Search results for: remote sensing data
25910 Metaverse in Future Personal Healthcare Industry: From Telemedicine to Telepresence
Authors: Mohammed Saeed Jawad
Abstract:
Metaverse involves the convergence of three major technologies trends of AI, VR, and AR. Together these three technologies can provide an entirely new channel for delivering healthcare with great potential to lower costs and improve patient outcomes on a larger scale. Telepresence is the technology that allows people to be together even if they are physically apart. Medical doctors can be symbolic as interactive avatars developed to have smart conversations and medical recommendations for patients at the different stages of the treatment. Medical digital assets such as Medical IoT for real-time remote healthcare monitoring as well as the symbolic doctors’ avatars as well as the hospital and clinical physical constructions and layout can be immersed in extended realities 3D metaverse environments where doctors, nurses, and patients can interact and socialized with the related digital assets that facilitate the data analytics of the sensed and collected personal medical data with visualized interaction of the digital twin of the patient’s body as well as the medical doctors' smart conversation and consultation or even in a guided remote-surgery operation.Keywords: personal healthcare, metaverse, telemedicine, telepresence, avatar, medical consultation, remote-surgery
Procedia PDF Downloads 13625909 Slope Instability Study Using Kinematic Analysis and Lineament Density Mapping along a Part of National Highway 58, Uttarakhand, India
Authors: Kush Kumar, Varun Joshi
Abstract:
Slope instability is a major problem of the mountainous region, especially in parts of the Indian Himalayan Region (IHR). The on-going tectonic, rugged topography, steep slope, heavy precipitation, toe erosion, structural discontinuities, and deformation are the main triggering factors of landslides in this region. Besides the loss of life, property, and infrastructure caused by a landslide, it also results in various environmental problems, i.e., degradation of slopes, land use, river quality by increased sediments, and loss of well-established vegetation. The Indian state of Uttarakhand, being a part of the active Himalayas, also faces numerous cases of slope instability. Therefore, the vulnerable landslide zones need to be delineated to safeguard various losses. The study area is focused in Garhwal and Tehri -Garhwal district of Uttarakhand state along National Highway 58, which is a strategic road and also connects the four important sacred pilgrims (Char Dham) of India. The lithology of these areas mainly comprises of sandstone, quartzite of Chakrata formation, and phyllites of Chandpur formation. The greywacke and sandstone rock of Saknidhar formation dips northerly and is overlain by phyllite of Chandpur formation. The present research incorporates the lineament density mapping using remote sensing satellite data supplemented by a detailed field study via kinematic analysis. The DEM data of ALOS PALSAR (12.5 m resolution) is resampled to 10 m resolution and used for preparing various thematic maps such as slope, aspect, drainage, hill shade, lineament, and lineament density using ARCGIS 10.6 software. Furthermore, detailed field mapping, including structural mapping, geomorphological mapping, is integrated for kinematic analysis of the slope using Dips 6.0 software of Rockscience. The kinematic analysis of 40 locations was carried out, among which 15 show the planar type of failure, five-show wedge failure, and rest, 20 show no failures. The lineament density map is overlapped with the location of the unstable slope inferred from kinematic analysis to infer the association of the field information and remote sensing derived information, and significant compatibility was observed. With the help of the present study, location-specific mitigation measures could be suggested. The mitigation measures would be helping in minimizing the probability of slope instability, especially during the rainy season, and reducing the hampering of road traffic.Keywords: Indian Himalayan Region, kinematic analysis, lineament density mapping, slope instability
Procedia PDF Downloads 13925908 Land Tenure and Erosion as Determinants of Guerrilla Violence in Assam, India: An Ethnographic and Remote Sensing Approach
Authors: Kevin T. Inks
Abstract:
India’s Brahmaputra River Valley has, since independence, experienced consistent low-intensity guerrilla warfare between ethnic and religious groups. These groups are often organized around perceived ethnic territoriality, and target civilians, communities, and especially migrants belonging to other ethnic and religious groups. Intense flooding and erosion have led to widespread displacement, and disaster relief funds are largely tied to legal land tenure. Displaced residents of informal settlements receive little or no resettlement aid, and their subsequent migration strategies and risk from guerrilla violence are poorly understood. Semi-structured interviews and comprehensive surveys focused on perceptions of risk, efficacy of disaster relief, and migration and adaptation strategies were conducted with households identified as being ‘at-risk’ of catastrophic flooding and erosion in Majuli District, Assam. Interviews with policymakers and government workers were conducted to assess disaster relief efforts in informal settlements, and remote sensing methods were used to identify informal settlement and hydrogeomorphic change. The results show that various ethnic and religious groups have differential strategies and preferences for resettlement. However, these varying strategies are likely to lead to differential levels of risk from guerrilla violence. Members of certain ethnic groups residing in informal settlements, in the absence of resettlement assistance, are more likely to seek out unofficial settlement on land far from the protection of the state and experience greater risk of becoming victims of political violence. As climate change and deforestation are likely to increase the severity of the displacement crisis in the Brahmaputra River Valley, more comprehensive disaster relief and surveying efforts are vital for limiting migration and informal settlement in potential sites of guerrilla warfare.Keywords: climate, displacement, flooding, India, violence
Procedia PDF Downloads 10525907 Land Use Change Detection Using Remote Sensing and GIS
Authors: Naser Ahmadi Sani, Karim Solaimani, Lida Razaghnia, Jalal Zandi
Abstract:
In recent decades, rapid and incorrect changes in land-use have been associated with consequences such as natural resources degradation and environmental pollution. Detecting changes in land-use is one of the tools for natural resource management and assessment of changes in ecosystems. The target of this research is studying the land-use changes in Haraz basin with an area of 677000 hectares in a 15 years period (1996 to 2011) using LANDSAT data. Therefore, the quality of the images was first evaluated. Various enhancement methods for creating synthetic bonds were used in the analysis. Separate training sites were selected for each image. Then the images of each period were classified in 9 classes using supervised classification method and the maximum likelihood algorithm. Finally, the changes were extracted in GIS environment. The results showed that these changes are an alarm for the HARAZ basin status in future. The reason is that 27% of the area has been changed, which is related to changing the range lands to bare land and dry farming and also changing the dense forest to sparse forest, horticulture, farming land and residential area.Keywords: Haraz basin, change detection, land-use, satellite data
Procedia PDF Downloads 41525906 Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms
Authors: Shaik Ayesha Fathima, Shaik Noor Jahan, Duvvada Rajeswara Rao
Abstract:
Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments.Keywords: area calculation, atrous convolution, deep globe land cover classification, deepLabv3, land cover classification, resnet 50
Procedia PDF Downloads 14025905 Improved Classification Procedure for Imbalanced and Overlapped Situations
Authors: Hankyu Lee, Seoung Bum Kim
Abstract:
The issue with imbalance and overlapping in the class distribution becomes important in various applications of data mining. The imbalanced dataset is a special case in classification problems in which the number of observations of one class (i.e., major class) heavily exceeds the number of observations of the other class (i.e., minor class). Overlapped dataset is the case where many observations are shared together between the two classes. Imbalanced and overlapped data can be frequently found in many real examples including fraud and abuse patients in healthcare, quality prediction in manufacturing, text classification, oil spill detection, remote sensing, and so on. The class imbalance and overlap problem is the challenging issue because this situation degrades the performance of most of the standard classification algorithms. In this study, we propose a classification procedure that can effectively handle imbalanced and overlapped datasets by splitting data space into three parts: nonoverlapping, light overlapping, and severe overlapping and applying the classification algorithm in each part. These three parts were determined based on the Hausdorff distance and the margin of the modified support vector machine. An experiments study was conducted to examine the properties of the proposed method and compared it with other classification algorithms. The results showed that the proposed method outperformed the competitors under various imbalanced and overlapped situations. Moreover, the applicability of the proposed method was demonstrated through the experiment with real data.Keywords: classification, imbalanced data with class overlap, split data space, support vector machine
Procedia PDF Downloads 30825904 Applications of Space Technology in Flood Risk Mapping in Parts of Haryana State, India
Authors: B. S. Chaudhary
Abstract:
The severity and frequencies of different disasters on the globe is increasing in recent years. India is also facing the disasters in the form of drought, cyclone, earthquake, landslides, and floods. One of the major causes of disasters in northern India is flood. There are great losses and extensive damage to the agricultural crops, property, human, and animal life. This is causing environmental imbalances at places. The annual global figures for losses due to floods run into over 2 billion dollar. India is a vast country with wide variations in climate and topography. Due to widespread and heavy rainfall during the monsoon months, floods of varying magnitude occur all over the country during June to September. The magnitude depends upon the intensity of rainfall, its duration and also the ground conditions at the time of rainfall. Haryana, one of the agriculturally dominated northern states is also suffering from a number of disasters such as floods, desertification, soil erosion, land degradation etc. Earthquakes are also frequently occurring but of small magnitude so are not causing much concern and damage. Most of the damage in Haryana is due to floods. Floods in Haryana have occurred in 1978, 1988, 1993, 1995, 1998, and 2010 to mention a few. The present paper deals with the Remote Sensing and GIS applications in preparing flood risk maps in parts of Haryana State India. The satellite data of various years have been used for mapping of flood affected areas. The Flooded areas have been interpreted both visually and digitally and two classes-flooded and receded water/ wet areas have been identified for each year. These have been analyzed in GIS environment to prepare the risk maps. This shows the areas of high, moderate and low risk depending on the frequency of flood witness. The floods leave a trail of suffering in the form of unhygienic conditions due to improper sanitation, water logging, filth littered in the area, degradation of materials and unsafe drinking water making the people prone to many type diseases in short and long run. Attempts have also been made to enumerate the causes of floods. The suggestions are given for mitigating the fury of floods and proper management issues related to evacuation and safe places nearby.Keywords: flood mapping, GIS, Haryana, India, remote sensing, space technology
Procedia PDF Downloads 21025903 Various Advanced Statistical Analyses of Index Values Extracted from Outdoor Agricultural Workers Motion Data
Authors: Shinji Kawakura, Ryosuke Shibasaki
Abstract:
We have been grouping and developing various kinds of practical, promising sensing applied systems concerning agricultural advancement and technical tradition (guidance). These include advanced devices to secure real-time data related to worker motion, and we analyze by methods of various advanced statistics and human dynamics (e.g. primary component analysis, Ward system based cluster analysis, and mapping). What is more, we have been considering worker daily health and safety issues. Targeted fields are mainly common farms, meadows, and gardens. After then, we observed and discussed time-line style, changing data. And, we made some suggestions. The entire plan makes it possible to improve both the aforementioned applied systems and farms.Keywords: advanced statistical analysis, wearable sensing system, tradition of skill, supporting for workers, detecting crisis
Procedia PDF Downloads 39425902 Lean Airport Infrastructure Development: A Sustainable Solution for Integration of Remote Regions
Authors: Joeri N. Aulman
Abstract:
In the remote Indian region of Gulbarga a case study of lean airport infrastructure development is getting ‘cast in stone’; In April the first turbo-props will land, and the optimized terminal building will process its first passengers, using minimal square meters in a facility that is based on a complete dress-down of the core operational processes. Yet the solution that resulted from this case study has such elegance in its simplicity that it has emboldened the local administration to invest in its construction and thus secure this remote region’s connectivity to India’s growth story. This paper aims to provide further background to the Gulbarga case study and its relevance to remote region connectivity, covering the demand that was identified, its practical application and its regulatory context and relevance for today’s airport manager and local administrators. This embodies the scope of the paper. In summary, the paper will give airport managers and regional authorities an overview and background to innovative case studies of lean airport infrastructure developments which combine both optimized CAPEX and running costs/OPEX without losing sight of the aspirational nature of up and coming remote regions; a truly sustainable model.Keywords: airport, CAPEX, lean, sustainable, air connectivity, remote regions
Procedia PDF Downloads 31125901 Planar Plasmonic Terahertz Waveguides for Sensor Applications
Authors: Maidul Islam, Dibakar Roy Chowdhury, Gagan Kumar
Abstract:
We investigate sensing capabilities of a planar plasmonic THz waveguide. The waveguide is comprised of one dimensional array of periodically arranged sub wavelength scale corrugations in the form of rectangular dimples in order to ensure the plasmonic response. The THz waveguide transmission is observed for polyimide (as thin film) substance filling the dimples. The refractive index of the polyimide film is varied to examine various sensing parameters such as frequency shift, sensitivity and Figure of Merit (FoM) of the fundamental plasmonic resonance supported by the waveguide. In efforts to improve sensing characteristics, we also examine sensing capabilities of a plasmonic waveguide having V shaped corrugations and compare results with that of rectangular dimples. The proposed study could be significant in developing new terahertz sensors with improved sensitivity utilizing the plasmonic waveguides.Keywords: plasmonics, sensors, sub-wavelength structures, terahertz
Procedia PDF Downloads 22725900 Determining Optimum Locations for Runoff Water Harvesting in W. Watir, South Sinai, Using RS, GIS, and WMS Techniques
Authors: H. H. Elewa, E. M. Ramadan, A. M. Nosair
Abstract:
Rainfall water harvesting is considered as an important tool for overcoming water scarcity in arid and semi-arid region. Wadi Watir in the southeastern part of Sinai Peninsula is considered as one of the main and active basins in the Gulf of Aqaba drainage system. It is characterized by steep hills mainly consist of impermeable rocks, whereas the streambeds are covered by a highly permeable mixture of gravel and sand. A comprehensive approach involving the integration of geographic information systems, remote sensing and watershed modeling was followed to identify the RWH capability in this area. Eight thematic layers, viz volume of annual flood, overland flow distance, maximum flow distance, rock or soil infiltration, drainage frequency density, basin area, basin slope and basin length were used as a multi-parametric decision support system for conducting weighted spatial probability models (WSPMs) to determine the potential areas for the RWH. The WSPMs maps classified the area into five RWH potentiality classes ranging from the very low to very high. Three performed WSPMs' scenarios for W. Watir reflected identical results among their maps for the high and very high RWH potentiality classes, which are the most suitable ones for conducting surface water harvesting techniques. There is also a reasonable match with respect to the potentiality of runoff harvesting areas with a probability of moderate, low and very low among the three scenarios. WSPM results have shown that the high and very high classes, which are the most suitable for the RWH are representing approximately 40.23% of the total area of the basin. Accordingly, several locations were decided for the establishment of water harvesting dams and cisterns to improve the water conditions and living environment in the study area.Keywords: Sinai, Wadi Watir, remote sensing, geographic information systems, watershed modeling, runoff water harvesting
Procedia PDF Downloads 35825899 Imaging of Underground Targets with an Improved Back-Projection Algorithm
Authors: Alireza Akbari, Gelareh Babaee Khou
Abstract:
Ground Penetrating Radar (GPR) is an important nondestructive remote sensing tool that has been used in both military and civilian fields. Recently, GPR imaging has attracted lots of attention in detection of subsurface shallow small targets such as landmines and unexploded ordnance and also imaging behind the wall for security applications. For the monostatic arrangement in the space-time GPR image, a single point target appears as a hyperbolic curve because of the different trip times of the EM wave when the radar moves along a synthetic aperture and collects reflectivity of the subsurface targets. With this hyperbolic curve, the resolution along the synthetic aperture direction shows undesired low resolution features owing to the tails of hyperbola. However, highly accurate information about the size, electromagnetic (EM) reflectivity, and depth of the buried objects is essential in most GPR applications. Therefore hyperbolic curve behavior in the space-time GPR image is often willing to be transformed to a focused pattern showing the object's true location and size together with its EM scattering. The common goal in a typical GPR image is to display the information of the spatial location and the reflectivity of an underground object. Therefore, the main challenge of GPR imaging technique is to devise an image reconstruction algorithm that provides high resolution and good suppression of strong artifacts and noise. In this paper, at first, the standard back-projection (BP) algorithm that was adapted to GPR imaging applications used for the image reconstruction. The standard BP algorithm was limited with against strong noise and a lot of artifacts, which have adverse effects on the following work like detection targets. Thus, an improved BP is based on cross-correlation between the receiving signals proposed for decreasing noises and suppression artifacts. To improve the quality of the results of proposed BP imaging algorithm, a weight factor was designed for each point in region imaging. Compared to a standard BP algorithm scheme, the improved algorithm produces images of higher quality and resolution. This proposed improved BP algorithm was applied on the simulation and the real GPR data and the results showed that the proposed improved BP imaging algorithm has a superior suppression artifacts and produces images with high quality and resolution. In order to quantitatively describe the imaging results on the effect of artifact suppression, focusing parameter was evaluated.Keywords: algorithm, back-projection, GPR, remote sensing
Procedia PDF Downloads 45325898 Rb-Modified Few-Layered Graphene for Gas Sensing Application
Authors: Vasant Reddy, Shivani A. Singh, Pravin S. More
Abstract:
In the present investigation, we demonstrated the fabrication of few-layers of graphene sheets with alkali metal i.e. Rb-G using chemical route method. The obtained materials were characterized by means of chemical, structural and electrical techniques, using the ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and 4 points probe, respectively. The XRD studies were carried out to understand the phase of the samples where we found a sharp peak of Rb-G at 26.470. UV-Spectroscopy of Graphene and Rb-modified graphene samples shows the absorption peaks at ~248 nm and ~318 nm respectively. These analyses show that this modified material can be useful for gas sensing applications and to be used in diverse areas.Keywords: chemical route, graphene, gas sensing, UV-spectroscopy
Procedia PDF Downloads 27025897 Assessing Moisture Adequacy over Semi-arid and Arid Indian Agricultural Farms using High-Resolution Thermography
Authors: Devansh Desai, Rahul Nigam
Abstract:
Crop water stress (W) at a given growth stage starts to set in as moisture availability (M) to roots falls below 75% of maximum. It has been found that ratio of crop evapotranspiration (ET) and reference evapotranspiration (ET0) is an indicator of moisture adequacy and is strongly correlated with ‘M’ and ‘W’. The spatial variability of ET0 is generally less over an agricultural farm of 1-5 ha than ET, which depends on both surface and atmospheric conditions, while the former depends only on atmospheric conditions. Solutions from surface energy balance (SEB) and thermal infrared (TIR) remote sensing are now known to estimate latent heat flux of ET. In the present study, ET and moisture adequacy index (MAI) (=ET/ET0) have been estimated over two contrasting western India agricultural farms having rice-wheat system in semi-arid climate and arid grassland system, limited by moisture availability. High-resolution multi-band TIR sensing observations at 65m from ECOSTRESS (ECOsystemSpaceborne Thermal Radiometer Experiment on Space Station) instrument on-board International Space Station (ISS) were used in an analytical SEB model, STIC (Surface Temperature Initiated Closure) to estimate ET and MAI. The ancillary variables used in the ET modeling and MAI estimation were land surface albedo, NDVI from close-by LANDSAT data at 30m spatial resolution, ET0 product at 4km spatial resolution from INSAT 3D, meteorological forcing variables from short-range weather forecast on air temperature and relative humidity from NWP model. Farm-scale ET estimates at 65m spatial resolution were found to show low RMSE of 16.6% to 17.5% with R2 >0.8 from 18 datasets as compared to reported errors (25 – 30%) from coarser-scale ET at 1 to 8 km spatial resolution when compared to in situ measurements from eddy covariance systems. The MAI was found to show lower (<0.25) and higher (>0.5) magnitudes in the contrasting agricultural farms. The study showed the potential need of high-resolution high-repeat spaceborne multi-band TIR payloads alongwith optical payload in estimating farm-scale ET and MAI for estimating consumptive water use and water stress. A set of future high-resolution multi-band TIR sensors are planned on-board Indo-French TRISHNA, ESA’s LSTM, NASA’s SBG space-borne missions to address sustainable irrigation water management at farm-scale to improve crop water productivity. These will provide precise and fundamental variables of surface energy balance such as LST (Land Surface Temperature), surface emissivity, albedo and NDVI. A synchronization among these missions is needed in terms of observations, algorithms, product definitions, calibration-validation experiments and downstream applications to maximize the potential benefits.Keywords: thermal remote sensing, land surface temperature, crop water stress, evapotranspiration
Procedia PDF Downloads 7125896 Photogrammetry and Topographic Information for Urban Growth and Change in Amman
Authors: Mahmoud M. S. Albattah
Abstract:
Urbanization results in the expansion of administrative boundaries, mainly at the periphery, ultimately leading to changes in landcover. Agricultural land, naturally vegetated land, and other land types are converted into residential areas with a high density of constructs, such as transportation systems and housing. In urban regions of rapid growth and change, urban planners need regular information on up to date ground change. Amman (the capital of Jordan) is growing at unprecedented rates, creating extensive urban landscapes. Planners interact with these changes without having a global view of their impact. The use of aerial photographs and satellite images data combined with topographic information and field survey could provide effective information to develop urban change and growth inventory which could be explored towards producing a very important signature for the built-up area changes.Keywords: highway design, satellite technologies, remote sensing, GIS, image segmentation, classification
Procedia PDF Downloads 44425895 An Efficient and Provably Secure Three-Factor Authentication Scheme with Key Agreement
Authors: Mohan Ramasundaram, Amutha Prabakar Muniyandi
Abstract:
Remote user authentication is one of the important tasks for any kind of remote server applications. Several remote authentication schemes are proposed by the researcher for Telecare Medicine Information System (TMIS). Most of the existing techniques have limitations, vulnerable to various kind attacks, lack of functionalities, information leakage, no perfect forward security and ineffectiveness. Authentication is a process of user verification mechanism for allows him to access the resources of a server. Nowadays, most of the remote authentication protocols are using two-factor authentications. We have made a survey of several remote authentication schemes using three factors and this survey shows that the most of the schemes are inefficient and subject to several attacks. We observed from the experimental evaluation; the proposed scheme is very secure against various known attacks that include replay attack, man-in-the-middle attack. Furthermore, the analysis based on the communication cost and computational cost estimation of the proposed scheme with related schemes shows that our proposed scheme is efficient.Keywords: Telecare Medicine Information System, elliptic curve cryptography, three-factor, biometric, random oracle
Procedia PDF Downloads 22125894 Explanation of Sentinel-1 Sigma 0 by Sentinel-2 Products in Terms of Crop Water Stress Monitoring
Authors: Katerina Krizova, Inigo Molina
Abstract:
The ongoing climate change affects various natural processes resulting in significant changes in human life. Since there is still a growing human population on the planet with more or less limited resources, agricultural production became an issue and a satisfactory amount of food has to be reassured. To achieve this, agriculture is being studied in a very wide context. The main aim here is to increase primary production on a spatial unit while consuming as low amounts of resources as possible. In Europe, nowadays, the staple issue comes from significantly changing the spatial and temporal distribution of precipitation. Recent growing seasons have been considerably affected by long drought periods that have led to quantitative as well as qualitative yield losses. To cope with such kind of conditions, new techniques and technologies are being implemented in current practices. However, behind assessing the right management, there is always a set of the necessary information about plot properties that need to be acquired. Remotely sensed data had gained attention in recent decades since they provide spatial information about the studied surface based on its spectral behavior. A number of space platforms have been launched carrying various types of sensors. Spectral indices based on calculations with reflectance in visible and NIR bands are nowadays quite commonly used to describe the crop status. However, there is still the staple limit by this kind of data - cloudiness. Relatively frequent revisit of modern satellites cannot be fully utilized since the information is hidden under the clouds. Therefore, microwave remote sensing, which can penetrate the atmosphere, is on its rise today. The scientific literature describes the potential of radar data to estimate staple soil (roughness, moisture) and vegetation (LAI, biomass, height) properties. Although all of these are highly demanded in terms of agricultural monitoring, the crop moisture content is the utmost important parameter in terms of agricultural drought monitoring. The idea behind this study was to exploit the unique combination of SAR (Sentinel-1) and optical (Sentinel-2) data from one provider (ESA) to describe potential crop water stress during dry cropping season of 2019 at six winter wheat plots in the central Czech Republic. For the period of January to August, Sentinel-1 and Sentinel-2 images were obtained and processed. Sentinel-1 imagery carries information about C-band backscatter in two polarisations (VV, VH). Sentinel-2 was used to derive vegetation properties (LAI, FCV, NDWI, and SAVI) as support for Sentinel-1 results. For each term and plot, summary statistics were performed, including precipitation data and soil moisture content obtained through data loggers. Results were presented as summary layouts of VV and VH polarisations and related plots describing other properties. All plots performed along with the principle of the basic SAR backscatter equation. Considering the needs of practical applications, the vegetation moisture content may be assessed using SAR data to predict the drought impact on the final product quality and yields independently of cloud cover over the studied scene.Keywords: precision agriculture, remote sensing, Sentinel-1, SAR, water content
Procedia PDF Downloads 12525893 Satellite Images to Determine Levels of Fire Severity in a Native Chilean Forest: Assessing the Responses of Soil Mesofauna Diversity to a Fire Event
Authors: Carolina Morales, Ricardo Castro-Huerta, Enrique A. Mundaca
Abstract:
The edaphic fauna is the main factor involved in the transformation of nutrients and soil decomposition processes. Edaphic organisms are highly sensitive to soil disturbances, which normally causes changes in the composition and abundance of such organisms. Fire is known to be a disturbing factor since it affects the physical, chemical and biological properties of the soil and the whole ecosystem. During the summer (December-March) of 2017, Chile suffered the major fire events recorded in its modern history, which affected a vast area and a number of ecosystem types. The objective of this study was first to use remote sensing satellite images and GIS (Geographic Information Systems) to assess and identify levels of fire severity in disturbed areas and to compare the responses of the soil mesofauna diversity among such areas. We identified four areas (treatments) with an ascending level of severity, namely: mild, medium, high severity, and free of fire. A non-affected patch of forest was established as a control. Three samples from each treatment were collected in the form of a soil cube (10x10x10 cm). Edaphic mesofauna was obtained from each sample through the Berlese-Tullgren funnel method. Collected specimens were quantified and identified, using the RTU (Recognisable Taxonomic Unit) criterion. Diversity was analysed using inferential statistics to compare Simpson and Shannon-Wiener indexes across treatments. As predicted, the unburned forest patch (control) exhibited higher diversity values than the treatments. Significantly higher diversity values were recorded in those treatments subjected to lower fire severity. We conclude that remote sensing zoning is an adequate tool to identify different levels of fire severity and that an edaphic mesofauna is a group of organisms that qualify as good bioindicators for monitoring soil recovery after fire events.Keywords: bioindicator, Chile, fire severity level, soil
Procedia PDF Downloads 16125892 WO₃-SnO₂ Sensors for Selective Detection of Volatile Organic Compounds for Breath Analysis
Authors: Arpan Kumar Nayak, Debabrata Pradhan
Abstract:
A simple, single-step and one-pot hydrothermal method was employed to synthesize WO₃-SnO₂ mixed nanostructured metal oxides at 200°C in 12h. The SnO₂ nanoparticles were found to be uniformly decorated on the WO₃ nanoplates. Though it is widely known that noble metals such as Pt, Pd doping or decoration on metal oxides improve the sensing response and sensitivity, we varied the SnO₂ concentration in the WO₃-SnO₂ mixed oxide and demonstrated their performance in ammonia, ethanol and acetone sensing. The sensing performance of WO₃-(x)SnO₂ [x = 0.27, 0.54, 1.08] mixed nanostructured oxides was found to be not only superior to that of pristine oxides but also higher/better than that of reported noble metal-based sensors. The sensing properties (selectivity, limit of detection, response and recovery times) are measured as a function of operating temperature (150-350°C). In particular, the gas selectivity is found to be highly temperature-dependent with optimum performance obtained at 200°C, 300°C and 350°C for ammonia, ethanol, and acetone, respectively. The present results on cost effective WO₃-SnO₂ sensors can find potential application in human breath analysis by noninvasive detection.Keywords: gas sensing, mixed oxides, nanoplates, ammonia, ethanol, acetone
Procedia PDF Downloads 24025891 Cartographic Depiction and Visualization of Wetlands Changes in the North-Western States of India
Authors: Bansal Ashwani
Abstract:
Cartographic depiction and visualization of wetland changes is an important tool to map spatial-temporal information about the wetland dynamics effectively and to comprehend the response of these water bodies in maintaining the groundwater and surrounding ecosystem. This is true for the states of North Western India, i.e., J&K, Himachal, Punjab, and Haryana that are bestowed upon with several natural wetlands in the flood plains or on the courses of its rivers. Thus, the present study documents, analyses and reconstructs the lost wetlands, which existed in the flood plains of the major river basins of these states, i.e., Chenab, Jhelum, Satluj, Beas, Ravi, and Ghagar, in the beginning of the 20th century. To achieve the objective, the study has used multi-temporal datasets since the 1960s using high to medium resolution satellite datasets, e.g., Corona (1960s/70s), Landsat (1990s-2017) and Sentinel (2017). The Sentinel (2017) satellite image has been used for making the wetland inventory owing to its comparatively higher spatial resolution with multi-spectral bands. In addition, historical records, repeated photographs, historical maps, field observations including geomorphological evidence were also used. The water index techniques, i.e., band rationing, normalized difference water index (NDWI), modified NDWI (MNDWI) have been compared and used to map the wetlands. The wetland types found in the north-western states have been categorized under 19 classes suggested by Space Application Centre, India. These enable the researcher to provide with the wetlands inventory and a series of cartographic representation that includes overlaying multiple temporal wetlands extent vectors. A preliminary result shows the general state of wetland shrinkage since the 1960s with varying area shrinkage rate from one wetland to another. In addition, it is observed that majority of wetlands have not been documented so far and even do not have names. Moreover, the purpose is to emphasize their elimination in addition to establishing a baseline dataset that can be a tool for wetland planning and management. Finally, the applicability of cartographic depiction and visualization, historical map sources, repeated photographs and remote sensing data for reconstruction of long term wetlands fluctuations, especially in the northern part of India, will be addressed.Keywords: cartographic depiction and visualization, wetland changes, NDWI/MDWI, geomorphological evidence and remote sensing
Procedia PDF Downloads 26525890 Linking Soil Spectral Behavior and Moisture Content for Soil Moisture Content Retrieval at Field Scale
Authors: Yonwaba Atyosi, Moses Cho, Abel Ramoelo, Nobuhle Majozi, Cecilia Masemola, Yoliswa Mkhize
Abstract:
Spectroscopy has been widely used to understand the hyperspectral remote sensing of soils. Accurate and efficient measurement of soil moisture is essential for precision agriculture. The aim of this study was to understand the spectral behavior of soil at different soil water content levels and identify the significant spectral bands for soil moisture content retrieval at field-scale. The study consisted of 60 soil samples from a maize farm, divided into four different treatments representing different moisture levels. Spectral signatures were measured for each sample in laboratory under artificial light using an Analytical Spectral Device (ASD) spectrometer, covering a wavelength range from 350 nm to 2500 nm, with a spectral resolution of 1 nm. The results showed that the absorption features at 1450 nm, 1900 nm, and 2200 nm were particularly sensitive to soil moisture content and exhibited strong correlations with the water content levels. Continuum removal was developed in the R programming language to enhance the absorption features of soil moisture and to precisely understand its spectral behavior at different water content levels. Statistical analysis using partial least squares regression (PLSR) models were performed to quantify the correlation between the spectral bands and soil moisture content. This study provides insights into the spectral behavior of soil at different water content levels and identifies the significant spectral bands for soil moisture content retrieval. The findings highlight the potential of spectroscopy for non-destructive and rapid soil moisture measurement, which can be applied to various fields such as precision agriculture, hydrology, and environmental monitoring. However, it is important to note that the spectral behavior of soil can be influenced by various factors such as soil type, texture, and organic matter content, and caution should be taken when applying the results to other soil systems. The results of this study showed a good agreement between measured and predicted values of Soil Moisture Content with high R2 and low root mean square error (RMSE) values. Model validation using independent data was satisfactory for all the studied soil samples. The results has significant implications for developing high-resolution and precise field-scale soil moisture retrieval models. These models can be used to understand the spatial and temporal variation of soil moisture content in agricultural fields, which is essential for managing irrigation and optimizing crop yield.Keywords: soil moisture content retrieval, precision agriculture, continuum removal, remote sensing, machine learning, spectroscopy
Procedia PDF Downloads 10025889 HR MRI CS Based Image Reconstruction
Authors: Krzysztof Malczewski
Abstract:
Magnetic Resonance Imaging (MRI) reconstruction algorithm using compressed sensing is presented in this paper. It is exhibited that the offered approach improves MR images spatial resolution in circumstances when highly undersampled k-space trajectories are applied. Compressed Sensing (CS) aims at signal and images reconstructing from significantly fewer measurements than were conventionally assumed necessary. Magnetic Resonance Imaging (MRI) is a fundamental medical imaging method struggles with an inherently slow data acquisition process. The use of CS to MRI has the potential for significant scan time reductions, with visible benefits for patients and health care economics. In this study the objective is to combine super-resolution image enhancement algorithm with CS framework benefits to achieve high resolution MR output image. Both methods emphasize on maximizing image sparsity on known sparse transform domain and minimizing fidelity. The presented algorithm considers the cardiac and respiratory movements.Keywords: super-resolution, MRI, compressed sensing, sparse-sense, image enhancement
Procedia PDF Downloads 43125888 Development of Star Tracker for Satellite
Authors: S. Yelubayev, V. Ten, B. Albazarov, E. Sarsenbayev, К. Аlipbayev, A. Shamro, Т. Bopeyev, А. Sukhenko
Abstract:
Currently in Kazakhstan much attention is paid to the development of space branch. Successful launch of two Earth remote sensing satellite is carried out, projects on development of components for satellite are being carried out. In particular, the project on development of star tracker experimental model is completed. In the future it is planned to use this experimental model for development of star tracker prototype. Main stages of star tracker experimental model development are considered in this article.Keywords: development, prototype, satellite, star tracker
Procedia PDF Downloads 47725887 Urban Growth and Its Impact on Natural Environment: A Geospatial Analysis of North Part of the UAE
Authors: Mohamed Bualhamam
Abstract:
Due to the complex nature of tourism resources of the Northern part of the United Arab Emirates (UAE), the potential of Geographical Information Systems (GIS) and Remote Sensing (RS) in resolving these issues was used. The study was an attempt to use existing GIS data layers to identify sensitive natural environment and archaeological heritage resources that may be threatened by increased urban growth and give some specific recommendations to protect the area. By identifying sensitive natural environment and archaeological heritage resources, public agencies and citizens are in a better position to successfully protect important natural lands and direct growth away from environmentally sensitive areas. The paper concludes that applications of GIS and RS in study of urban growth impact in tourism resources are a strong and effective tool that can aid in tourism planning and decision-making. The study area is one of the fastest growing regions in the country. The increase in population along the region, as well as rapid growth of towns, has increased the threat to natural resources and archeological sites. Satellite remote sensing data have been proven useful in assessing the natural resources and in monitoring the changes. The study used GIS and RS to identify sensitive natural environment and archaeological heritage resources that may be threatened by increased urban growth. The result of GIS analyses shows that the Northern part of the UAE has variety for tourism resources, which can use for future tourism development. Rapid urban development in the form of small towns and different economic activities are showing in different places in the study area. The urban development extended out of old towns and have negative affected of sensitive tourism resources in some areas. Tourism resources for the Northern part of the UAE is a highly complex resources, and thus requires tools that aid in effective decision making to come to terms with the competing economic, social, and environmental demands of sustainable development. The UAE government should prepare a tourism databases and a GIS system, so that planners can be accessed for archaeological heritage information as part of development planning processes. Applications of GIS in urban planning, tourism and recreation planning illustrate that GIS is a strong and effective tool that can aid in tourism planning and decision- making. The power of GIS lies not only in the ability to visualize spatial relationships, but also beyond the space to a holistic view of the world with its many interconnected components and complex relationships. The worst of the damage could have been avoided by recognizing suitable limits and adhering to some simple environmental guidelines and standards will successfully develop tourism in sustainable manner. By identifying sensitive natural environment and archaeological heritage resources of the Northern part of the UAE, public agencies and private citizens are in a better position to successfully protect important natural lands and direct growth away from environmentally sensitive areas.Keywords: GIS, natural environment, UAE, urban growth
Procedia PDF Downloads 26325886 Reconnaissance Investigation of Thermal Springs in the Middle Benue Trough, Nigeria by Remote Sensing
Authors: N. Tochukwu, M. Mukhopadhyay, A. Mohamed
Abstract:
It is no new that Nigeria faces a continual power shortage problem due to its vast population power demand and heavy reliance on nonrenewable forms of energy such as thermal power or fossil fuel. Many researchers have recommended using geothermal energy as an alternative; however, Past studies focus on the geophysical & geochemical investigation of this energy in the sedimentary and basement complex; only a few studies incorporated the remote sensing methods. Therefore, in this study, the preliminary examination of geothermal resources in the Middle Benue was carried out using satellite imagery in ArcMap. Landsat 8 scene (TIR, NIR, Red spectral bands) was used to estimate the Land Surface Temperature (LST). The Maximum Likelihood Classification (MLC) technique was used to classify sites with very low, low, moderate, and high LST. The intermediate and high classification happens to be possible geothermal zones, and they occupy 49% of the study area (38077km2). Riverline were superimposed on the LST layer, and the identification tool was used to locate high temperate sites. Streams that overlap on the selected sites were regarded as geothermal springs as. Surprisingly, the LST results show lower temperatures (<36°C) at the famous thermal springs (Awe & Wukari) than some unknown rivers/streams found in Kwande (38°C), Ussa, (38°C), Gwer East (37°C), Yola Cross & Ogoja (36°C). Studies have revealed that temperature increases with depth. However, this result shows excellent geothermal resources potential as it is expected to exceed the minimum geothermal gradient of 25.47 with an increase in depth. Therefore, further investigation is required to estimate the depth of the causative body, geothermal gradients, and the sustainability of the reservoirs by geophysical and field exploration. This method has proven to be cost-effective in locating geothermal resources in the study area. Consequently, the same procedure is recommended to be applied in other regions of the Precambrian basement complex and the sedimentary basins in Nigeria to save a preliminary field survey cost.Keywords: ArcMap, geothermal resources, Landsat 8, LST, thermal springs, MLC
Procedia PDF Downloads 19125885 Spatial-Temporal Clustering Characteristics of Dengue in the Northern Region of Sri Lanka, 2010-2013
Authors: Sumiko Anno, Keiji Imaoka, Takeo Tadono, Tamotsu Igarashi, Subramaniam Sivaganesh, Selvam Kannathasan, Vaithehi Kumaran, Sinnathamby Noble Surendran
Abstract:
Dengue outbreaks are affected by biological, ecological, socio-economic and demographic factors that vary over time and space. These factors have been examined separately and still require systematic clarification. The present study aimed to investigate the spatial-temporal clustering relationships between these factors and dengue outbreaks in the northern region of Sri Lanka. Remote sensing (RS) data gathered from a plurality of satellites were used to develop an index comprising rainfall, humidity and temperature data. RS data gathered by ALOS/AVNIR-2 were used to detect urbanization, and a digital land cover map was used to extract land cover information. Other data on relevant factors and dengue outbreaks were collected through institutions and extant databases. The analyzed RS data and databases were integrated into geographic information systems, enabling temporal analysis, spatial statistical analysis and space-time clustering analysis. Our present results showed that increases in the number of the combination of ecological factor and socio-economic and demographic factors with above the average or the presence contribute to significantly high rates of space-time dengue clusters.Keywords: ALOS/AVNIR-2, dengue, space-time clustering analysis, Sri Lanka
Procedia PDF Downloads 47925884 An Application of Remote Sensing for Modeling Local Warming Trend
Authors: Khan R. Rahaman, Quazi K. Hassan
Abstract:
Global changes in climate, environment, economies, populations, governments, institutions, and cultures converge in localities. Changes at a local scale, in turn, contribute to global changes as well as being affected by them. Our hypothesis is built on a consideration that temperature does vary at local level (i.e., termed as local warming) in comparison to the predicted models at the regional and/or global scale. To date, the bulk of the research relating local places to global climate change has been top-down, from the global toward the local, concentrating on methods of impact analysis that use as a starting point climate change scenarios derived from global models, even though these have little regional or local specificity. Thus, our focus is to understand such trends over the southern Alberta, which will enable decision makers, scientists, researcher community, and local people to adapt their policies based on local level temperature variations and to act accordingly. Specific objectives in this study are: (i) to understand the local warming (temperature in particular) trend in context of temperature normal during the period 1961-2010 at point locations using meteorological data; (ii) to validate the data by using specific yearly data, and (iii) to delineate the spatial extent of the local warming trends and understanding influential factors to adopt situation by local governments. Existing data has brought the evidence of such changes and future research emphasis will be given to validate this hypothesis based on remotely sensed data (i.e. MODIS product by NASA).Keywords: local warming, climate change, urban area, Alberta, Canada
Procedia PDF Downloads 33925883 Evaluating the Effectiveness of Plantar Sensory Insoles and Remote Patient Monitoring for Early Intervention in Diabetic Foot Ulcer Prevention in Patients with Peripheral Neuropathy
Authors: Brock Liden, Eric Janowitz
Abstract:
Introduction: Diabetic peripheral neuropathy (DPN) affects 70% of individuals with diabetes1. DPN causes a loss of protective sensation, which can lead to tissue damage and diabetic foot ulcer (DFU) formation2. These ulcers can result in infections and lower-extremity amputations of toes, the entire foot, and the lower leg. Even after a DFU is healed, recurrence is common, with 49% of DFU patients developing another ulcer within a year and 68% within 5 years3. This case series examines the use of sensory insoles and newly available plantar data (pressure, temperature, step count, adherence) and remote patient monitoring in patients at risk of DFU. Methods: Participants were provided with custom-made sensory insoles to monitor plantar pressure, temperature, step count, and daily use and were provided with real-time cues for pressure offloading as they went about their daily activities. The sensory insoles were used to track subject compliance, ulceration, and response to feedback from real-time alerts. Patients were remotely monitored by a qualified healthcare professional and were contacted when areas of concern were seen and provided coaching on reducing risk factors and overall support to improve foot health. Results: Of the 40 participants provided with the sensory insole system, 4 presented with a DFU. Based on flags generated from the available plantar data, patients were contacted by the remote monitor to address potential concerns. A standard clinical escalation protocol detailed when and how concerns should be escalated to the provider by the remote monitor. Upon escalation to the provider, patients were brought into the clinic as needed, allowing for any issues to be addressed before more serious complications might arise. Conclusion: This case series explores the use of innovative sensory technology to collect plantar data (pressure, temperature, step count, and adherence) for DFU detection and early intervention. The results from this case series suggest the importance of sensory technology and remote patient monitoring in providing proactive, preventative care for patients at risk of DFU. This robust plantar data, with the addition of remote patient monitoring, allow for patients to be seen in the clinic when concerns arise, giving providers the opportunity to intervene early and prevent more serious complications, such as wounds, from occurring.Keywords: diabetic foot ulcer, DFU prevention, digital therapeutics, remote patient monitoring
Procedia PDF Downloads 7725882 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN
Authors: Jamison Duckworth, Shankarachary Ragi
Abstract:
Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands
Procedia PDF Downloads 12825881 Multi-Analyte Indium Gallium Zinc Oxide-Based Dielectric Electrolyte-Insulator-Semiconductor Sensing Membranes
Authors: Chyuan Haur Kao, Hsiang Chen, Yu Sheng Tsai, Chen Hao Hung, Yu Shan Lee
Abstract:
Dielectric electrolyte-insulator-semiconductor sensing membranes-based biosensors have been intensively investigated because of their simple fabrication, low cost, and fast response. However, to enhance their sensing performance, it is worthwhile to explore alternative materials, distinct processes, and novel treatments. An ISFET can be viewed as a variation of MOSFET with the dielectric oxide layer as the sensing membrane. Then, modulation on the work function of the gate caused by electrolytes in various ion concentrations could be used to calculate the ion concentrations. Recently, owing to the advancement of CMOS technology, some high dielectric materials substrates as the sensing membranes of electrolyte-insulator-semiconductor (EIS) structures. The EIS with a stacked-layer of SiO₂ layer between the sensing membrane and the silicon substrate exhibited a high pH sensitivity and good long-term stability. IGZO is a wide-bandgap (~3.15eV) semiconductor of the III-VI semiconductor group with several preferable properties, including good transparency, high electron mobility, wide band gap, and comparable with CMOS technology. IGZO was sputtered by reactive radio frequency (RF) on a p-type silicon wafer with various gas ratios of Ar:O₂ and was treated with rapid thermal annealing in O₂ ambient. The sensing performance, including sensitivity, hysteresis, and drift rate was measured and XRD, XPS, and AFM analyses were also used to study the material properties of the IGZO membrane. Moreover, IGZO was used as a sensing membrane in dielectric EIS bio-sensor structures. In addition to traditional pH sensing capability, detection for concentrations of Na+, K+, urea, glucose, and creatinine was performed. Moreover, post rapid thermal annealing (RTA) treatment was confirmed to improve the material properties and enhance the multi-analyte sensing capability for various ions or chemicals in solutions. In this study, the IGZO sensing membrane with annealing in O₂ ambient exhibited a higher sensitivity, higher linearity, higher H+ selectivity, lower hysteresis voltage and lower drift rate. Results indicate that the IGZO dielectric sensing membrane on the EIS structure is promising for future bio-medical device applications.Keywords: dielectric sensing membrane, IGZO, hydrogen ion, plasma, rapid thermal annealing
Procedia PDF Downloads 252