made-questionnaire were distributed across the three senatorial zones of the State. A total of 418 or 92.8% were completely filled and returned. The result of the study showed, among other things, that the majority of males and females recognized widowhood practice as dehumanizing, but opined that it cannot be stopped because it is rooted in culture. However, 30.2% of the female population did not agree that the practice is dehumanizing to women since it was their cultural practice. The study also revealed that scrapping of widows’ hair was the commonest practice while sleeping alone with the husband’s corpse was the least practice. Regarding the effect which this practice has on widows, emotional trauma topped the list; and was followed by economic hardship and health deterioration. Also shown by the study was that the level of education and religion did not have a notable effect on widowhood practice. With regard to possible stoppage measures, greater number of the respondents (38%) indicated that a synergy of efforts was needed to curb the social scourge.

Keywords: widowhood practice, socio-cultural attributes, violence, impact

Procedia PDF Downloads 142
10407 The Τraits Τhat Facilitate Successful Student Performance in Distance Education: The Case of the Distance Education Unit at European University Cyprus

Authors: Dimitrios Vlachopoulos, George Tsokkas

Abstract:

Although it is not intended to identify distance education students as a homogeneous group, recent research has demonstrated that there are some demographic and personality common traits among most of them that provide the basis for the description of a typical distance learning student. The purpose of this paper is to describe these common traits and to facilitate their learning journey within a distance education program. The described research is an initiative of the Distance Education Unit at the European University Cyprus (Laureate International Universities) in the context of its action for the improvement of the students’ performance.

Keywords: distance education students, successful student performance, European University Cyprus, common traits

Procedia PDF Downloads 487
10406 Developing an AI-Driven Application for Real-Time Emotion Recognition from Human Vocal Patterns

Authors: Sayor Ajfar Aaron, Mushfiqur Rahman, Sajjat Hossain Abir, Ashif Newaz

Abstract:

This study delves into the development of an artificial intelligence application designed for real-time emotion recognition from human vocal patterns. Utilizing advanced machine learning algorithms, including deep learning and neural networks, the paper highlights both the technical challenges and potential opportunities in accurately interpreting emotional cues from speech. Key findings demonstrate the critical role of diverse training datasets and the impact of ambient noise on recognition accuracy, offering insights into future directions for improving robustness and applicability in real-world scenarios.

Keywords: artificial intelligence, convolutional neural network, emotion recognition, vocal patterns

Procedia PDF Downloads 64
10405 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition

Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar

Abstract:

In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.

Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers

Procedia PDF Downloads 48
10404 Cognition of Driving Context for Driving Assistance

Authors: Manolo Dulva Hina, Clement Thierry, Assia Soukane, Amar Ramdane-Cherif

Abstract:

In this paper, we presented our innovative way of determining the driving context for a driving assistance system. We invoke the fusion of all parameters that describe the context of the environment, the vehicle and the driver to obtain the driving context. We created a training set that stores driving situation patterns and from which the system consults to determine the driving situation. A machine-learning algorithm predicts the driving situation. The driving situation is an input to the fission process that yields the action that must be implemented when the driver needs to be informed or assisted from the given the driving situation. The action may be directed towards the driver, the vehicle or both. This is an ongoing work whose goal is to offer an alternative driving assistance system for safe driving, green driving and comfortable driving. Here, ontologies are used for knowledge representation.

Keywords: cognitive driving, intelligent transportation system, multimodal system, ontology, machine learning

Procedia PDF Downloads 376
10403 Economic and Environmental Impact of the Missouri Grazing Schools

Authors: C. A. Roberts, S. L. Mascaro, J. R. Gerrish, J. L. Horner

Abstract:

Management-intensive Grazing (MiG) is a practice that rotates livestock through paddocks in a way that best matches the nutrient requirements of the animal to the yield and quality of the pasture. In the USA, MiG has been taught to livestock producers throughout the state of Missouri in 2- and 3-day workshops called “Missouri Grazing Schools.” The economic impact of these schools was quantified using IMPLAN software. The model included hectares of adoption, animal performance, carrying capacity, and input costs. To date, MiG, as taught in the Missouri Grazing Schools, has been implemented on more than 70,000 hectares in Missouri. The economic impact of these schools is presently $125 million USD per year added to the state economy. This magnitude of impact is the result not only of widespread adoption but also because of increased livestock carrying capacity; in Missouri, a capacity increase of 25 to 30% has been well documented. Additional impacts have been MiG improving forage quality and reducing the cost of feed and fertilizer. The environmental impact of MiG in the state of Missouri is currently being estimated. Environmental impact takes into account the reduction in the application of commercial fertilizers; in MiG systems, nitrogen is supplied by N fixation from legumes, and much of the P and K is recycled naturally by well-distributed manure. The environmental impact also estimates carbon sequestration and methane production; MiG can increase carbon sequestration and reduce methane production in comparison to default grazing practices and feedlot operations in the USA.

Keywords: agricultural education, forage quality, management-intensive grazing, nutrient cycling, stock density, sustainable agriculture

Procedia PDF Downloads 206
10402 Supporting the ESL Student in a Tertiary Setting: Carrot and Stick

Authors: Ralph Barnes

Abstract:

The internationalization and globalization of education are now a huge, multi-million dollar industry. The movement of international students across the globe has provided a rich vein of revenue for universities and institutions of higher learning to exploit and harvest. A concerted effort has been made by universities worldwide to court students from overseas, with some countries relying up to one-third of student fees, coming from international students. Australian universities and English Language Centres are coming under increased government scrutiny in respect to such areas as the academic progression of international students, management and understanding of student visa requirements and the design of higher education courses and effective assessment regimes. As such, universities and other higher education institutions are restructuring themselves more as service providers rather than as strictly education providers. In this paper, the high-touch, tailored academic model currently followed by some Australian educational institutions to support international students, is examined and challenged. Academic support services offered to international students need to be coordinated, sustained and reviewed regularly, in order to assess their effectiveness. Maintaining the delivery of high-quality educational programs and learning outcomes for this high income-generating student cohort is vital, in order to continue the successful academic and social engagement by international students across the Australian university and higher education landscape.

Keywords: ESL, engagement, tertiary, learning

Procedia PDF Downloads 206
10401 Intercultural Competence among Jewish and Arab Students Studying Together in an Academic Institution in Israel

Authors: Orly Redlich

Abstract:

Since the establishment of the state of Israel, and as a result of various events that led to it, Jewish citizens and Arab citizens of the state have been in constant conflict, which finds its expression in most levels of life. Therefore, the attitude of one group member to the other group members is mostly tense, loaded, and saturated with mutual suspicion. Within this reality, in many higher education institutions in Israel, Jews and Arabs meet with each other intensively and for several years. For some students, this is their first opportunity for a meaningful cross-cultural encounter. These intercultural encounters, which allow positive interactions between members of different cultural groups, may contribute to the formation of "intercultural competence" which means long-term change in knowledge, attitudes, and behavior towards 'the other culture'. The current study examined the concept of the ‘other’ among Jewish and Arab students studying together and their "intercultural competence". The study also examined whether there is a difference in the perception of the ‘other’ between students studying in different academic programs, and between students taking academic courses on multiculturalism. This quantitative study was conducted among 274 Arab and Jewish students studying together, for bachelors or master's degree, in various academic programs at the Israel Academic College of Ramat-Gan. The background data of the participants are varied, in terms of religion, origin, religiosity, employment status, living area, and marital status. The main hypothesis is that academic, social, and intercultural encounters between Jewish and Arab students, who attend college together, will be a significant factor in building "intercultural competence". Additionally, the existence of "intercultural competence" has been linked to demographic characteristics of the students, as well as the nature of intercultural encounters between Jews and Arabs in a higher education institution. The dependent variables were measured by a self-report questionnaire, using the components of '"intercultural competence"' among students, which are: 1. Cognitive knowledge of the ‘others’, 2. Feelings towards the ‘others’, 3. Change in attitudes towards the 'others', and 4. Change in behavior towards the ‘others’. The findings indicate a higher "intercultural competence" among Arab students than Jews; it was also found higher level of "intercultural competence" among Educational Counseling students than the other respondents. The importance of this research lies in finding the means to develop "intercultural competence" among Jewish and Arab students, which may reduce prejudice and stereotypes towards the other culture and may even prevent occurrences of alienation and violence in cross-cultural encounters in Israel.

Keywords: cross-cultural learning, intercultural competence, Jewish and Arab students, multiculturalism

Procedia PDF Downloads 124
10400 Stabilization of Metastable Skyrmion Phase in Polycrystalline Chiral β-Mn Type Co₇Zn₇Mn₆ Alloy

Authors: Pardeep, Yugandhar Bitla, A. K. Patra, G. A. Basheed

Abstract:

The topological protected nanosized particle-like swirling spin textures, “skyrmion,” has been observed in various ferromagnets with chiral crystal structures like MnSi, FeGe, Cu₂OSeO₃ alloys, however the magnetic ordering in these systems takes place at very low temperatures. For skyrmion-based spintronics devices, the skyrmion phase is required to stabilize in a wide temperature – field (T - H) region. The equilibrium skyrmion phase (SkX) in Co₇Zn₇Mn₆ alloy exists in a narrow T – H region just below transition temperature (TC ~ 215 K) and can be quenched by field cooling as a metastable skyrmion phase (MSkX) below SkX region. To realize robust MSkX at 110 K, field sweep ac susceptibility χ(H) measurements were performed after the zero field cooling (ZFC) and field cooling (FC) process. In ZFC process, the sample was cooled from 320 K to 110 K in zero applied magnetic field and then field sweep measurement was performed (up to 2 T) in positive direction (black curve). The real part of ac susceptibility (χ′(H)) at 110 K in positive field direction after ZFC confirms helical to conical phase transition at low field HC₁ (= 42 mT) and conical to ferromagnetic (FM) transition at higher field HC₂ (= 300 mT). After ZFC, FC measurements were performed i.e., sample was initially cooled in zero fields from 320 to 206 K and then a sample was field cooled in the presence of 15 mT field down to the temperature 110 K. After FC process, isothermal χ(H) was measured in positive (+H, red curve) and negative (-H, blue curve) field direction with increasing and decreasing field upto 2 T. Hysteresis behavior in χ′(H), measured after ZFC and FC process, indicates the stabilization of MSkX at 110 K which is in close agreement with literature. Also, the asymmetry between field-increasing curves measured after FC process in both sides confirm the stabilization of MSkX. In the returning process from the high field polarized FM state, helical state below HC₁ is destroyed and only the conical state is observed. Thus, the robust MSkX state is stabilized below its SkX phase over a much wider T - H region by FC in polycrystalline Co₇Zn₇Mn₆ alloy.

Keywords: skyrmions, magnetic susceptibility, metastable phases, topological phases

Procedia PDF Downloads 110
10399 Leadership Succession and Renewal in Zimbabwe Political Parties: A Critical Analysis of the Bhora Remusango Concept

Authors: A. F. Chikerema

Abstract:

Political leadership in Africa vary from the “criminalization” of the state to political leadership as “dispensing patrimony”, the “recycling” of elites and the use of state power and resources to consolidate political and economic power (Van Wyk:2007: p1). Political parties just like any other organizations always need leadership renewal and revamping, besides ideological and policy renewal. Zimbabwean politics present a shunned leadership renewal as reflected by the two champion political parties namely ZANU PF and MDC-T. Despite hot political power contestation between MDC and ZANUPF, the parties` internal structures are hinged on the two Godfather or Father figure that is Mugabe and Tsvangirai. They are the “labels “behind the two political parties. The suppressing of dissent voice on succession and renewal of leadership in the two parties has brew resistance from within and this has resulted in factional fights within the two political parties. The disgruntlement in the political parties has led to the stemming of the ‘bhoramusango concept’ from the electorate and party cadres whereby they are throwing or donating away their votes to other political parties. The ‘bhoramusango’ concept haunted ZANUPF in 2008 leading to its defeat by the opposition MDC-T .The paper takes the form of an analytic approach on leadership crisis in Zimbabwe. The narrative is framed on key concepts of leadership: namely leadership renewal and leadership succession, as agents operating within inherited structures negotiated political settlements, and form structures of leadership. Rulers gave priority to the consolidation of state power by installing party loyalists in the armed forces, civil service and local government. As part of this process, rulers have ensured consolidated power and authority.

Keywords: leadership renewal, leadership succession, ‘Bhora Musango’, political culture, political legitimacy

Procedia PDF Downloads 416
10398 Low Enrollment in Civil Engineering Departments: Challenges and Opportunities

Authors: Alaa Yehia, Ayatollah Yehia, Sherif Yehia

Abstract:

There is a recurring issue of low enrollments across many civil engineering departments in postsecondary institutions. While there have been moments where enrollments begin to increase, civil engineering departments find themselves facing low enrollments at around 60% over the last five years across the Middle East. There are many reasons that could be attributed to this decline, such as low entry-level salaries, over-saturation of civil engineering graduates in the job market, and a lack of construction projects due to the impending or current recession. However, this recurring problem alludes to an intrinsic issue of the curriculum. The societal shift to the usage of high technology such as machine learning (ML) and artificial intelligence (AI) demands individuals who are proficient at utilizing it. Therefore, existing curriculums must adapt to this change in order to provide an education that is suitable for potential and current students. In this paper, In order to provide potential solutions for this issue, the analysis considers two possible implementations of high technology into the civil engineering curriculum. The first approach is to implement a course that introduces applications of high technology in Civil Engineering contexts. While the other approach is to intertwine applications of high technology throughout the degree. Both approaches, however, should meet requirements of accreditation agencies. In addition to the proposed improvement in civil engineering curriculum, a different pedagogical practice must be adapted as well. The passive learning approach might not be appropriate for Gen Z students; current students, now more than ever, need to be introduced to engineering topics and practice following different learning methods to ensure they will have the necessary skills for the job market. Different learning methods that incorporate high technology applications, like AI, must be integrated throughout the curriculum to make the civil engineering degree more attractive to prospective students. Moreover, the paper provides insight on the importance and approach of adapting the Civil Engineering curriculum to address the current low enrollment crisis that civil engineering departments globally, but specifically in the Middle East, are facing.

Keywords: artificial intelligence (AI), civil engineering curriculum, high technology, low enrollment, pedagogy

Procedia PDF Downloads 171
10397 Experience Report about the Inclusion of People with Disabilities in the Process of Testing an Accessible System for Learning Management

Authors: Marcos Devaner, Marcela Alves, Cledson Braga, Fabiano Alves, Wilton Bezerra

Abstract:

This article discusses the inclusion of people with disabilities in the process of testing an accessible system solution for distance education. The accessible system, team profile, methodologies and techniques covered in the testing process are presented. The testing process shown in this paper was designed from the experience with user. The testing process emerged from lessons learned from past experiences and the end user is present at all stages of the tests. Also, lessons learned are reported and how it was possible the maturing of the team and the methods resulting in a simple, productive and effective process.

Keywords: experience report, accessible systems, software testing, testing process, systems, e-learning

Procedia PDF Downloads 402