Search results for: prewitt edge detection algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7256

Search results for: prewitt edge detection algorithm

3656 Neighbor Caring Environment System (NCE) Using Parallel Replication Mechanism

Authors: Ahmad Shukri Mohd Noor, Emma Ahmad Sirajudin, Rabiei Mamat

Abstract:

Pertaining to a particular Marine interest, the process of data sampling could take years before a study can be concluded. Therefore, the need for a robust backup system for the data is invariably implicit. In recent advancement of Marine applications, more functionalities and tools are integrated to assist the work of the researchers. It is anticipated that this modality will continue as research scope widens and intensifies and at the same to follow suit with current technologies and lifestyles. The convenience to collect and share information these days also applies to the work in Marine research. Therefore, Marine system designers should be aware that high availability is a necessary attribute in Marine repository applications as well as a robust backup system for the data. In this paper, the approach to high availability is related both to hardware and software but the focus is more on software. We consider a NABTIC repository system that is primitively built on a single server and does not have replicated components. First, the system is decomposed into separate modules. The modules are placed on multiple servers to create a distributed system. Redundancy is added by placing the copies of the modules on different servers using Neighbor Caring Environment System(NCES) technique. NCER is utilizing parallel replication components mechanism. A background monitoring is established to check servers’ heartbeats to confirm their aliveness. At the same time, a critical adaptive threshold is maintained to make sure a failure is timely detected using Adaptive Fault Detection (AFD). A confirmed failure will set the recovery mode where a selection process will be done before a fail-over server is instructed. In effect, the Marine repository service is continued as the fail-over masks a recent failure. The performance of the new prototype is tested and is confirmed to be more highly available. Furthermore, the downtime is not noticeable as service is immediately restored automatically. The Marine repository system is said to have achieved fault tolerance.

Keywords: availability, fault detection, replication, fault tolerance, marine application

Procedia PDF Downloads 325
3655 Emotion Recognition in Video and Images in the Wild

Authors: Faizan Tariq, Moayid Ali Zaidi

Abstract:

Facial emotion recognition algorithms are expanding rapidly now a day. People are using different algorithms with different combinations to generate best results. There are six basic emotions which are being studied in this area. Author tried to recognize the facial expressions using object detector algorithms instead of traditional algorithms. Two object detection algorithms were chosen which are Faster R-CNN and YOLO. For pre-processing we used image rotation and batch normalization. The dataset I have chosen for the experiments is Static Facial Expression in Wild (SFEW). Our approach worked well but there is still a lot of room to improve it, which will be a future direction.

Keywords: face recognition, emotion recognition, deep learning, CNN

Procedia PDF Downloads 192
3654 The State, Class and the Challenges of National Development in Nigeria since 1914

Authors: Eriba Christopher Inyila, Godwin Egena Oga

Abstract:

Statecraft appears to be one of the greatest cultural achievements in the history of man’s civilization. The state itself is often portrayed as the supreme community of the citizen’s collective goodness and will. However, history experience reveals that the state has often been held in captivity permanently in the hand of the political class to almost a total exclusion of the labouring class of workers, artisans and peasants. Consequently, the hallmark of the Nigerian state and society in contemporary era is state of permanent crisis characterized by poverty, unemployment and profound insecurity. A lasting solution to this state of anomie is often touted in terms of ethnic, religious and regional integration which border on non-material perception of realities. A neglected aspect of the approach to the study of recurrent problems in contemporary is the materialist conception of realties through class perspectives of the society. The cutting edge of the approach is found in the attempt to reconcile the contradiction between the productive forces and the social relation of production. In other words, the contemporary state is skewed in favour of ownership of properties/commanding height of economy predominantly in the hands of the few monopoly companies to the total exclusion of majority of Nigerian population classified as peasant, workers and artisan. The lopsided situation creates economic and social disequilibria.

Keywords: national development, class, the state, Nigeria

Procedia PDF Downloads 390
3653 Category-Base Theory of the Optimum Signal Approximation Clarifying the Importance of Parallel Worlds in the Recognition of Human and Application to Secure Signal Communication with Feedback

Authors: Takuro Kida, Yuichi Kida

Abstract:

We show a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detailed algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory and it is indicated that introducing conversations with feedback does not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.

Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, conditional optimization

Procedia PDF Downloads 161
3652 Development of Wide Bandgap Semiconductor Based Particle Detector

Authors: Rupa Jeena, Pankaj Chetry, Pradeep Sarin

Abstract:

The study of fundamental particles and the forces governing them has always remained an attractive field of theoretical study to pursue. With the advancement and development of new technologies and instruments, it is possible now to perform particle physics experiments on a large scale for the validation of theoretical predictions. These experiments are generally carried out in a highly intense beam environment. This, in turn, requires the development of a detector prototype possessing properties like radiation tolerance, thermal stability, and fast timing response. Semiconductors like Silicon, Germanium, Diamond, and Gallium Nitride (GaN) have been widely used for particle detection applications. Silicon and germanium being narrow bandgap semiconductors, require pre-cooling to suppress the effect of noise by thermally generated intrinsic charge carriers. The application of diamond in large-scale experiments is rare owing to its high cost of fabrication, while GaN is one of the most extensively explored potential candidates. But we are aiming to introduce another wide bandgap semiconductor in this active area of research by considering all the requirements. We have made an attempt by utilizing the wide bandgap of rutile Titanium dioxide (TiO2) and other properties to use it for particle detection purposes. The thermal evaporation-oxidation (in PID furnace) technique is used for the deposition of the film, and the Metal Semiconductor Metal (MSM) electrical contacts are made using Titanium+Gold (Ti+Au) (20/80nm). The characterization comprising X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Ultraviolet (UV)-Visible spectroscopy, and Laser Raman Spectroscopy (LRS) has been performed on the film to get detailed information about surface morphology. On the other hand, electrical characterizations like Current Voltage (IV) measurement in dark and light and test with laser are performed to have a better understanding of the working of the detector prototype. All these preliminary tests of the detector will be presented.

Keywords: particle detector, rutile titanium dioxide, thermal evaporation, wide bandgap semiconductors

Procedia PDF Downloads 81
3651 A Study on Shock Formation over a Transonic Aerofoil

Authors: M. Fowsia, Dominic Xavier Fernando, Vinojitha, Rahamath Juliyana

Abstract:

Aerofoil is a primary element to be designed during the initial phase of creating any new aircraft. It is the component that forms the cross-section of the wing. The wing is used to produce lift force that balances the weight which is acting downwards. The lift force is created due to pressure difference over the top and bottom surface which is caused due to velocity variation. At sub-sonic velocities, for a real fluid, we obtain a smooth flow of air over both the surfaces. In this era of high speed travel, commercial aircraft that can travel faster than speed of sound barrier is required. However transonic velocities cause the formation of shock waves which can cause flow separation over the top and bottom surfaces. In the transonic range, shock waves move across the top and bottom surfaces of the aerofoil, until both the shock waves merge into a single shock wave that is formed near the leading edge of theaerofoil. In this paper, a transonic aerofoil is designed and its aerodynamic properties at different velocities in the Transonic range (M = 0.8; 0.9; 1; 1.1; 1.2) are studied with the help of CFD. The Pressure and Velocity distributions over the top and bottom surfaces of aerofoil are studied and the variations of shock patterns, at different velocities, are analyzed. The analysis can be used to determine the effect of drag divergence on the lift created by the aerofoil.

Keywords: transonic aerofoil, cfd, drag divergence, shock formation, viscous flow

Procedia PDF Downloads 534
3650 Low Overhead Dynamic Channel Selection with Cluster-Based Spatial-Temporal Station Reporting in Wireless Networks

Authors: Zeyad Abdelmageid, Xianbin Wang

Abstract:

Choosing the operational channel for a WLAN access point (AP) in WLAN networks has been a static channel assignment process initiated by the user during the deployment process of the AP, which fails to cope with the dynamic conditions of the assigned channel at the station side afterward. However, the dramatically growing number of Wi-Fi APs and stations operating in the unlicensed band has led to dynamic, distributed, and often severe interference. This highlights the urgent need for the AP to dynamically select the best overall channel of operation for the basic service set (BSS) by considering the distributed and changing channel conditions at all stations. Consequently, dynamic channel selection algorithms which consider feedback from the station side have been developed. Despite the significant performance improvement, existing channel selection algorithms suffer from very high feedback overhead. Feedback latency from the STAs, due to the high overhead, can cause the eventually selected channel to no longer be optimal for operation due to the dynamic sharing nature of the unlicensed band. This has inspired us to develop our own dynamic channel selection algorithm with reduced overhead through the proposed low-overhead, cluster-based station reporting mechanism. The main idea behind the cluster-based station reporting is the observation that STAs which are very close to each other tend to have very similar channel conditions. Instead of requesting each STA to report on every candidate channel while causing high overhead, the AP divides STAs into clusters then assigns each STA in each cluster one channel to report feedback on. With the proper design of the cluster based reporting, the AP does not lose any information about the channel conditions at the station side while reducing feedback overhead. The simulation results show equal performance and, at times, better performance with a fraction of the overhead. We believe that this algorithm has great potential in designing future dynamic channel selection algorithms with low overhead.

Keywords: channel assignment, Wi-Fi networks, clustering, DBSCAN, overhead

Procedia PDF Downloads 125
3649 A Simple Method for Evaluation of Uniformity for Gafchromic Sheets for Film Dosimetry

Authors: Fayzan Ahmed, Saad Bin Saeed, Abdul Qadir Jangda

Abstract:

Gafchromic™ sheet are extensively used for the QA of intensity modulated radiation therapy and other in-vivo dosimetry. Intra-sheet Non-uniformity of scanner as well as film causes undesirable fluctuations which are reflected in dosimetry The aim of this study is to define a systematic and robust method to investigate the intra-sheet uniformity of the unexposed Gafchromic Sheets and the region of interest (ROI) of the scanner. Sheets of lot No#: A05151201 were scanned before and after the expiry period with the EPSON™ XL10000 scanner in the transmission mode, landscape orientation, and 72 dpi resolution. ROI of (8’x 10’ inches) equal to the sheet dimension in the center of the scanner is used to acquire images with full transmission, block transmission and with sheets in place. 500 virtual grids, created in MATALB® are imported as a macros in ImageJ (1.49m Wayne Rasband) to analyze the images. In order to remove the edge effects, the outer 86 grids are excluded from the analysis. The standard deviation of the block transmission and full transmission are 0.38% and 0.66% confirming a higher uniformity of the scanner. Expired and non-expired sheets have standard deviations of 2.18% and 1.29%, show that uniformity decreases after expiry. The results are promising and indicate a good potential of this method to be used as a uniformity check for scanner and unexposed Gafchromic sheets.

Keywords: IMRT, film dosimetry, virtual grids, uniformity

Procedia PDF Downloads 434
3648 An Analysis on Clustering Based Gene Selection and Classification for Gene Expression Data

Authors: K. Sathishkumar, V. Thiagarasu

Abstract:

Due to recent advances in DNA microarray technology, it is now feasible to obtain gene expression profiles of tissue samples at relatively low costs. Many scientists around the world use the advantage of this gene profiling to characterize complex biological circumstances and diseases. Microarray techniques that are used in genome-wide gene expression and genome mutation analysis help scientists and physicians in understanding of the pathophysiological mechanisms, in diagnoses and prognoses, and choosing treatment plans. DNA microarray technology has now made it possible to simultaneously monitor the expression levels of thousands of genes during important biological processes and across collections of related samples. Elucidating the patterns hidden in gene expression data offers a tremendous opportunity for an enhanced understanding of functional genomics. However, the large number of genes and the complexity of biological networks greatly increase the challenges of comprehending and interpreting the resulting mass of data, which often consists of millions of measurements. A first step toward addressing this challenge is the use of clustering techniques, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. This work presents an analysis of several clustering algorithms proposed to deals with the gene expression data effectively. The existing clustering algorithms like Support Vector Machine (SVM), K-means algorithm and evolutionary algorithm etc. are analyzed thoroughly to identify the advantages and limitations. The performance evaluation of the existing algorithms is carried out to determine the best approach. In order to improve the classification performance of the best approach in terms of Accuracy, Convergence Behavior and processing time, a hybrid clustering based optimization approach has been proposed.

Keywords: microarray technology, gene expression data, clustering, gene Selection

Procedia PDF Downloads 329
3647 An Exponential Field Path Planning Method for Mobile Robots Integrated with Visual Perception

Authors: Magdy Roman, Mostafa Shoeib, Mostafa Rostom

Abstract:

Global vision, whether provided by overhead fixed cameras, on-board aerial vehicle cameras, or satellite images can always provide detailed information on the environment around mobile robots. In this paper, an intelligent vision-based method of path planning and obstacle avoidance for mobile robots is presented. The method integrates visual perception with a new proposed field-based path-planning method to overcome common path-planning problems such as local minima, unreachable destination and unnecessary lengthy paths around obstacles. The method proposes an exponential angle deviation field around each obstacle that affects the orientation of a close robot. As the robot directs toward, the goal point obstacles are classified into right and left groups, and a deviation angle is exponentially added or subtracted to the orientation of the robot. Exponential field parameters are chosen based on Lyapunov stability criterion to guarantee robot convergence to the destination. The proposed method uses obstacles' shape and location, extracted from global vision system, through a collision prediction mechanism to decide whether to activate or deactivate obstacles field. In addition, a search mechanism is developed in case of robot or goal point is trapped among obstacles to find suitable exit or entrance. The proposed algorithm is validated both in simulation and through experiments. The algorithm shows effectiveness in obstacles' avoidance and destination convergence, overcoming common path planning problems found in classical methods.

Keywords: path planning, collision avoidance, convergence, computer vision, mobile robots

Procedia PDF Downloads 198
3646 World on the Edge: Migration and Cross Border Crimes in West Africa

Authors: Adeyemi Kamil Hamzah

Abstract:

The contiguity of nations in international system suggests that world is a composite of socio-economic unit with people exploring and exploiting the potentials in the world via migrations. Thus, cross border migration has made positive contributions to social and economic development of individuals and nations by increasing the household incomes of the host countries. However, the cross border migrations in West Africa are becoming part of a dynamic and unstable world migration system. This is due to the nature and consequences of trans-border crimes in West Africa, with both short and long term effects on the socio-economic viability of developing countries like West African States. The paper identified that migration influenced cross-border crimes as well as the high spate of insurgencies in the sub-region. Furthermore, the consequential effect of a global village has imbalanced population flows, making some countries host and parasites to others. Also, stern and deft cross-border rules and regulations, as well as territorial security and protections, ameliorate cross border crimes and migration in West African sub-regions. Therefore, the study concluded that cross border migration is the linchpin of all kinds of criminal activities which affect the security of states in the sub-region.

Keywords: cross-border migration, border crimes, security, West Africa, development, globalisation

Procedia PDF Downloads 229
3645 Review of the Legislative and Policy Issues in Promoting Infrastructure Development to Promote Automation in Telecom Industry

Authors: Marvin Ricardo Awarab

Abstract:

There has never been a greater need for telecom services. The Internet of Things (IoT), 5G networking, and edge computing are the driving forces behind this increased demand. The fierce demand offers communications service providers significant income opportunities. The telecom sector is centered on automation, and realizing a digital operation that functions as a real-time business will be crucial for the industry as a whole. Automation in telecom refers to the application of technology to create a more effective, quick, and scalable alternative to the conventional method of operating the telecom industry. With the promotion of 5G and the Internet of Things (IoT), telecom companies will continue to invest extensively in telecom automation technology. Automation offers benefits in the telecom industry; developing countries such as Namibia may not fully tap into such benefits because of the lack of funds and infrastructural resources to invest in automation. This paper fully investigates the benefits of automation in the telecom industry. Furthermore, the paper identifies hiccups that developing countries such as Namibia face in their quest to fully introduce automation in the telecom industry. Additionally, the paper proposes possible avenues that Namibia, as a developing country, adopt investing in automation infrastructural resources with the aim of reaping the full benefits of automation in the telecom industry.

Keywords: automation, development, internet, internet of things, network, telecom, telecommunications policy, 5G

Procedia PDF Downloads 69
3644 Detection of Temporal Change of Fishery and Island Activities by DNB and SAR on the South China Sea

Authors: I. Asanuma, T. Yamaguchi, J. Park, K. J. Mackin

Abstract:

Fishery lights on the surface could be detected by the Day and Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi-NPP). The DNB covers the spectral range of 500 to 900 nm and realized a higher sensitivity. The DNB has a difficulty of identification of fishing lights from lunar lights reflected by clouds, which affects observations for the half of the month. Fishery lights and lights of the surface are identified from lunar lights reflected by clouds by a method using the DNB and the infrared band, where the detection limits are defined as a function of the brightness temperature with a difference from the maximum temperature for each level of DNB radiance and with the contrast of DNB radiance against the background radiance. Fishery boats or structures on islands could be detected by the Synthetic Aperture Radar (SAR) on the polar orbit satellites using the reflected microwave by the surface reflecting targets. The SAR has a difficulty of tradeoff between spatial resolution and coverage while detecting the small targets like fishery boats. A distribution of fishery boats and island activities were detected by the scan-SAR narrow mode of Radarsat-2, which covers 300 km by 300 km with various combinations of polarizations. The fishing boats were detected as a single pixel of highly scattering targets with the scan-SAR narrow mode of which spatial resolution is 30 m. As the look angle dependent scattering signals exhibits the significant differences, the standard deviations of scattered signals for each look angles were taken into account as a threshold to identify the signal from fishing boats and structures on the island from background noise. It was difficult to validate the detected targets by DNB with SAR data because of time lag of observations for 6 hours between midnight by DNB and morning or evening by SAR. The temporal changes of island activities were detected as a change of mean intensity of DNB for circular area for a certain scale of activities. The increase of DNB mean intensity was corresponding to the beginning of dredging and the change of intensity indicated the ending of reclamation and following constructions of facilities.

Keywords: day night band, SAR, fishery, South China Sea

Procedia PDF Downloads 238
3643 A Multi-Modal Virtual Walkthrough of the Virtual Past and Present Based on Panoramic View, Crowd Simulation and Acoustic Heritage on Mobile Platform

Authors: Lim Chen Kim, Tan Kian Lam, Chan Yi Chee

Abstract:

This research presents a multi-modal simulation in the reconstruction of the past and the construction of present in digital cultural heritage on mobile platform. In bringing the present life, the virtual environment is generated through a presented scheme for rapid and efficient construction of 360° panoramic view. Then, acoustical heritage model and crowd model are presented and improvised into the 360° panoramic view. For the reconstruction of past life, the crowd is simulated and rendered in an old trading port. However, the keystone of this research is in a virtual walkthrough that shows the virtual present life in 2D and virtual past life in 3D, both in an environment of virtual heritage sites in George Town through mobile device. Firstly, the 2D crowd is modelled and simulated using OpenGL ES 1.1 on mobile platform. The 2D crowd is used to portray the present life in 360° panoramic view of a virtual heritage environment based on the extension of Newtonian Laws. Secondly, the 2D crowd is animated and rendered into 3D with improved variety and incorporated into the virtual past life using Unity3D Game Engine. The behaviours of the 3D models are then simulated based on the enhancement of the classical model of Boid algorithm. Finally, a demonstration system is developed and integrated with the models, techniques and algorithms of this research. The virtual walkthrough is demonstrated to a group of respondents and is evaluated through the user-centred evaluation by navigating around the demonstration system. The results of the evaluation based on the questionnaires have shown that the presented virtual walkthrough has been successfully deployed through a multi-modal simulation and such a virtual walkthrough would be particularly useful in a virtual tour and virtual museum applications.

Keywords: Boid Algorithm, Crowd Simulation, Mobile Platform, Newtonian Laws, Virtual Heritage

Procedia PDF Downloads 280
3642 Analyzing the Causes Behind Gas Turbine Blade Failure: A Comprehensive Case Study

Authors: Med. A. Djeridane, M. Ferhat, H. A. Benhorma, O. Bouledroua

Abstract:

This research is dedicated to exploring the failure of a turbine blade within a gas transportation plant, with a primary focus on conducting a comprehensive examination through advanced metallurgical and mechanical analyses of the identified failed blade. Crafted from the nickel superalloy Inconel IN738LC, the turbine engine had accumulated approximately 61,000 operational hours before the blades failed, causing severe damage to the transportation plant and necessitating a prolonged shutdown. The investigative procedure commenced with an in-depth visual inspection of the blade surfaces, succeeded by fractography analysis of the fracture surfaces, microstructural investigations, chemical analysis, and hardness measurements. The findings unveiled distinctive fatigue marks on the fracture surface. Critical microstructural changes were identified as a consequence of the blade's operation at high temperatures. The investigation determined that the crack initiation resulted from coating damage at the leading edge, subsequently propagating through fatigue. Ultimately, due to a reduction in cross-sectional area, the fracture was completed. This comprehensive analysis sheds light on the intricate factors contributing to turbine blade failure and offers valuable insights for enhancing operational reliability in similar environments.

Keywords: gas turbine, blade failure, TCP phases, fatigue, quantitative analysis

Procedia PDF Downloads 65
3641 The Design and Implementation of an Enhanced 2D Mesh Switch

Authors: Manel Langar, Riad Bourguiba, Jaouhar Mouine

Abstract:

In this paper, we propose the design and implementation of an enhanced wormhole virtual channel on chip router. It is a heart of a mesh NoC using the XY deterministic routing algorithm. It is characterized by its simple virtual channel allocation strategy which allows reducing area and complexity of connections without affecting the performance. We implemented our router on a Tezzaron process to validate its performances. This router is a basic element that will be used later to design a 3D mesh NoC.

Keywords: NoC, mesh, router, 3D NoC

Procedia PDF Downloads 570
3640 Investigating the Algorithm to Maintain a Constant Speed in the Wankel Engine

Authors: Adam Majczak, Michał Bialy, Zbigniew Czyż, Zdzislaw Kaminski

Abstract:

Increasingly stringent emission standards for passenger cars require us to find alternative drives. The share of electric vehicles in the sale of new cars increases every year. However, their performance and, above all, range cannot be today successfully compared to those of cars with a traditional internal combustion engine. Battery recharging lasts hours, which can be hardly accepted due to the time needed to refill a fuel tank. Therefore, the ways to reduce the adverse features of cars equipped with electric motors only are searched for. One of the methods is a combination of an electric engine as a main source of power and a small internal combustion engine as an electricity generator. This type of drive enables an electric vehicle to achieve a radically increased range and low emissions of toxic substances. For several years, the leading automotive manufacturers like the Mazda and the Audi together with the best companies in the automotive industry, e.g., AVL have developed some electric drive systems capable of recharging themselves while driving, known as a range extender. An electricity generator is powered by a Wankel engine that has seemed to pass into history. This low weight and small engine with a rotating piston and a very low vibration level turned out to be an excellent source in such applications. Its operation as an energy source for a generator almost entirely eliminates its disadvantages like high fuel consumption, high emission of toxic substances, or short lifetime typical of its traditional application. The operation of the engine at a constant rotational speed enables a significant increase in its lifetime, and its small external dimensions enable us to make compact modules to drive even small urban cars like the Audi A1 or the Mazda 2. The algorithm to maintain a constant speed was investigated on the engine dynamometer with an eddy current brake and the necessary measuring apparatus. The research object was the Aixro XR50 rotary engine with the electronic power supply developed at the Lublin University of Technology. The load torque of the engine was altered during the research by means of the eddy current brake capable of giving any number of load cycles. The parameters recorded included speed and torque as well as a position of a throttle in an inlet system. Increasing and decreasing load did not significantly change engine speed, which means that control algorithm parameters are correctly selected. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: electric vehicle, power generator, range extender, Wankel engine

Procedia PDF Downloads 157
3639 3D Label-Free Bioimaging of Native Tissue with Selective Plane Illumination Optical Microscopy

Authors: Jing Zhang, Yvonne Reinwald, Nick Poulson, Alicia El Haj, Chung See, Mike Somekh, Melissa Mather

Abstract:

Biomedical imaging of native tissue using light offers the potential to obtain excellent structural and functional information in a non-invasive manner with good temporal resolution. Image contrast can be derived from intrinsic absorption, fluorescence, or scatter, or through the use of extrinsic contrast. A major challenge in applying optical microscopy to in vivo tissue imaging is the effects of light attenuation which limits light penetration depth and achievable imaging resolution. Recently Selective Plane Illumination Microscopy (SPIM) has been used to map the 3D distribution of fluorophores dispersed in biological structures. In this approach, a focused sheet of light is used to illuminate the sample from the side to excite fluorophores within the sample of interest. Images are formed based on detection of fluorescence emission orthogonal to the illumination axis. By scanning the sample along the detection axis and acquiring a stack of images, 3D volumes can be obtained. The combination of rapid image acquisition speeds with the low photon dose to samples optical sectioning provides SPIM is an attractive approach for imaging biological samples in 3D. To date all implementations of SPIM rely on the use of fluorescence reporters be that endogenous or exogenous. This approach has the disadvantage that in the case of exogenous probes the specimens are altered from their native stage rendering them unsuitable for in vivo studies and in general fluorescence emission is weak and transient. Here we present for the first time to our knowledge a label-free implementation of SPIM that has downstream applications in the clinical setting. The experimental set up used in this work incorporates both label-free and fluorescent illumination arms in addition to a high specification camera that can be partitioned for simultaneous imaging of both fluorescent emission and scattered light from intrinsic sources of optical contrast in the sample being studied. This work first involved calibration of the imaging system and validation of the label-free method with well characterised fluorescent microbeads embedded in agarose gel. 3D constructs of mammalian cells cultured in agarose gel with varying cell concentrations were then imaged. A time course study to track cell proliferation in the 3D construct was also carried out and finally a native tissue sample was imaged. For each sample multiple images were obtained by scanning the sample along the axis of detection and 3D maps reconstructed. The results obtained validated label-free SPIM as a viable approach for imaging cells in a 3D gel construct and native tissue. This technique has the potential use in a near-patient environment that can provide results quickly and be implemented in an easy to use manner to provide more information with improved spatial resolution and depth penetration than current approaches.

Keywords: bioimaging, optics, selective plane illumination microscopy, tissue imaging

Procedia PDF Downloads 252
3638 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series

Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold

Abstract:

To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.

Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network

Procedia PDF Downloads 145
3637 Feature Evaluation Based on Random Subspace and Multiple-K Ensemble

Authors: Jaehong Yu, Seoung Bum Kim

Abstract:

Clustering analysis can facilitate the extraction of intrinsic patterns in a dataset and reveal its natural groupings without requiring class information. For effective clustering analysis in high dimensional datasets, unsupervised dimensionality reduction is an important task. Unsupervised dimensionality reduction can generally be achieved by feature extraction or feature selection. In many situations, feature selection methods are more appropriate than feature extraction methods because of their clear interpretation with respect to the original features. The unsupervised feature selection can be categorized as feature subset selection and feature ranking method, and we focused on unsupervised feature ranking methods which evaluate the features based on their importance scores. Recently, several unsupervised feature ranking methods were developed based on ensemble approaches to achieve their higher accuracy and stability. However, most of the ensemble-based feature ranking methods require the true number of clusters. Furthermore, these algorithms evaluate the feature importance depending on the ensemble clustering solution, and they produce undesirable evaluation results if the clustering solutions are inaccurate. To address these limitations, we proposed an ensemble-based feature ranking method with random subspace and multiple-k ensemble (FRRM). The proposed FRRM algorithm evaluates the importance of each feature with the random subspace ensemble, and all evaluation results are combined with the ensemble importance scores. Moreover, FRRM does not require the determination of the true number of clusters in advance through the use of the multiple-k ensemble idea. Experiments on various benchmark datasets were conducted to examine the properties of the proposed FRRM algorithm and to compare its performance with that of existing feature ranking methods. The experimental results demonstrated that the proposed FRRM outperformed the competitors.

Keywords: clustering analysis, multiple-k ensemble, random subspace-based feature evaluation, unsupervised feature ranking

Procedia PDF Downloads 342
3636 Detection of Phoneme [S] Mispronounciation for Sigmatism Diagnosis in Adults

Authors: Michal Krecichwost, Zauzanna Miodonska, Pawel Badura

Abstract:

The diagnosis of sigmatism is mostly based on the observation of articulatory organs. It is, however, not always possible to precisely observe the vocal apparatus, in particular in the oral cavity of the patient. Speech processing can allow to objectify the therapy and simplify the verification of its progress. In the described study the methodology for classification of incorrectly pronounced phoneme [s] is proposed. The recordings come from adults. They were registered with the speech recorder at the sampling rate of 44.1 kHz and the resolution of 16 bit. The database of pathological and normative speech has been collected for the study including reference assessments provided by the speech therapy experts. Ten adult subjects were asked to simulate a certain type of stigmatism under the speech therapy expert supervision. In the recordings, the analyzed phone [s] was surrounded by vowels, viz: ASA, ESE, ISI, SPA, USU, YSY. Thirteen MFCC (mel-frequency cepstral coefficients) and RMS (root mean square) values are calculated within each frame being a part of the analyzed phoneme. Additionally, 3 fricative formants along with corresponding amplitudes are determined for the entire segment. In order to aggregate the information within the segment, the average value of each MFCC coefficient is calculated. All features of other types are aggregated by means of their 75th percentile. The proposed method of features aggregation reduces the size of the feature vector used in the classification. Binary SVM (support vector machine) classifier is employed at the phoneme recognition stage. The first group consists of pathological phones, while the other of the normative ones. The proposed feature vector yields classification sensitivity and specificity measures above 90% level in case of individual logo phones. The employment of a fricative formants-based information improves the sole-MFCC classification results average of 5 percentage points. The study shows that the employment of specific parameters for the selected phones improves the efficiency of pathology detection referred to the traditional methods of speech signal parameterization.

Keywords: computer-aided pronunciation evaluation, sibilants, sigmatism diagnosis, speech processing

Procedia PDF Downloads 286
3635 Modified Weibull Approach for Bridge Deterioration Modelling

Authors: Niroshan K. Walgama Wellalage, Tieling Zhang, Richard Dwight

Abstract:

State-based Markov deterioration models (SMDM) sometimes fail to find accurate transition probability matrix (TPM) values, and hence lead to invalid future condition prediction or incorrect average deterioration rates mainly due to drawbacks of existing nonlinear optimization-based algorithms and/or subjective function types used for regression analysis. Furthermore, a set of separate functions for each condition state with age cannot be directly derived by using Markov model for a given bridge element group, which however is of interest to industrial partners. This paper presents a new approach for generating Homogeneous SMDM model output, namely, the Modified Weibull approach, which consists of a set of appropriate functions to describe the percentage condition prediction of bridge elements in each state. These functions are combined with Bayesian approach and Metropolis Hasting Algorithm (MHA) based Markov Chain Monte Carlo (MCMC) simulation technique for quantifying the uncertainty in model parameter estimates. In this study, factors contributing to rail bridge deterioration were identified. The inspection data for 1,000 Australian railway bridges over 15 years were reviewed and filtered accordingly based on the real operational experience. Network level deterioration model for a typical bridge element group was developed using the proposed Modified Weibull approach. The condition state predictions obtained from this method were validated using statistical hypothesis tests with a test data set. Results show that the proposed model is able to not only predict the conditions in network-level accurately but also capture the model uncertainties with given confidence interval.

Keywords: bridge deterioration modelling, modified weibull approach, MCMC, metropolis-hasting algorithm, bayesian approach, Markov deterioration models

Procedia PDF Downloads 732
3634 Graphical Theoretical Construction of Discrete time Share Price Paths from Matroid

Authors: Min Wang, Sergey Utev

Abstract:

The lessons from the 2007-09 global financial crisis have driven scientific research, which considers the design of new methodologies and financial models in the global market. The quantum mechanics approach was introduced in the unpredictable stock market modeling. One famous quantum tool is Feynman path integral method, which was used to model insurance risk by Tamturk and Utev and adapted to formalize the path-dependent option pricing by Hao and Utev. The research is based on the path-dependent calculation method, which is motivated by the Feynman path integral method. The path calculation can be studied in two ways, one way is to label, and the other is computational. Labeling is a part of the representation of objects, and generating functions can provide many different ways of representing share price paths. In this paper, the recent works on graphical theoretical construction of individual share price path via matroid is presented. Firstly, a study is done on the knowledge of matroid, relationship between lattice path matroid and Tutte polynomials and ways to connect points in the lattice path matroid and Tutte polynomials is suggested. Secondly, It is found that a general binary tree can be validly constructed from a connected lattice path matroid rather than general lattice path matroid. Lastly, it is suggested that there is a way to represent share price paths via a general binary tree, and an algorithm is developed to construct share price paths from general binary trees. A relationship is also provided between lattice integer points and Tutte polynomials of a transversal matroid. Use this way of connection together with the algorithm, a share price path can be constructed from a given connected lattice path matroid.

Keywords: combinatorial construction, graphical representation, matroid, path calculation, share price, Tutte polynomial

Procedia PDF Downloads 143
3633 Humanitarianism as the New Face of Religion Practice: A Nigerian Experience

Authors: Nicholas Okpe

Abstract:

As the world gets more and more engulfed in both man-made and natural disasters, the call for religious intervention becomes intrinsically louder to the extent that any religious inclination that does not devolve into societal or humanitarian adventures makes no meaning. Wars, conflicts, environmental disturbances have thrown new challenges hitherto unknown to the doorsteps of religious groups for intervention as the last hope of humanity. In Nigeria, since the last two decades, many things have fallen apart that have led to humanitarian crisis from the North to the South and from the East to the West. Over five million Nigerians live in internally displaced camps all over the country due to the various forms of social unrest as well as natural disasters, especially floods. These problems have brought forth the signifance of various religious groups who through their interventions have often shown to be the hope of the people. This paper examines the latent potentials of religion in not only making people to cope with difficult situations they find themselves in, but also giving sucure to the many who otherwise are despondent and at the edge of life. Many religious groups have well developed plans of interventions in various humanitarian situations. The efforts of religions such as christianity, Islam and the indigenous African religion is exrayed and assessed for proper evaluation. The paper finds out that the most potent and effective means of attending to humanitarian crisis today in Nigeria is through the various religious organization as governments at various levels have lost credibility in such exercises.

Keywords: humanitarianism, religion. nigeria, society, practice

Procedia PDF Downloads 48
3632 Study of Launch Recovery Control Dynamics of Retro Propulsive Reusable Rockets

Authors: Pratyush Agnihotri

Abstract:

The space missions are very costly because the transportation to the space is highly expensive and therefore there is the need to achieve complete re-usability in our launch vehicles to make the missions highly economic by cost cutting of the material recovered. Launcher reusability is the most efficient approach to decreasing admittance to space access economy, however stays an incredible specialized hurdle for the aerospace industry. Major concern of the difficulties lies in guidance and control procedure and calculations, specifically for those of the controlled landing stage, which should empower an exact landing with low fuel edges. Although cutting edge ways for navigation and control are present viz hybrid navigation and robust control. But for powered descent and landing of first stage of launch vehicle the guidance control is need to enable on board optimization. At first the CAD model of the launch vehicle I.e. space x falcon 9 rocket is presented for better understanding of the architecture that needs to be identified for the guidance and control solution for the recovery of the launcher. The focus is on providing the landing phase guidance scheme for recovery and re usability of first stage using retro propulsion. After reviewing various GNC solutions, to achieve accuracy in pre requisite landing online convex and successive optimization are explored as the guidance schemes.

Keywords: guidance, navigation, control, retro propulsion, reusable rockets

Procedia PDF Downloads 96
3631 A Survey of Domain Name System Tunneling Attacks: Detection and Prevention

Authors: Lawrence Williams

Abstract:

As the mechanism which converts domains to internet protocol (IP) addresses, Domain Name System (DNS) is an essential part of internet usage. It was not designed securely and can be subject to attacks. DNS attacks have become more frequent and sophisticated and the need for detecting and preventing them becomes more important for the modern network. DNS tunnelling attacks are one type of attack that are primarily used for distributed denial-of-service (DDoS) attacks and data exfiltration. Discussion of different techniques to detect and prevent DNS tunneling attacks is done. The methods, models, experiments, and data for each technique are discussed. A proposal about feasibility is made. Future research on these topics is proposed.

Keywords: DNS, tunneling, exfiltration, botnet

Procedia PDF Downloads 81
3630 Rapid Detection of the Etiology of Infection as Bacterial or Viral Using Infrared Spectroscopy of White Blood Cells

Authors: Uraib Sharaha, Guy Beck, Joseph Kapelushnik, Adam H. Agbaria, Itshak Lapidot, Shaul Mordechai, Ahmad Salman, Mahmoud Huleihel

Abstract:

Infectious diseases cause a significant burden on the public health and the economic stability of societies all over the world for several centuries. A reliable detection of the causative agent of infection is not possible based on clinical features, since some of these infections have similar symptoms, including fever, sneezing, inflammation, vomiting, diarrhea, and fatigue. Moreover, physicians usually encounter difficulties in distinguishing between viral and bacterial infections based on symptoms. Therefore, there is an ongoing need for sensitive, specific, and rapid methods for identification of the etiology of the infection. This intricate issue perplex doctors and researchers since it has serious repercussions. In this study, we evaluated the potential of the mid-infrared spectroscopic method for rapid and reliable identification of bacterial and viral infections based on simple peripheral blood samples. Fourier transform infrared (FTIR) spectroscopy is considered a successful diagnostic method in the biological and medical fields. Many studies confirmed the great potential of the combination of FTIR spectroscopy and machine learning as a powerful diagnostic tool in medicine since it is a very sensitive method, which can detect and monitor the molecular and biochemical changes in biological samples. We believed that this method would play a major role in improving the health situation, raising the level of health in the community, and reducing the economic burdens in the health sector resulting from the indiscriminate use of antibiotics. We collected peripheral blood samples from young 364 patients, of which 93 were controls, 126 had bacterial infections, and 145 had viral infections, with ages lower than18 years old, limited to those who were diagnosed with fever-producing illness. Our preliminary results showed that it is possible to determine the infectious agent with high success rates of 82% for sensitivity and 80% for specificity, based on the WBC data.

Keywords: infectious diseases, (FTIR) spectroscopy, viral infections, bacterial infections.

Procedia PDF Downloads 143
3629 A Short Dermatoscopy Training Increases Diagnostic Performance in Medical Students

Authors: Magdalena Chrabąszcz, Teresa Wolniewicz, Cezary Maciejewski, Joanna Czuwara

Abstract:

BACKGROUND: Dermoscopy is a clinical tool known to improve the early detection of melanoma and other malignancies of the skin. Over the past few years melanoma has grown into a disease of socio-economic importance due to the increasing incidence and persistently high mortality rates. Early diagnosis remains the best method to reduce melanoma and non-melanoma skin cancer– related mortality and morbidity. Dermoscopy is a noninvasive technique that consists of viewing pigmented skin lesions through a hand-held lens. This simple procedure increases melanoma diagnostic accuracy by up to 35%. Dermoscopy is currently the standard for clinical differential diagnosis of cutaneous melanoma and for qualifying lesion for the excision biopsy. Like any clinical tool, training is required for effective use. The introduction of small and handy dermoscopes contributed significantly to the switch of dermatoscopy toward a first-level useful tool. Non-dermatologist physicians are well positioned for opportunistic melanoma detection; however, education in the skin cancer examination is limited during medical school and traditionally lecture-based. AIM: The aim of this randomized study was to determine whether the adjunct of dermoscopy to the standard fourth year medical curriculum improves the ability of medical students to distinguish between benign and malignant lesions and assess acceptability and satisfaction with the intervention. METHODS: We performed a prospective study in 2 cohorts of fourth-year medical students at Medical University of Warsaw. Groups having dermatology course, were randomly assigned to:  cohort A: with limited access to dermatoscopy from their teacher only – 1 dermatoscope for 15 people  Cohort B: with a full access to use dermatoscopy during their clinical classes:1 dermatoscope for 4 people available constantly plus 15-minute dermoscopy tutorial. Students in both study arms got an image-based test of 10 lesions to assess ability to differentiate benign from malignant lesions and postintervention survey collecting minimal background information, attitudes about the skin cancer examination and course satisfaction. RESULTS: The cohort B had higher scores than the cohort A in recognition of nonmelanocytic (P < 0.05) and melanocytic (P <0.05) lesions. Medical students who have a possibility to use dermatoscope by themselves have also a higher satisfaction rates after the dermatology course than the group with limited access to this diagnostic tool. Moreover according to our results they were more motivated to learn dermatoscopy and use it in their future everyday clinical practice. LIMITATIONS: There were limited participants. Further study of the application on clinical practice is still needed. CONCLUSION: Although the use of dermatoscope in dermatology as a specialty is widely accepted, sufficiently validated clinical tools for the examination of potentially malignant skin lesions are lacking in general practice. Introducing medical students to dermoscopy in their fourth year curricula of medical school may improve their ability to differentiate benign from malignant lesions. It can can also encourage students to use dermatoscopy in their future practice which can significantly improve early recognition of malignant lesions and thus decrease melanoma mortality.

Keywords: dermatoscopy, early detection of melanoma, medical education, skin cancer

Procedia PDF Downloads 118
3628 Development of a Bead Based Fully Automated Mutiplex Tool to Simultaneously Diagnose FIV, FeLV and FIP/FCoV

Authors: Andreas Latz, Daniela Heinz, Fatima Hashemi, Melek Baygül

Abstract:

Introduction: Feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), and feline coronavirus (FCoV) are serious infectious diseases affecting cats worldwide. Transmission of these viruses occurs primarily through close contact with infected cats (via saliva, nasal secretions, faeces, etc.). FeLV, FIV, and FCoV infections can occur in combination and are expressed in similar clinical symptoms. Diagnosis can therefore be challenging: Symptoms are variable and often non-specific. Sick cats show very similar clinical symptoms: apathy, anorexia, fever, immunodeficiency syndrome, anemia, etc. Sample volume for small companion animals for diagnostic purposes can be challenging to collect. In addition, multiplex diagnosis of diseases can contribute to an easier, cheaper, and faster workflow in the lab as well as to the better differential diagnosis of diseases. For this reason, we wanted to develop a new diagnostic tool that utilizes less sample volume, reagents, and consumables than multiplesingleplex ELISA assays Methods: The Multiplier from Dynextechonogies (USA) has been used as platform to develop a Multiplex diagnostic tool for the detection of antibodies against FIV and FCoV/FIP and antigens for FeLV. Multiplex diagnostics. The Dynex®Multiplier®is a fully automated chemiluminescence immunoassay analyzer that significantly simplifies laboratory workflow. The Multiplier®ease-of-use reduces pre-analytical steps by combining the power of efficiently multiplexing multiple assays with the simplicity of automated microplate processing. Plastic beads have been coated with antigens for FIV and FCoV/FIP, as well as antibodies for FeLV. Feline blood samples are incubated with the beads. Read out of results is performed via chemiluminescence Results: Bead coating was optimized for each individual antigen or capture antibody and then combined in the multiplex diagnostic tool. HRP: Antibody conjugates for FIV and FCoV antibodies, as well as detection antibodies for FeLV antigen, have been adjusted and mixed. 3 individual prototyple batches of the assay have been produced. We analyzed for each disease 50 well defined positive and negative samples. Results show an excellent diagnostic performance of the simultaneous detection of antibodies or antigens against these feline diseases in a fully automated system. A 100% concordance with singleplex methods like ELISA or IFA can be observed. Intra- and Inter-Assays showed a high precision of the test with CV values below 10% for each individual bead. Accelerated stability testing indicate a shelf life of at least 1 year. Conclusion: The new tool can be used for multiplex diagnostics of the most important feline infectious diseases. Only a very small sample volume is required. Fully automation results in a very convenient and fast method for diagnosing animal diseases.With its large specimen capacity to process over 576 samples per 8-hours shift and provide up to 3,456 results, very high laboratory productivity and reagent savings can be achieved.

Keywords: Multiplex, FIV, FeLV, FCoV, FIP

Procedia PDF Downloads 107
3627 Design and Validation of Cutting Performance of Ceramic Matrix Composites Using FEM Simulations

Authors: Zohaib Ellahi, Guolong Zhao

Abstract:

Ceramic matrix composite (CMC) material possesses high strength, wear resistance and anisotropy thus machining of this material is very difficult and demands high cost. In this research, FEM simulations and physical experiments have been carried out to assess the machinability of carbon fiber reinforced silicon carbide (C/SiC) using polycrystalline diamond (PCD) tool in slot milling process. Finite element model has been generated in Abaqus/CAE software and milling operation performed by using user defined material subroutine. Effect of different milling parameters on cutting forces and stresses has been calculated through FEM simulations and compared with experimental results to validate the finite element model. Cutting forces in x and y-direction were calculated through both experiments and finite element model and found a good agreement between them. With increase in cutting speed resultant cutting forces are decreased. Resultant cutting forces are increased with increased feed per tooth and depth of cut. When machining performed along the fiber direction stresses generated near the tool edge were minimum and increases with fiber cutting angle.

Keywords: experimental & numerical investigation, C/SiC cutting performance analysis, milling of CMCs, CMC composite stress analysis

Procedia PDF Downloads 91