Search results for: quantum enabled device
2710 Technology Enabled Bullying and Adolescent Reporting Response Behaviours
Authors: Regina Connolly, Justin Connolly
Abstract:
Despite the benefits which they confer, Information & Communication Technologies (ICT) also have the potential to be used negatively. This paper focuses on one of those negative social effects - adolescent cyberbullying. Although early research in this field has pointed to the fact that the successful intervention and resolution of bullying incidents is to a large degree dependent on such incidents being reported to an adult caregiver, the literature consistently shows that adolescents who have been bullied tend not to inform others of their experiences. However, the reasons underlying such reluctance to seek adult intervention remain undetermined. Similarly, the degree to which gender, age or other variables apply in the case of adolescents’ resistance to report cyberbullying experiences has yet to be established. Understanding the factors that influence this resistance to communicate on the part of adolescents will assist caregivers, teachers and those involved in the formulation of school anti-bullying policies in their attempts to counter the cyberbullying phenomenon.Keywords: information and Communication technologies, technology-enabled bullying, cyberbullying
Procedia PDF Downloads 2652709 Evaluating the Tracking Abilities of Microsoft HoloLens-1 for Small-Scale Industrial Processes
Authors: Kuhelee Chandel, Julia Åhlén, Stefan Seipel
Abstract:
This study evaluates the accuracy of Microsoft HoloLens (Version 1) for small-scale industrial activities, comparing its measurements to ground truth data from a Kuka Robotics arm. Two experiments were conducted to assess its position-tracking capabilities, revealing that the HoloLens device is effective for measuring the position of dynamic objects with small dimensions. However, its precision is affected by the velocity of the trajectory and its position within the device's field of view. While the HoloLens device may be suitable for small-scale tasks, its limitations for more complex and demanding applications requiring high precision and accuracy must be considered. The findings can guide the use of HoloLens devices in industrial applications and contribute to the development of more effective and reliable position-tracking systems.Keywords: augmented reality (AR), Microsoft HoloLens, object tracking, industrial processes, manufacturing processes
Procedia PDF Downloads 1362708 Meditation and Insight Interpretation Using Quantum Circle Based-on Experiment and Quantum Relativity Formalism
Authors: Somnath Bhattachryya, Montree Bunruangses, Somchat Sonasang, Preecha Yupapin
Abstract:
In this study and research on meditation and insight, the design and experiment with electronic circuits to manipulate the meditators' mental circles that call the chakras to have the same size is proposed. The shape of the circuit is 4-ports, called an add-drop multiplexer, that studies the meditation structure called the four-mindfulness foundation, then uses an AC power signal as an input instead of the meditation time function, where various behaviors with the method of re-filtering the signal (successive filtering), like eight noble paths. Start by inputting a signal at a frequency that causes the velocity of the wave on the perimeter of the circuit to cause particles to have the speed of light in a vacuum. The signal changes from electromagnetic waves and matter waves according to the velocity (frequency) until it reaches the point of the relativistic limit. The electromagnetic waves are transformed into photons with properties of wave-particle overcoming the limits of the speed of light. As for the matter wave, it will travel to the other side and cannot pass through the relativistic limit, called a shadow signal (echo) that can have power from increasing speed but cannot create speed faster than light or insight. In the experiment, the only the side where the velocity is positive, only where the speed above light or the corresponding frequency indicates intelligence. Other side(echo) can be done by changing the input signal to the other side of the circuit to get the same result. But there is no intelligence or speed beyond light. It is also used to study the stretching, contraction of time and wormholes that can be applied for teleporting, Bose-Einstein condensate and teleprinting, quantum telephone. The teleporting can happen throughout the system with wave-particle and echo, which is when the speed of the particle is faster than the stretching or contraction of time, the particle will submerge in the wormhole, when the destination and time are determined, will travel through the wormhole. In a wormhole, time can determine in the future and the past. The experimental results using the microstrip circuit have been found to be by the principle of quantum relativity, which can be further developed for both tools and meditation practitioners for quantum technology.Keywords: quantu meditation, insight picture, quantum circuit, absolute time, teleportation
Procedia PDF Downloads 642707 Transferring Data from Glucometer to Mobile Device via Bluetooth with Arduino Technology
Authors: Tolga Hayit, Ucman Ergun, Ugur Fidan
Abstract:
Being healthy is undoubtedly an indispensable necessity for human life. With technological improvements, in the literature, various health monitoring and imaging systems have been developed to satisfy your health needs. In this context, the work of monitoring and recording the data of individual health monitoring data via wireless technology is also being part of these studies. Nowadays, mobile devices which are located in almost every house and which become indispensable of our life and have wireless technology infrastructure have an important place of making follow-up health everywhere and every time because these devices were using in the health monitoring systems. In this study, Arduino an open-source microcontroller card was used in which a sample sugar measuring device was connected in series. In this way, the glucose data (glucose ratio, time) obtained with the glucometer is transferred to the mobile device based on the Android operating system with the Bluetooth technology channel. A mobile application was developed using the Apache Cordova framework for listing data, presenting graphically and reading data over Arduino. Apache Cordova, HTML, Javascript and CSS are used in coding section. The data received from the glucometer is stored in the local database of the mobile device. It is intended that people can transfer their measurements to their mobile device by using wireless technology and access the graphical representations of their data. In this context, the aim of the study is to be able to perform health monitoring by using different wireless technologies in mobile devices that can respond to different wireless technologies at present. Thus, that will contribute the other works done in this area.Keywords: Arduino, Bluetooth, glucose measurement, mobile health monitoring
Procedia PDF Downloads 3222706 Metaphysics of the Unified Field of the Universe
Authors: Santosh Kaware, Dnyandeo Patil, Moninder Modgil, Hemant Bhoir, Debendra Behera
Abstract:
The Unified Field Theory has been an area of intensive research since many decades. This paper focuses on philosophy and metaphysics of unified field theory at Planck scale - and its relationship with super string theory and Quantum Vacuum Dynamic Physics. We examined the epistemology of questions such as - (1) what is the Unified Field of universe? (2) can it actually - (a) permeate the complete universe - or (b) be localized in bound regions of the universe - or, (c) extend into the extra dimensions? - -or (d) live only in extra dimensions? (3) What should be the emergent ontological properties of Unified field? (4) How the universe is manifesting through its Quantum Vacuum energies? (5) How is the space time metric coupled to the Unified field? We present a number of ansatz - which we outline below. It is proposed that the unified field possesses consciousness as well as a memory - a recording of past history - analogous to ‘Consistent Histories’ interpretation of quantum mechanics. We proposed Planck scale geometry of Unified Field with circle like topology and having 32 energy points on its periphery which are the connected to each other by 10 dimensional meta-strings which are sources for manifestation of different fundamentals forces and particles of universe through its Quantum Vacuum energies. It is also proposed that the sub energy levels of ‘Conscious Unified Field’ are used for the process of creation, preservation and rejuvenation of the universe over a period of time by means of negentropy. These epochs can be for the complete universe, or for localized regions such as galaxies or cluster of galaxies. It is proposed that Unified field operates through geometric patterns of its Quantum Vacuum energies - manifesting as various elementary particles by giving spins to zero point energy elements. Epistemological relationship between unified field theory and super-string theories is examined. Properties of ‘consciousness’ and 'memory' cascades from universe, into macroscopic objects - and further onto the elementary particles - via a fractal pattern. Other properties of fundamental particles - such as mass, charge, spin, iso-spin also spill out of such a cascade. The manifestations of the unified field can reach into the parallel universes or the ‘multi-verse’ and essentially have an existence independent of the space-time. It is proposed that mass, length, time scales of the unified theory are less than even the Planck scale - and can be called at a level which we call that of 'Super Quantum Gravity (SQG)'.Keywords: super string theory, Planck scale geometry, negentropy, super quantum gravity
Procedia PDF Downloads 2742705 Dynamic Voltage Restorer Control Strategies: An Overview
Authors: Arvind Dhingra, Ashwani Kumar Sharma
Abstract:
Power quality is an important parameter for today’s consumers. Various custom power devices are in use to give a proper supply of power quality. Dynamic Voltage Restorer is one such custom power device. DVR is a static VAR device which is used for series compensation. It is a power electronic device that is used to inject a voltage in series and in synchronism to compensate for the sag in voltage. Inductive Loads are a major source of power quality distortion. The induction furnace is one such typical load. A typical induction furnace is used for melting the scrap or iron. At the time of starting the melting process, the power quality is distorted to a large extent especially with the induction of harmonics. DVR is one such approach to mitigate these harmonics. This paper is an attempt to overview the various control strategies being followed for control of power quality by using DVR. An overview of control of harmonics using DVR is also presented.Keywords: DVR, power quality, harmonics, harmonic mitigation
Procedia PDF Downloads 3772704 Monolithic Integrated GaN Resonant Tunneling Diode Pair with Picosecond Switching Time for High-speed Multiple-valued Logic System
Authors: Fang Liu, JiaJia Yao, GuanLin Wu, ZuMaoLi, XueYan Yang, HePeng Zhang, ZhiPeng Sun, JunShuai Xue
Abstract:
The explosive increasing needs of data processing and information storage strongly drive the advancement of the binary logic system to multiple-valued logic system. Inherent negative differential resistance characteristic, ultra-high-speed switching time, and robust anti-irradiation capability make III-nitride resonant tunneling diode one of the most promising candidates for multi-valued logic devices. Here we report the monolithic integration of GaN resonant tunneling diodes in series to realize multiple negative differential resistance regions, obtaining at least three stable operating states. A multiply-by-three circuit is achieved by this combination, increasing the frequency of the input triangular wave from f0 to 3f0. The resonant tunneling diodes are grown by plasma-assistedmolecular beam epitaxy on free-standing c-plane GaN substrates, comprising double barriers and a single quantum well both at the atomic level. Device with a peak current density of 183kA/cm² in conjunction with a peak-to-valley current ratio (PVCR) of 2.07 is observed, which is the best result reported in nitride-based resonant tunneling diodes. Microwave oscillation event at room temperature was discovered with a fundamental frequency of 0.31GHz and an output power of 5.37μW, verifying the high repeatability and robustness of our device. The switching behavior measurement was successfully carried out, featuring rise and fall times in the order of picoseconds, which can be used in high-speed digital circuits. Limited by the measuring equipment and the layer structure, the switching time can be further improved. In general, this article presents a novel nitride device with multiple negative differential regions driven by the resonant tunneling mechanism, which can be used in high-speed multiple value logic field with reduced circuit complexity, demonstrating a new solution of nitride devices to break through the limitations of binary logic.Keywords: GaN resonant tunneling diode, negative differential resistance, multiple-valued logic system, switching time, peak-to-valley current ratio
Procedia PDF Downloads 1002703 Synthesis of Highly Stable Near-Infrared FAPbI₃ Perovskite Doped with 5-AVA and Its Applications in NIR Light-Emitting Diodes for Bioimaging
Authors: Nasrud Din, Fawad Saeed, Sajid Hussain, Rai Muhammad Dawood Sultan, Premkumar Sellan, Qasim Khan, Wei Lei
Abstract:
The continuously increasing external quantum efficiencies of Perovskite light-emitting diodes (LEDs) have received significant interest in the scientific community. The need for monitoring and medical diagnostics has experienced a steady growth in recent years, primarily caused by older people and an increasing number of heart attacks, tumors, and cancer disorders among patients. The application of Perovskite near-infrared light-emitting diode (PeNIRLEDs) has exhibited considerable efficacy in bioimaging, particularly in the visualization and examination of blood arteries, blood clots, and tumors. PeNIRLEDs exhibit exciting potential in the field of blood vessel imaging because of their advantageous attributes, including improved depth penetration and less scattering in comparison to visible light. In this study, we synthesized FAPbI₃ Perovskite doped with different concentrations of 5-Aminovaleric acid (5-AVA) 1-6 mg. The incorporation of 5-AVA as a dopant during the FAPbI₃ Perovskite formation influences the FAPbI3 Perovskite’s structural and optical properties, improving its stability, photoluminescence efficiency, and charge transport characteristics. We found a resulting PL emission peak wavelength of 850 nm and bandwidth of 44 nm, along with a calculated quantum yield of 75%. The incorporation of 5-AVA-modified FAPbI₃ Perovskite into LEDs will show promising results, enhancing device efficiency, color purity, and stability. Making it suitable for various medical applications, including subcutaneous deep vein imaging, blood flow visualization, and tumor illumination.Keywords: perovskite light-emitting diodes, deep vein imaging, blood flow visualization, tumor illumination
Procedia PDF Downloads 562702 Physiological Assessment for Straightforward Symptom Identification (PASSify): An Oral Diagnostic Device for Infants
Authors: Kathryn Rooney, Kaitlyn Eddy, Evan Landers, Weihui Li
Abstract:
The international mortality rate for neonates and infants has been declining at a disproportionally low rate when compared to the overall decline in child mortality in recent decades. A significant portion of infant deaths could be prevented with the implementation of low-cost and easy to use physiological monitoring devices, by enabling early identification of symptoms before they progress into life-threatening illnesses. The oral diagnostic device discussed in this paper serves to continuously monitor the key vital signs of body temperature, respiratory rate, heart rate, and oxygen saturation. The device mimics an infant pacifier, designed to be easily tolerated by infants as well as orthodontically inert. The fundamental measurements are gathered via thermistors and a pulse oximeter, each encapsulated in medical-grade silicone and wired internally to a microcontroller chip. The chip then translates the raw measurements into physiological values via an internal algorithm, before outputting the data to a liquid crystal display screen and an Android application. Additionally, a biological sample collection chamber is incorporated into the internal portion of the device. The movement within the oral chamber created by sucking on the pacifier-like device pushes saliva through a small check valve in the distal end, where it is accumulated and stored. The collection chamber can be easily removed, making the sample readily available to be tested for various diseases and analytes. With the vital sign monitoring and sample collection offered by this device, abnormal fluctuations in physiological parameters can be identified and appropriate medical care can be sought. This device enables preventative diagnosis for infants who may otherwise have gone undiagnosed, due to the inaccessibility of healthcare that plagues vast numbers of underprivileged populations.Keywords: neonate mortality, infant mortality, low-cost diagnostics, vital signs, saliva testing, preventative care
Procedia PDF Downloads 1522701 Theoretical Study of the Mechanism of the Oxidation of Linoleic Acid by 1O2
Authors: Rayenne Djemil
Abstract:
The mechanism of oxidation reaction of linoleic acid C18: 2 (9 cis12) by singlet oxygen 1O2 were theoretically investigated via using quantum chemical methods. We explored the four reaction pathways at PM3, Hartree-Fock HF and, B3LYP functional associated with the base 6-31G (d) level. The results are in favor of the first and the last reaction ways. The transition states were found by QST3 method. Thus the pathways between the transition state structures and their corresponding minima have been identified by the IRC calculations. The thermodynamic study showed that the four ways of oxidation of linoleic acid are spontaneous, exothermic and, the enthalpy values confirm that conjugate hydroperoxydes are the most favorable products.Keywords: echanism, quantum mechanics, oxidation, linoleic acid H
Procedia PDF Downloads 4462700 Remote Wireless Patient Monitoring System
Authors: Sagar R. Patil, Dinesh R. Gawade, Sudhir N. Divekar
Abstract:
One of the medical devices we found when we visit a hospital care unit such device is ‘patient monitoring system’. This device (patient monitoring system) informs doctors and nurses about the patient’s physiological signals. However, this device (patient monitoring system) does not have a remote monitoring capability, which is necessitates constant onsite attendance by support personnel (doctors and nurses). Thus, we have developed a Remote Wireless Patient Monitoring System using some biomedical sensors and Android OS, which is a portable patient monitoring. This device(Remote Wireless Patient Monitoring System) monitors the biomedical signals of patients in real time and sends them to remote stations (doctors and nurse’s android Smartphone and web) for display and with alerts when necessary. Wireless Patient Monitoring System different from conventional device (Patient Monitoring system) in two aspects: First its wireless communication capability allows physiological signals to be monitored remotely and second, it is portable so patients can move while there biomedical signals are being monitor. Wireless Patient Monitoring is also notable because of its implementation. We are integrated four sensors such as pulse oximeter (SPO2), thermometer, respiration, blood pressure (BP), heart rate and electrocardiogram (ECG) in this device (Wireless Patient Monitoring System) and Monitoring and communication applications are implemented on the Android OS using threads, which facilitate the stable and timely manipulation of signals and the appropriate sharing of resources. The biomedical data will be display on android smart phone as well as on web Using web server and database system we can share these physiological signals with remote place medical personnel’s or with any where in the world medical personnel’s. We verified that the multitasking implementation used in the system was suitable for patient monitoring and for other Healthcare applications.Keywords: patient monitoring, wireless patient monitoring, bio-medical signals, physiological signals, embedded system, Android OS, healthcare, pulse oximeter (SPO2), thermometer, respiration, blood pressure (BP), heart rate, electrocardiogram (ECG)
Procedia PDF Downloads 5712699 Decentralised Edge Authentication in the Industrial Enterprise IoT Space
Authors: C. P. Autry, A.W. Roscoe
Abstract:
Authentication protocols based on public key infrastructure (PKI) and trusted third party (TTP) are no longer adequate for industrial scale IoT networks thanks to issues such as low compute and power availability, the use of widely distributed and commercial off-the-shelf (COTS) systems, and the increasingly sophisticated attackers and attacks we now have to counter. For example, there is increasing concern about nation-state-based interference and future quantum computing capability. We have examined this space from first principles and have developed several approaches to group and point-to-point authentication for IoT that do not depend on the use of a centralised client-server model. We emphasise the use of quantum resistant primitives such as strong cryptographic hashing and the use multi-factor authentication.Keywords: authentication, enterprise IoT cybersecurity, PKI/TTP, IoT space
Procedia PDF Downloads 1692698 Enabling Oral Communication and Accelerating Recovery: The Creation of a Novel Low-Cost Electroencephalography-Based Brain-Computer Interface for the Differently Abled
Authors: Rishabh Ambavanekar
Abstract:
Expressive Aphasia (EA) is an oral disability, common among stroke victims, in which the Broca’s area of the brain is damaged, interfering with verbal communication abilities. EA currently has no technological solutions and its only current viable solutions are inefficient or only available to the affluent. This prompts the need for an affordable, innovative solution to facilitate recovery and assist in speech generation. This project proposes a novel concept: using a wearable low-cost electroencephalography (EEG) device-based brain-computer interface (BCI) to translate a user’s inner dialogue into words. A low-cost EEG device was developed and found to be 10 to 100 times less expensive than any current EEG device on the market. As part of the BCI, a machine learning (ML) model was developed and trained using the EEG data. Two stages of testing were conducted to analyze the effectiveness of the device: a proof-of-concept and a final solution test. The proof-of-concept test demonstrated an average accuracy of above 90% and the final solution test demonstrated an average accuracy of above 75%. These two successful tests were used as a basis to demonstrate the viability of BCI research in developing lower-cost verbal communication devices. Additionally, the device proved to not only enable users to verbally communicate but has the potential to also assist in accelerated recovery from the disorder.Keywords: neurotechnology, brain-computer interface, neuroscience, human-machine interface, BCI, HMI, aphasia, verbal disability, stroke, low-cost, machine learning, ML, image recognition, EEG, signal analysis
Procedia PDF Downloads 1192697 Selective Circular Dichroism Sensor Based on the Generation of Quantum Dots for Cadmium Ion Detection
Authors: Pradthana Sianglam, Wittaya Ngeontae
Abstract:
A new approach for the fabrication of cadmium ion (Cd2+) sensor is demonstrated. The detection principle is based on the in-situ generation of cadmium sulfide quantum dots (CdS QDs) in the presence of chiral thiol containing compound and detection by the circular dichroism spectroscopy (CD). Basically, the generation of CdS QDs can be done in the presence of Cd2+, sulfide ion and suitable capping compounds. In addition, the strong CD signal can be recorded if the generated QDs possess chiral property (from chiral capping molecule). Thus, the degree of CD signal change depends on the number of the generated CdS QDs which can be related to the concentration of Cd2+ (excess of other components). In this work, we use the mixture of cysteamine (Cys) and L-Penicillamine (LPA) as the capping molecules. The strong CD signal can be observed when the solution contains sodium sulfide, Cys, LPA, and Cd2+. Moreover, the CD signal is linearly related to the concentration of Cd2+. This approach shows excellence selectivity towards the detection of Cd2+ when comparing to other cation. The proposed CD sensor provides low limit detection limits around 70 µM and can be used with real water samples with satisfactory results.Keywords: circular dichroism sensor, quantum dots, enaniomer, in-situ generation, chemical sensor, heavy metal ion
Procedia PDF Downloads 3632696 Numerical and Experimental Studies on the Characteristic of the Air Distribution in the Wind-Box of a Circulating Fluidized Bed Boiler
Authors: Xiaozhou Liu, Guangyu Zhu, Yu Zhang, Hongwei Wu
Abstract:
The wind-box is one of the important components of a Circulating Fluidized Bed (CFB) boiler. The uniformity of air flow in the wind-box of is very important for highly efficient operation of the CFB boiler. Non-uniform air flow distribution within the wind-box can reduce the boiler's thermal efficiency, leading to higher energy consumptions. An effective measure to solve this problem is to install an air flow distributing device in the wind-box. In order to validate the effectiveness of the air flow distributing device, visual and velocity distribution uniformity experiments have been carried out under five different test conditions by using a 1:64 scale model of a 220t/hr CFB boiler. It has been shown that the z component of flow velocity remains almost the same at control cross-sections of the wind-box, with a maximum variation of less than 10%. Moreover, the same methodology has been carried out to a full-scale 220t/hr CFB boiler. The hot test results depict that the thermal efficiency of the boiler has increased from 85.71% to 88.34% when tested with an air flow distributing device in place, which is equivalent to a saving of 5,000 tons of coal per year. The economic benefits of this energy-saving technology have been shown to be very significant, which clearly demonstrates that the technology is worth applying and popularizing.Keywords: circulating fluidized bed, CFB, wind-box, air flow distributing device, visual experiment, velocity distribution uniformity experiment, hot test
Procedia PDF Downloads 1762695 Influence of Confined Acoustic Phonons on the Shubnikov – de Haas Magnetoresistance Oscillations in a Doped Semiconductor Superlattice
Authors: Pham Ngoc Thang, Le Thai Hung, Nguyen Quang Bau
Abstract:
The influence of confined acoustic phonons on the Shubnikov – de Haas magnetoresistance oscillations in a doped semiconductor superlattice (DSSL), subjected in a magnetic field, DC electric field, and a laser radiation, has been theoretically studied based on quantum kinetic equation method. The analytical expression for the magnetoresistance in a DSSL has been obtained as a function of external fields, DSSL parameters, and especially the quantum number m characterizing the effect of confined acoustic phonons. When m goes to zero, the results for bulk phonons in a DSSL could be achieved. Numerical calculations are also achieved for the GaAs:Si/GaAs:Be DSSL and compared with other studies. Results show that the Shubnikov – de Haas magnetoresistance oscillations amplitude decrease as the increasing of phonon confinement effect.Keywords: Shubnikov–de Haas magnetoresistance oscillations, quantum kinetic equation, confined acoustic phonons, laser radiation, doped semiconductor superlattices
Procedia PDF Downloads 3172694 Nonlinear Propagation of Acoustic Soliton Waves in Dense Quantum Electron-Positron Magnetoplasma
Authors: A. Abdikian
Abstract:
Propagation of nonlinear acoustic wave in dense electron-positron (e-p) plasmas in the presence of an external magnetic field and stationary ions (to neutralize the plasma background) is studied. By means of the quantum hydrodynamics model and applying the reductive perturbation method, the Zakharov-Kuznetsov equation is derived. Using the bifurcation theory of planar dynamical systems, the compressive structure of electrostatic solitary wave and periodic travelling waves is found. The numerical results show how the ion density ratio, the ion cyclotron frequency, and the direction cosines of the wave vector affect the nonlinear electrostatic travelling waves. The obtained results may be useful to better understand the obliquely nonlinear electrostatic travelling wave of small amplitude localized structures in dense magnetized quantum e-p plasmas and may be applicable to study the particle and energy transport mechanism in compact stars such as the interior of massive white dwarfs etc.Keywords: bifurcation theory, phase portrait, magnetized electron-positron plasma, the Zakharov-Kuznetsov equation
Procedia PDF Downloads 2432693 Enhanced Performance of Perovskite Solar Cells by Modifying Interfacial Properties Using MoS2 Nanoflakes
Authors: Kusum Kumari, Ramesh Banoth, V. S. Reddy Channu
Abstract:
Organic-inorganic perovskite solar cells (PrSCs) have emerged as a promising solar photovoltaic technology in terms of realizing high power conversion efficiency (PCE). However, their limited lifetime and poor device stability limits their commercialization in future. In this regard, interface engineering of the electron transport layer (ETL) using 2D materials have been currently used owing to their high carrier mobility, high thermal stability and tunable work function, which in turn enormously impact the charge carrier dynamics. In this work, we report an easy and effective way of simultaneously enhancing the efficiency of PrSCs along with the long-term stability through interface engineering via the incorporation of 2D-Molybdenum disulfide (2D-MoS₂, few layered nanoflakes) in mesoporous-Titanium dioxide (mp-TiO₂)scaffold electron transport buffer layer, and using poly 3-hexytheophene (P3HT) as hole transport layers. The PSCs were fabricated in ambient air conditions in device configuration, FTO/c-TiO₂/mp-TiO₂:2D-MoS₂/CH3NH3PbI3/P3HT/Au, with an active area of 0.16 cm². The best device using c-TiO₂/mp-TiO₂:2D-MoS₂ (0.5wt.%) ETL exhibited a substantial increase in PCE ~13.04% as compared to PCE ~8.75% realized in reference device fabricated without incorporating MoS₂ in mp-TiO₂ buffer layer. The incorporation of MoS₂ nanoflakes in mp-TiO₂ ETL not only enhances the PCE to ~49% but also leads to better device stability in ambient air conditions without encapsulation (retaining PCE ~86% of its initial value up to 500 hrs), as compared to ETLs without MoS₂.Keywords: perovskite solar cells, MoS₂, nanoflakes, electron transport layer
Procedia PDF Downloads 762692 Cloud Based Supply Chain Traceability
Authors: Kedar J. Mahadeshwar
Abstract:
Concept introduction: This paper talks about how an innovative cloud based analytics enabled solution that could address a major industry challenge that is approaching all of us globally faster than what one would think. The world of supply chain for drugs and devices is changing today at a rapid speed. In the US, the Drug Supply Chain Security Act (DSCSA) is a new law for Tracing, Verification and Serialization phasing in starting Jan 1, 2015 for manufacturers, repackagers, wholesalers and pharmacies / clinics. Similarly we are seeing pressures building up in Europe, China and many countries that would require an absolute traceability of every drug and device end to end. Companies (both manufacturers and distributors) can use this opportunity not only to be compliant but to differentiate themselves over competition. And moreover a country such as UAE can be the leader in coming up with a global solution that brings innovation in this industry. Problem definition and timing: The problem of counterfeit drug market, recognized by FDA, causes billions of dollars loss every year. Even in UAE, the concerns over prevalence of counterfeit drugs, which enter through ports such as Dubai remains a big concern, as per UAE pharma and healthcare report, Q1 2015. Distribution of drugs and devices involves multiple processes and systems that do not talk to each other. Consumer confidence is at risk due to this lack of traceability and any leading provider is at risk of losing its reputation. Globally there is an increasing pressure by government and regulatory bodies to trace serial numbers and lot numbers of every drug and medical devices throughout a supply chain. Though many of large corporations use some form of ERP (enterprise resource planning) software, it is far from having a capability to trace a lot and serial number beyond the enterprise and making this information easily available real time. Solution: The solution here talks about a service provider that allows all subscribers to take advantage of this service. The solution allows a service provider regardless of its physical location, to host this cloud based traceability and analytics solution of millions of distribution transactions that capture lots of each drug and device. The solution platform will capture a movement of every medical device and drug end to end from its manufacturer to a hospital or a doctor through a series of distributor or retail network. The platform also provides advanced analytics solution to do some intelligent reporting online. Why Dubai? Opportunity exists with huge investment done in Dubai healthcare city also with using technology and infrastructure to attract more FDI to provide such a service. UAE and countries similar will be facing this pressure from regulators globally in near future. But more interestingly, Dubai can attract such innovators/companies to run and host such a cloud based solution and become a hub of such traceability globally.Keywords: cloud, pharmaceutical, supply chain, tracking
Procedia PDF Downloads 5272691 Quantum Chemical Calculations Synthesis and Corrosion Inhibition Efficiency of Nonionic Surfactants on API X65 Steel Surface under H2s Environment
Authors: E. G. Zaki, M. A. Migahed, A. M. Al-Sabagh, E. A. Khamis
Abstract:
Inhibition effect of four novel nonionic surfactants based on sulphonamide, of linear alkyl benzene sulphonic acid (LABS), was reacted with 1 mole triethylenetetramine, tetraethylenepentamine then Ethoxylation of amide X 65 type carbon steel in oil wells formation water under H2S environment was investigated by electrochemical measurements. Scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) were used to characterize the steel surface. The results showed that these surfactants act as a corrosion inhibitor in and their inhibition efficiencies depend on the ethylene oxide content in the system. The obtained results showed that the percentage inhibition efficiency (η%) was increased by increasing the inhibitor concentration until the critical micelle concentration (CMC) reached The quantum chemistry calculations were carried out to study the molecular geometry and electronic structure of obtained derivatives. The energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital has been calculated using the theoretical computations to reflect the chemical reactivity and kinetic stability of compounds.Keywords: corrosion, surfactants, steel surface, quantum
Procedia PDF Downloads 3772690 A Building Structure Health Monitoring DeviceBased on Cost Effective 1-Axis Accelerometers
Authors: Chih Hsing Lin, Wen-Ching Chen, Ssu-Ying Chen, Chih-Chyau Yang, Chien-Ming Wu, Chun-Ming Huang
Abstract:
Critical structures such as buildings, bridges and dams require periodic inspections to ensure safe operation. The reliable inspection of structures can be achieved by combing temperature sensor and accelerometers. In this work, we propose a building structure health monitoring device (BSHMD) with using three 1-axis accelerometers, gateway, analog to digital converter (ADC), and data logger to monitoring the building structure. The proposed BSHMD achieves the features of low cost by using three 1-axis accelerometers with the data synchronization problem being solved, and easily installation and removal. Furthermore, we develop a packet acquisition program to receive the sensed data and then classify it based on time and date. Compared with 3-axis accelerometer, our proposed 1-axis accelerometers based device achieves 64.3% cost saving. Compared with previous structural monitoring device, the BSHMD achieves 89% area saving. Therefore, with using the proposed device, the realtime diagnosis system for building damage monitoring can be conducted effectively.Keywords: building structure health monitoring, cost effective, 1-axis accelerometers, real-time diagnosis
Procedia PDF Downloads 3692689 Electret: A Solution of Partial Discharge in High Voltage Applications
Authors: Farhina Haque, Chanyeop Park
Abstract:
The high efficiency, high field, and high power density provided by wide bandgap (WBG) semiconductors and advanced power electronic converter (PEC) topologies enabled the dynamic control of power in medium to high voltage systems. Although WBG semiconductors outperform the conventional Silicon based devices in terms of voltage rating, switching speed, and efficiency, the increased voltage handling properties, high dv/dt, and compact device packaging increase local electric fields, which are the main causes of partial discharge (PD) in the advanced medium and high voltage applications. PD, which occurs actively in voids, triple points, and airgaps, is an inevitable dielectric challenge that causes insulation and device aging. The aging process accelerates over time and eventually leads to the complete failure of the applications. Hence, it is critical to mitigating PD. Sharp edges, airgaps, triple points, and bubbles are common defects that exist in any medium to high voltage device. The defects are created during the manufacturing processes of the devices and are prone to high-electric-field-induced PD due to the low permittivity and low breakdown strength of the gaseous medium filling the defects. A contemporary approach of mitigating PD by neutralizing electric fields in high power density applications is introduced in this study. To neutralize the locally enhanced electric fields that occur around the triple points, airgaps, sharp edges, and bubbles, electrets are developed and incorporated into high voltage applications. Electrets are electric fields emitting dielectric materials that are embedded with electrical charges on the surface and in bulk. In this study, electrets are fabricated by electrically charging polyvinylidene difluoride (PVDF) films based on the widely used triode corona discharge method. To investigate the PD mitigation performance of the fabricated electret films, a series of PD experiments are conducted on both the charged and uncharged PVDF films under square voltage stimuli that represent PWM waveform. In addition to the use of single layer electrets, multiple layers of electrets are also experimented with to mitigate PD caused by higher system voltages. The electret-based approach shows great promise in mitigating PD by neutralizing the local electric field. The results of the PD measurements suggest that the development of an ultimate solution to the decades-long dielectric challenge would be possible with further developments in the fabrication process of electrets.Keywords: electrets, high power density, partial discharge, triode corona discharge
Procedia PDF Downloads 2032688 Design Aspects for Developing a Microfluidics Diagnostics Device Used for Low-Cost Water Quality Monitoring
Authors: Wenyu Guo, Malachy O’Rourke, Mark Bowkett, Michael Gilchrist
Abstract:
Many devices for real-time monitoring of surface water have been developed in the past few years to provide early warning of pollutions and so to decrease the risk of environmental pollution efficiently. One of the most common methodologies used in the detection system is a colorimetric process, in which a container with fixed volume is filled with target ions and reagents to combine a colorimetric dye. The colorimetric ions can sensitively absorb a specific-wavelength radiation beam, and its absorbance rate is proportional to the concentration of the fully developed product, indicating the concentration of target nutrients in the pre-mixed water samples. In order to achieve precise and rapid detection effect, channels with dimensions in the order of micrometers, i.e., microfluidic systems have been developed and introduced into these diagnostics studies. Microfluidics technology largely reduces the surface to volume ratios and decrease the samples/reagents consumption significantly. However, species transport in such miniaturized channels is limited by the low Reynolds numbers in the regimes. Thus, the flow is extremely laminar state, and diffusion is the dominant mass transport process all over the regimes of the microfluidic channels. The objective of this present work has been to analyse the mixing effect and chemistry kinetics in a stop-flow microfluidic device measuring Nitride concentrations in fresh water samples. In order to improve the temporal resolution of the Nitride microfluidic sensor, we have used computational fluid dynamics to investigate the influence that the effectiveness of the mixing process between the sample and reagent within a microfluidic device exerts on the time to completion of the resulting chemical reaction. This computational approach has been complemented by physical experiments. The kinetics of the Griess reaction involving the conversion of sulphanilic acid to a diazonium salt by reaction with nitrite in acidic solution is set in the Laminar Finite-rate chemical reaction in the model. Initially, a methodology was developed to assess the degree of mixing of the sample and reagent within the device. This enabled different designs of the mixing channel to be compared, such as straight, square wave and serpentine geometries. Thereafter, the time to completion of the Griess reaction within a straight mixing channel device was modeled and the reaction time validated with experimental data. Further simulations have been done to compare the reaction time to effective mixing within straight, square wave and serpentine geometries. Results show that square wave channels can significantly improve the mixing effect and provides a low standard deviations of the concentrations of nitride and reagent, while for straight channel microfluidic patterns the corresponding values are 2-3 orders of magnitude greater, and consequently are less efficiently mixed. This has allowed us to design novel channel patterns of micro-mixers with more effective mixing that can be used to detect and monitor levels of nutrients present in water samples, in particular, Nitride. Future generations of water quality monitoring and diagnostic devices will easily exploit this technology.Keywords: nitride detection, computational fluid dynamics, chemical kinetics, mixing effect
Procedia PDF Downloads 2022687 Design and Implementation of an AI-Enabled Task Assistance and Management System
Authors: Arun Prasad Jaganathan
Abstract:
In today's dynamic industrial world, traditional task allocation methods often fall short in adapting to evolving operational conditions. This paper introduces an AI-enabled task assistance and management system designed to overcome the limitations of conventional approaches. By using artificial intelligence (AI) and machine learning (ML), the system intelligently interprets user instructions, analyzes tasks, and allocates resources based on real-time data and environmental factors. Additionally, geolocation tracking enables proactive identification of potential delays, ensuring timely interventions. With its transparent reporting mechanisms, the system provides stakeholders with clear insights into task progress, fostering accountability and informed decision-making. The paper presents a comprehensive overview of the system architecture, algorithm, and implementation, highlighting its potential to revolutionize task management across diverse industries.Keywords: artificial intelligence, machine learning, task allocation, operational efficiency, resource optimization
Procedia PDF Downloads 592686 Internet of Things in Higher Education: Implications for Students with Disabilities
Authors: Scott Hollier, Ruchi Permvattana
Abstract:
The purpose of this abstract is to share the findings of a recently completed disability-related Internet of Things (IoT) project undertaken at Curtin University in Australia. The project focused on identifying how IoT could support people with disabilities with their educational outcomes. To achieve this, the research consisted of an analysis of current literature and interviews conducted with students with vision, hearing, mobility and print disabilities. While the research acknowledged the ability to collect data with IoT is now a fairly common occurrence, its benefits and applicability still need to be grounded back into real-world applications. Furthermore, it is important to consider if there are sections of our society that may benefit from these developments and if those benefits are being fully realised in a rush by large companies to achieve IoT dominance for their particular product or digital ecosystem. In this context, it is important to consider a group which, to our knowledge, has had little specific mainstream focus in the IoT area –people with disabilities. For people with disabilities, the ability for every device to interact with us and with each other has the potential to yield significant benefits. In terms of engagement, the arrival of smart appliances is already offering benefits such as the ability for a person in a wheelchair to give verbal commands to an IoT-enabled washing machine if the buttons are out of reach, or for a blind person to receive a notification on a smartphone when dinner has finished cooking in an IoT-enabled microwave. With clear benefits of IoT being identified for people with disabilities, it is important to also identify what implications there are for education. With higher education being a critical pathway for many people with disabilities in finding employment, the question as to whether such technologies can support the educational outcomes of people with disabilities was what ultimately led to this research project. This research will discuss several significant findings that have emerged from the research in relation to how consumer-based IoT can be used in the classroom to support the learning needs of students with disabilities, how industrial-based IoT sensors and actuators can be used to monitor and improve the real-time learning outcomes for the delivery of lectures and student engagement, and a proposed method for students to gain more control over their learning environment. The findings shared in this presentation are likely to have significant implications for the use of IoT in the classroom through the implementation of affordable and accessible IoT solutions and will provide guidance as to how policies can be developed as the implications of both benefits and risks continue to be considered by educators.Keywords: disability, higher education, internet of things, students
Procedia PDF Downloads 1192685 Nano-Particle of π-Conjugated Polymer for Near-Infrared Bio-Imaging
Authors: Hiroyuki Aoki
Abstract:
Molecular imaging has attracted much attention recently, which visualizes biological molecules, cells, tissue, and so on. Among various in vivo imaging techniques, the fluorescence imaging method has been widely employed as a useful modality for small animals in pre-clinical researches. However, the higher signal intensity is needed for highly sensitive in vivo imaging. The objective of the current study is the development of a fluorescent imaging agent with high brightness for the tumor imaging of a mouse. The strategy to enhance the fluorescence signal of a bio-imaging agent is the increase of the absorption of the excitation light and the fluorescence conversion efficiency. We developed a nano-particle fluorescence imaging agent consisting of a π-conjugated polymer emitting a fluorescence signal in a near infrared region. A large absorption coefficient and high emission intensity at a near infrared optical window for biological tissue enabled highly sensitive in vivo imaging with a tumor-targeting ability by an EPR (enhanced permeation and retention) effect. The signal intensity from the π-conjugated fluorescence imaging agent is larger by two orders of magnitude compared to a quantum dot, which has been known as the brightest imaging agent. The π-conjugated polymer nano-particle would be a promising candidate in the in vivo imaging of small animals.Keywords: fluorescence, conjugated polymer, in vivo imaging, nano-particle, near-infrared
Procedia PDF Downloads 4782684 Internet of Things Edge Device Power Modelling and Optimization Simulator
Authors: Cian O'Shea, Ross O'Halloran, Peter Haigh
Abstract:
Wireless Sensor Networks (WSN) are Internet of Things (IoT) edge devices. They are becoming widely adopted in many industries, including health care, building energy management, and conditional monitoring. As the scale of WSN deployments increases, the cost and complexity of battery replacement and disposal become more significant and in time may become a barrier to adoption. Harvesting ambient energies provide a pathway to reducing dependence on batteries and in the future may lead to autonomously powered sensors. This work describes a simulation tool that enables the user to predict the battery life of a wireless sensor that utilizes energy harvesting to supplement the battery power. To create this simulator, all aspects of a typical WSN edge device were modelled including, sensors, transceiver, and microcontroller as well as the energy source components (batteries, solar cells, thermoelectric generators (TEG), supercapacitors and DC/DC converters). The tool allows the user to plug and play different pre characterized devices as well as add user-defined devices. The goal of this simulation tool is to predict the lifetime of a device and scope for extension using ambient energy sources.Keywords: Wireless Sensor Network, IoT, edge device, simulation, solar cells, TEG, supercapacitor, energy harvesting
Procedia PDF Downloads 1302683 Flexible Polyaniline-Based Composite Films for High-Performance Super Capacitors
Authors: A. Khosrozadeh, M. A. Darabi, M. Xing, Q. Wang
Abstract:
Fabrication of a high-performance supercapacitor (SC) using a flexible cellulose-based composite film of polyaniline (PANI), reduced graphene oxide (RGO), and silver nanowires (AgNWs) is reported. The flexibility, high capacitive behaviour, and cyclic stability of the entire device make it a good candidate for wearable SCs. The results show that a capacitance as high as 73.4 F/g (1.6 F/cm2) at a discharge rate of 1.1 A/g is achieved by the device. In addition, the SC demonstrates a power density up to 468.8 W/kg and an energy density up to 5.1 wh/kg. The flexibility of the composite film is attributed to the binding effect of cellulose fibers as well as reinforcing effect of AgNWs. The excellent electrochemical performance of the device is found to be owing to the synergistic effect between PANI/RGO/AgNWs ternary in a cushiony cellulose matrix and porous structure of the composite.Keywords: cellulose, polyaniline, reduced graphene oxide, silver, super capacitor
Procedia PDF Downloads 4302682 Smart Monitoring and Control of Tap Changer Using Intelligent Electronic Device
Authors: K. N. Dinesh Babu, M. V. Gopalan, G. R. Manjunatha, R. Ramaprabha, V. Rajini
Abstract:
In this paper, monitoring and control of tap changer mechanism of a transformer implementation in an intelligent electronic device (IED) is discussed. Its been a custom for decades to provide a separate panel for on load tap changer control for monitoring the tap position. However this facility cannot either record or transfer the information to remote control centers. As there is a technology shift towards the smart grid protection and control standards, the need for implementing remote control and monitoring has necessitated the implementation of this feature in numerical relays. This paper deals with the programming, settings and logic implementation which is applicable to both IEC 61850 compatible and non-compatible IEDs thereby eliminating the need for separate tap changer control equipment. The monitoring mechanism has been implemented in a 28MVA, 110 /6.9kV transformer with 16 tap position with GE make T60 IED at Ultratech cement limited Gulbarga, Karnataka and is in successful service.Keywords: transformer protection, tap changer control, tap position monitoring, on load tap changer, intelligent electronic device (IED)
Procedia PDF Downloads 5932681 Battery/Supercapacitor Emulator for Chargers Functionality Testing
Authors: S. Farag, A. Kuperman
Abstract:
In this paper, design of solid-state battery/super capacitor emulator based on dc-dc boost converter is described. The emulator mimics charging behavior of any storage device based on a predefined behavior set by the user. The device is operated by a two-level control structure: high-level emulating controller and low-level input voltage controller. Simulation and experimental results are shown to demonstrate the emulator operation.Keywords: battery, charger, energy, storage, super capacitor
Procedia PDF Downloads 400