Search results for: portfolio optimization task
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5356

Search results for: portfolio optimization task

5026 Global Optimization: The Alienor Method Mixed with Piyavskii-Shubert Technique

Authors: Guettal Djaouida, Ziadi Abdelkader

Abstract:

In this paper, we study a coupling of the Alienor method with the algorithm of Piyavskii-Shubert. The classical multidimensional global optimization methods involves great difficulties for their implementation to high dimensions. The Alienor method allows to transform a multivariable function into a function of a single variable for which it is possible to use efficient and rapid method for calculating the the global optimum. This simplification is based on the using of a reducing transformation called Alienor.

Keywords: global optimization, reducing transformation, α-dense curves, Alienor method, Piyavskii-Shubert algorithm

Procedia PDF Downloads 496
5025 Optimization Process for Ride Quality of a Nonlinear Suspension Model Based on Newton-Euler’ Augmented Formulation

Authors: Mohamed Belhorma, Aboubakar S. Bouchikhi, Belkacem Bounab

Abstract:

This paper addresses modeling a Double A-Arm suspension, a three-dimensional nonlinear model has been developed using the multibody systems formalism. Dynamical study of the different components responses was done, particularly for the wheel assembly. To validate those results, the system was constructed and simulated by RecurDyn, a professional multibody dynamics simulation software. The model has been used as the Objectif function in an optimization algorithm for ride quality improvement.

Keywords: double A-Arm suspension, multibody systems, ride quality optimization, dynamic simulation

Procedia PDF Downloads 133
5024 Comparative Study of Deep Reinforcement Learning Algorithm Against Evolutionary Algorithms for Finding the Optimal Values in a Simulated Environment Space

Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt

Abstract:

Traditional optimization methods like evolutionary algorithms are widely used in production processes to find an optimal or near-optimal solution of control parameters based on the simulated environment space of a process. These algorithms are computationally intensive and therefore do not provide the opportunity for real-time optimization. This paper utilizes the Deep Reinforcement Learning (DRL) framework to find an optimal or near-optimal solution for control parameters. A model based on maximum a posteriori policy optimization (Hybrid-MPO) that can handle both numerical and categorical parameters is used as a benchmark for comparison. A comparative study shows that DRL can find optimal solutions of similar quality as compared to evolutionary algorithms while requiring significantly less time making them preferable for real-time optimization. The results are confirmed in a large-scale validation study on datasets from production and other fields. A trained XGBoost model is used as a surrogate for process simulation. Finally, multiple ways to improve the model are discussed.

Keywords: reinforcement learning, evolutionary algorithms, production process optimization, real-time optimization, hybrid-MPO

Procedia PDF Downloads 106
5023 The Role of Meaningful Work in Transformational Leadership and Work Outcomes Relationship

Authors: Zainur Rahman

Abstract:

Meaningful work is the topic that will be discussed in this article, especially in changing period. It has an important role because by reaching meaningful work, it will drive to be positive in the workplace. Therefore, task performance will be increased and cynicism about organizational change (CAOC) will be reduced. Moreover, it is influenced by situational factor, which is transformational leadership. In this conceptual paper, the author discusses how the construct of meaningful work influenced by transformational leadership that will have impact on the follower’ work outcomes in the organizational change. It is proposed that the construct of meaningful work are susceptible with situational variable. Transformational leaders who are respectful on the process of humanizing the followers affect task performance and reduce CAOC in organizational change.

Keywords: transformational leadership, meaningful work, task performance, CAOC

Procedia PDF Downloads 314
5022 Hierarchical Optimization of Composite Deployable Bridge Treadway Using Particle Swarm Optimization

Authors: Ashraf Osman

Abstract:

Effective deployable bridges that are characterized by an increased capacity to weight ratio are recently needed for post-disaster rapid mobility and military operations. In deployable bridging, replacing metals as the fabricating material with advanced composite laminates as lighter alternatives with higher strength is highly advantageous. This article presents a hierarchical optimization strategy of a composite bridge treadway considering maximum strength design and bridge weight minimization. Shape optimization of a generic deployable bridge beam cross-section is performed to achieve better stress distribution over the bridge treadway hull. The developed cross-section weight is minimized up to reserving the margins of safety of the deployable bridging code provisions. Hence, the strength of composite bridge plates is maximized through varying the plies orientation. Different loading cases are considered of a tracked vehicle patch load. The orthotropic plate properties of a composite sandwich core are used to simulate the bridge deck structural behavior. Whereas, the failure analysis is conducted using Tsai-Wu failure criterion. The naturally inspired particle swarm optimization technique is used in this study. The proposed technique efficiently reduced the weight to capacity ratio of the developed bridge beam.

Keywords: CFRP deployable bridges, disaster relief, military bridging, optimization of composites, particle swarm optimization

Procedia PDF Downloads 133
5021 Dynamic Route Optimization in Vehicle Adhoc Networks: A Heuristics Routing Protocol

Authors: Rafi Ullah, Shah Muhammad Emaduddin, Taha Jilani

Abstract:

Vehicle Adhoc Networks (VANET) belongs to a special class of Mobile Adhoc Network (MANET) with high mobility. Network is created by road side vehicles equipped with communication devices like GPS and Wifi etc. Since the environment is highly dynamic due to difference in speed and high mobility of vehicles and weak stability of the network connection, it is a challenging task to design an efficient routing protocol for such an unstable environment. Our proposed algorithm uses heuristic for the calculation of optimal path for routing the packet efficiently in collaboration with several other parameters like geographical location, speed, priority, the distance among the vehicles, communication range, and networks congestion. We have incorporated probabilistic, heuristic and machine learning based approach inconsistency with the relay function of the memory buffer to keep the packet moving towards the destination. These parameters when used in collaboration provide us a very strong and admissible heuristics. We have mathematically proved that the proposed technique is efficient for the routing of packets, especially in a medical emergency situation. These networks can be used for medical emergency, security, entertainment and routing purposes.

Keywords: heuristics routing, intelligent routing, VANET, route optimization

Procedia PDF Downloads 168
5020 Minimum Half Power Beam Width and Side Lobe Level Reduction of Linear Antenna Array Using Particle Swarm Optimization

Authors: Saeed Ur Rahman, Naveed Ullah, Muhammad Irshad Khan, Quensheng Cao, Niaz Muhammad Khan

Abstract:

In this paper the optimization performance of non-uniform linear antenna array is presented. The Particle Swarm Optimization (PSO) algorithm is presented to minimize Side Lobe Level (SLL) and Half Power Beamwidth (HPBW). The purpose of using the PSO algorithm is to get the optimum values for inter-element spacing and excitation amplitude of linear antenna array that provides a radiation pattern with minimum SLL and HPBW. Various design examples are considered and the obtain results using PSO are confirmed by comparing with results achieved using other nature inspired metaheuristic algorithms such as real coded genetic algorithm (RGA) and biogeography (BBO) algorithm. The comparative results show that optimization of linear antenna array using the PSO provides considerable enhancement in the SLL and HPBW.

Keywords: linear antenna array, minimum side lobe level, narrow half power beamwidth, particle swarm optimization

Procedia PDF Downloads 543
5019 Sensitivity Based Robust Optimization Using 9 Level Orthogonal Array and Stepwise Regression

Authors: K. K. Lee, H. W. Han, H. L. Kang, T. A. Kim, S. H. Han

Abstract:

For the robust optimization of the manufacturing product design, there are design objectives that must be achieved, such as a minimization of the mean and standard deviation in objective functions within the required sensitivity constraints. The authors utilized the sensitivity of objective functions and constraints with respect to the effective design variables to reduce the computational burden associated with the evaluation of the probabilities. The individual mean and sensitivity values could be estimated easily by using the 9 level orthogonal array based response surface models optimized by the stepwise regression. The present study evaluates a proposed procedure from the robust optimization of rubber domes that are commonly used for keyboard switching, by using the 9 level orthogonal array and stepwise regression along with a desirability function. In addition, a new robust optimization process, i.e., the I2GEO (Identify, Integrate, Generate, Explore and Optimize), was proposed on the basis of the robust optimization in rubber domes. The optimized results from the response surface models and the estimated results by using the finite element analysis were consistent within a small margin of error. The standard deviation of objective function is decreasing 54.17% with suggested sensitivity based robust optimization. (Business for Cooperative R&D between Industry, Academy, and Research Institute funded Korea Small and Medium Business Administration in 2017, S2455569)

Keywords: objective function, orthogonal array, response surface model, robust optimization, stepwise regression

Procedia PDF Downloads 285
5018 Evaluation of the Matching Optimization of Human-Machine Interface Matching in the Cab

Authors: Yanhua Ma, Lu Zhai, Xinchen Wang, Hongyu Liang

Abstract:

In this paper, by understanding the development status of the human-machine interface in today's automobile cab, a subjective and objective evaluation system for evaluating the optimization of human-machine interface matching in automobile cab was established. The man-machine interface of the car cab was divided into a software interface and a hard interface. Objective evaluation method of software human factor analysis is used to evaluate the hard interface matching; The analytic hierarchy process is used to establish the evaluation index system for the software interface matching optimization, and the multi-level fuzzy comprehensive evaluation method is used to evaluate hard interface machine. This article takes Dongfeng Sokon (DFSK) C37 model automobile as an example. The evaluation method given in the paper is used to carry out relevant analysis and evaluation, and corresponding optimization suggestions are given, which have certain reference value for designers.

Keywords: analytic hierarchy process, fuzzy comprehension evaluation method, human-machine interface, matching optimization, software human factor analysis

Procedia PDF Downloads 137
5017 Applications for Additive Manufacturing Technology for Reducing the Weight of Body Parts of Gas Turbine Engines

Authors: Liubov Magerramova, Mikhail Petrov, Vladimir Isakov, Liana Shcherbinina, Suren Gukasyan, Daniil Povalyukhin, Olga Klimova-Korsmik, Darya Volosevich

Abstract:

Aircraft engines are developing along the path of increasing resource, strength, reliability, and safety. The building of gas turbine engine body parts is a complex design and technological task. Particularly complex in the design and manufacturing are the casings of the input stages of helicopter gearboxes and central drives of aircraft engines. Traditional technologies, such as precision casting or isothermal forging, are characterized by significant limitations in parts production. For parts like housing, additive technologies guarantee spatial freedom and limitless or flexible design. This article presents the results of computational and experimental studies. These investigations justify the applicability of additive technologies (AT) to reduce the weight of aircraft housing gearbox parts by up to 32%. This is possible due to geometrical optimization compared to the classical, less flexible manufacturing methods and as-casted aircraft parts with over-insured values of safety factors. Using an example of the body of the input stage of an aircraft gearbox, visualization of the layer-by-layer manufacturing of a part based on thermal deformation was demonstrated.

Keywords: additive technologies, gas turbine engines, topological optimization, synthesis process

Procedia PDF Downloads 100
5016 IACOP - Route Optimization in Wireless Networks Using Improved Ant Colony Optimization Protocol

Authors: S. Vasundra, D. Venkatesh

Abstract:

Wireless networks have gone through an extraordinary growth in the past few years, and will keep on playing a crucial role in future data communication. The present wireless networks aim to make communication possible anywhere and anytime. With the converging of mobile and wireless communications with Internet services, the boundary between mobile personal telecommunications and wireless computer networks is disappearing. Wireless networks of the next generation need the support of all the advances on new architectures, standards, and protocols. Since an ad hoc network may consist of a large number of mobile hosts, this imposes a significant challenge on the design of an effective and efficient routing protocol that can work well in an environment with frequent topological changes. This paper proposes improved ant colony optimization (IACO) technique. It also maintains load balancing in wireless networks. The simulation results show that the proposed IACO performs better than existing routing techniques.

Keywords: wireless networks, ant colony optimization, load balancing, architecture

Procedia PDF Downloads 414
5015 Application of Heuristic Integration Ant Colony Optimization in Path Planning

Authors: Zeyu Zhang, Guisheng Yin, Ziying Zhang, Liguo Zhang

Abstract:

This paper mainly studies the path planning method based on ant colony optimization (ACO), and proposes heuristic integration ant colony optimization (HIACO). This paper not only analyzes and optimizes the principle, but also simulates and analyzes the parameters related to the application of HIACO in path planning. Compared with the original algorithm, the improved algorithm optimizes probability formula, tabu table mechanism and updating mechanism, and introduces more reasonable heuristic factors. The optimized HIACO not only draws on the excellent ideas of the original algorithm, but also solves the problems of premature convergence, convergence to the sub optimal solution and improper exploration to some extent. HIACO can be used to achieve better simulation results and achieve the desired optimization. Combined with the probability formula and update formula, several parameters of HIACO are tested. This paper proves the principle of the HIACO and gives the best parameter range in the research of path planning.

Keywords: ant colony optimization, heuristic integration, path planning, probability formula

Procedia PDF Downloads 242
5014 Semantic Processing in Chinese: Category Effects, Task Effects and Age Effects

Authors: Yi-Hsiu Lai

Abstract:

The present study aimed to elucidate the nature of semantic processing in Chinese. Language and cognition related to the issue of aging are examined from the perspective of picture naming and category fluency tasks. Twenty Chinese-speaking adults (ranging from 25 to 45 years old) and twenty Chinese-speaking seniors (ranging from 65 to 75 years old) in Taiwan participated in this study. Each of them individually completed two tasks: a picture naming task and a category fluency task. Instruments for the naming task were sixty black-and-white pictures: thirty-five object and twenty-five action pictures. Category fluency task also consisted of two semantic categories – objects (or nouns) and actions (or verbs). Participants were asked to report as many items within a category as possible in one minute. Scores of action fluency and of object fluency were a summation of correct responses in these two categories. Category effects (actions vs. objects) and age effects were examined in these tasks. Objects were further divided into two major types: living objects and non-living objects. Actions were also categorized into two major types: action verbs and process verbs. Reaction time to each picture/question was additionally calculated and analyzed. Results of the category fluency task indicated that the content of information in Chinese seniors was comparatively deteriorated, thus producing smaller number of semantic-lexical items. Significant group difference was also found in the results of reaction time. Category Effect was significant for both Chinese adults and seniors in the semantic fluency task. Findings in the present study helped characterize the nature of semantic processing in Chinese-speaking adults and seniors and contributed to the issue of language and aging.

Keywords: semantic processing, aging, Chinese, category effects

Procedia PDF Downloads 354
5013 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification

Authors: Oumaima Khlifati, Khadija Baba

Abstract:

Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.

Keywords: distress pavement, hyperparameters, automatic classification, deep learning

Procedia PDF Downloads 82
5012 Sequential Covering Algorithm for Nondifferentiable Global Optimization Problem and Applications

Authors: Mohamed Rahal, Djaouida Guetta

Abstract:

In this paper, the one-dimensional unconstrained global optimization problem of continuous functions satifying a Hölder condition is considered. We extend the algorithm of sequential covering SCA for Lipschitz functions to a large class of Hölder functions. The convergence of the method is studied and the algorithm can be applied to systems of nonlinear equations. Finally, some numerical examples are presented and illustrate the efficiency of the present approach.

Keywords: global optimization, Hölder functions, sequential covering method, systems of nonlinear equations

Procedia PDF Downloads 365
5011 Genetic Algorithm Optimization of Microcantilever Based Resonator

Authors: Manjula Sutagundar, B. G. Sheeparamatti, D. S. Jangamshetti

Abstract:

Micro Electro Mechanical Systems (MEMS) resonators have shown the potential of replacing quartz crystal technology for sensing and high frequency signal processing applications because of inherent advantages like small size, high quality factor, low cost, compatibility with integrated circuit chips. This paper presents the optimization and modelling and simulation of the optimized micro cantilever resonator. The objective of the work is to optimize the dimensions of a micro cantilever resonator for a specified range of resonant frequency and specific quality factor. Optimization is carried out using genetic algorithm. The genetic algorithm is implemented using MATLAB. The micro cantilever resonator is modelled in CoventorWare using the optimized dimensions obtained from genetic algorithm. The modeled cantilever is analysed for resonance frequency.

Keywords: MEMS resonator, genetic algorithm, modelling and simulation, optimization

Procedia PDF Downloads 541
5010 A New Class of Conjugate Gradient Methods Based on a Modified Search Direction for Unconstrained Optimization

Authors: Belloufi Mohammed, Sellami Badreddine

Abstract:

Conjugate gradient methods have played a special role for solving large scale optimization problems due to the simplicity of their iteration, convergence properties and their low memory requirements. In this work, we propose a new class of conjugate gradient methods which ensures sufficient descent. Moreover, we propose a new search direction with the Wolfe line search technique for solving unconstrained optimization problems, a global convergence result for general functions is established provided that the line search satisfies the Wolfe conditions. Our numerical experiments indicate that our proposed methods are preferable and in general superior to the classical conjugate gradient methods in terms of efficiency and robustness.

Keywords: unconstrained optimization, conjugate gradient method, sufficient descent property, numerical comparisons

Procedia PDF Downloads 395
5009 The Amount of Information Processing and Balance Performance in Children: The Dual-Task Paradigm

Authors: Chin-Chih Chiou, Tai-Yuan Su, Ti-Yu Chen, Wen-Yu Chiu, Chungyu Chen

Abstract:

The purpose of this study was to investigate the effect of reaction time (RT) or balance performance as the number of stimulus-response choices increases, the amount of information processing of 0-bit and 1-bit conditions based on Hick’s law, using the dual-task design. Eighteen children (age: 9.38 ± 0.27 years old) were recruited as the participants for this study, and asked to assess RT and balance performance separately and simultaneously as following five conditions: simple RT (0-bit decision), choice RT (1-bit decision), single balance control, balance control with simple RT, and balance control with choice RT. Biodex 950-300 balance system and You-Shang response timer were used to record and analyze the postural stability and information processing speed (RT) respectively for the participants. Repeated measures one-way ANOVA with HSD post-hoc test and 2 (balance) × 2 (amount of information processing) repeated measures two-way ANOVA were used to test the parameters of balance performance and RT (α = .05). The results showed the overall stability index in the 1-bit decision was lower than in 0-bit decision, and the mean deflection in the 1-bit decision was lower than in single balance performance. Simple RTs were faster than choice RTs both in single task condition and dual task condition. It indicated that the chronometric approach of RT could use to infer the attention requirement of the secondary task. However, this study did not find that the balance performance is interfered for children by the increasing of the amount of information processing.

Keywords: capacity theory, reaction time, Hick’s law, balance

Procedia PDF Downloads 446
5008 Filtering Momentum Life Cycles, Price Acceleration Signals and Trend Reversals for Stocks, Credit Derivatives and Bonds

Authors: Periklis Brakatsoulas

Abstract:

Recent empirical research shows a growing interest in investment decision-making under market anomalies that contradict the rational paradigm. Momentum is undoubtedly one of the most robust anomalies in the empirical asset pricing research and remains surprisingly lucrative ever since first documented. Although predominantly phenomena identified across equities, momentum premia are now evident across various asset classes. Yet few many attempts are made so far to provide traders a diversified portfolio of strategies across different assets and markets. Moreover, literature focuses on patterns from past returns rather than mechanisms to signal future price directions prior to momentum runs. The aim of this paper is to develop a diversified portfolio approach to price distortion signals using daily position data on stocks, credit derivatives, and bonds. An algorithm allocates assets periodically, and new investment tactics take over upon price momentum signals and across different ranking groups. We focus on momentum life cycles, trend reversals, and price acceleration signals. The main effort here concentrates on the density, time span and maturity of momentum phenomena to identify consistent patterns over time and measure the predictive power of buy-sell signals generated by these anomalies. To tackle this, we propose a two-stage modelling process. First, we generate forecasts on core macroeconomic drivers. Secondly, satellite models generate market risk forecasts using the core driver projections generated at the first stage as input. Moreover, using a combination of the ARFIMA and FIGARCH models, we examine the dependence of consecutive observations across time and portfolio assets since long memory behavior in volatilities of one market appears to trigger persistent volatility patterns across other markets. We believe that this is the first work that employs evidence of volatility transmissions among derivatives, equities, and bonds to identify momentum life cycle patterns.

Keywords: forecasting, long memory, momentum, returns

Procedia PDF Downloads 97
5007 Passive Vibration Isolation Analysis and Optimization for Mechanical Systems

Authors: Ozan Yavuz Baytemir, Ender Cigeroglu, Gokhan Osman Ozgen

Abstract:

Vibration is an important issue in the design of various components of aerospace, marine and vehicular applications. In order not to lose the components’ function and operational performance, vibration isolation design involving the optimum isolator properties selection and isolator positioning processes appear to be a critical study. Knowing the growing need for the vibration isolation system design, this paper aims to present two types of software capable of implementing modal analysis, response analysis for both random and harmonic types of excitations, static deflection analysis, Monte Carlo simulations in addition to study of parameter and location optimization for different types of isolation problem scenarios. Investigating the literature, there is no such study developing a software-based tool that is capable of implementing all those analysis, simulation and optimization studies in one platform simultaneously. In this paper, the theoretical system model is generated for a 6-DOF rigid body. The vibration isolation system of any mechanical structure is able to be optimized using hybrid method involving both global search and gradient-based methods. Defining the optimization design variables, different types of optimization scenarios are listed in detail. Being aware of the need for a user friendly vibration isolation problem solver, two types of graphical user interfaces (GUIs) are prepared and verified using a commercial finite element analysis program, Ansys Workbench 14.0. Using the analysis and optimization capabilities of those GUIs, a real application used in an air-platform is also presented as a case study at the end of the paper.

Keywords: hybrid optimization, Monte Carlo simulation, multi-degree-of-freedom system, parameter optimization, location optimization, passive vibration isolation analysis

Procedia PDF Downloads 557
5006 Study on Dynamic Stiffness Matching and Optimization Design Method of a Machine Tool

Authors: Lu Xi, Li Pan, Wen Mengmeng

Abstract:

The stiffness of each component has different influences on the stiffness of the machine tool. Taking the five-axis gantry machining center as an example, we made the modal analysis of the machine tool, followed by raising and lowering the stiffness of the pillar, slide plate, beam, ram and saddle so as to study the stiffness matching among these components on the standard of whether the stiffness of the modified machine tool changes more than 50% relative to the stiffness of the original machine tool. The structural optimization of the machine tool can be realized by changing the stiffness of the components whose stiffness is mismatched. For example, the stiffness of the beam is mismatching. The natural frequencies of the first six orders of the beam increased by 7.70%, 0.38%, 6.82%, 7.96%, 18.72% and 23.13%, with the weight increased by 28Kg, leading to the natural frequencies of several orders which had a great influence on the dynamic performance of the whole machine increased by 1.44%, 0.43%, 0.065%, which verified the correctness of the optimization method based on stiffness matching proposed in this paper.

Keywords: machine tool, optimization, modal analysis, stiffness matching

Procedia PDF Downloads 96
5005 An Application of Meta-Modeling Methods for Surrogating Lateral Dynamics Simulation in Layout-Optimization for Electric Drivetrains

Authors: Christian Angerer, Markus Lienkamp

Abstract:

Electric vehicles offer a high variety of possible drivetrain topologies with up to 4 motors. Multi-motor-designs can have several advantages regarding traction, vehicle dynamics, safety and even efficiency. With a rising number of motors, the whole drivetrain becomes more complex. All permutations of gearings, drivetrain-layouts, motor-types and –sizes lead up in a very large solution space. Single elements of this solution space can be analyzed by simulation methods. In addition to longitudinal vehicle behavior, which most optimization-approaches are restricted to, also lateral dynamics are important for vehicle dynamics, stability and efficiency. In order to compete large solution spaces and to find an optimal result, genetic algorithm based optimization is state-of-the-art. As lateral dynamics simulation is way more CPU-intensive, optimization takes much more time than in case of longitudinal-only simulation. Therefore, this paper shows an approach how to create meta-models from a 14-degree of freedom vehicle model in order to enable a numerically efficient drivetrain-layout optimization process under consideration of lateral dynamics. Different meta-modelling approaches such as neural networks or DoE are implemented and comparatively discussed.

Keywords: driving dynamics, drivetrain layout, genetic optimization, meta-modeling, lateral dynamicx

Procedia PDF Downloads 408
5004 Workforce Optimization: Fair Workload Balance and Near-Optimal Task Execution Order

Authors: Alvaro Javier Ortega

Abstract:

A large number of companies face the challenge of matching highly-skilled professionals to high-end positions by human resource deployment professionals. However, when the professional list and tasks to be matched are larger than a few dozens, this process result is far from optimal and takes a long time to be made. Therefore, an automated assignment algorithm for this workforce management problem is needed. The majority of companies are divided into several sectors or departments, where trained employees with different experience levels deal with a large number of tasks daily. Also, the execution order of all tasks is of mater consequence, due to some of these tasks just can be run it if the result of another task is provided. Thus, a wrong execution order leads to large waiting times between consecutive tasks. The desired goal is, therefore, creating accurate matches and a near-optimal execution order that maximizes the number of tasks performed and minimizes the idle time of the expensive skilled employees. The problem described before can be model as a mixed-integer non-linear programming (MINLP) as it will be shown in detail through this paper. A large number of MINLP algorithms have been proposed in the literature. Here, genetic algorithm solutions are considered and a comparison between two different mutation approaches is presented. The simulated results considering different complexity levels of assignment decisions show the appropriateness of the proposed model.

Keywords: employees, genetic algorithm, industry management, workforce

Procedia PDF Downloads 163
5003 An Empirical Analysis of the Effects of Corporate Derivatives Use on the Underlying Stock Price Exposure: South African Evidence

Authors: Edson Vengesai

Abstract:

Derivative products have become essential instruments in portfolio diversification, price discovery, and, most importantly, risk hedging. Derivatives are complex instruments; their valuation, volatility implications, and real impact on the underlying assets' behaviour are not well understood. Little is documented empirically, with conflicting conclusions on how these instruments affect firm risk exposures. Given the growing interest in using derivatives in risk management and portfolio engineering, this study examines the practical impact of derivative usage on the underlying stock price exposure and systematic risk. The paper uses data from South African listed firms. The study employs GARCH models to understand the effect of derivative uses on conditional stock volatility. The GMM models are used to estimate the effect of derivatives use on stocks' systematic risk as measured by Beta and on the total risk of stocks as measured by the standard deviation of returns. The results provide evidence on whether derivatives use is instrumental in reducing stock returns' systematic and total risk. The results are subjected to numerous controls for robustness, including financial leverage, firm size, growth opportunities, and macroeconomic effects.

Keywords: derivatives use, hedging, volatility, stock price exposure

Procedia PDF Downloads 103
5002 Optimizing Wind Turbine Blade Geometry for Enhanced Performance and Durability: A Computational Approach

Authors: Nwachukwu Ifeanyi

Abstract:

Wind energy is a vital component of the global renewable energy portfolio, with wind turbines serving as the primary means of harnessing this abundant resource. However, the efficiency and stability of wind turbines remain critical challenges in maximizing energy output and ensuring long-term operational viability. This study proposes a comprehensive approach utilizing computational aerodynamics and aeromechanics to optimize wind turbine performance across multiple objectives. The proposed research aims to integrate advanced computational fluid dynamics (CFD) simulations with structural analysis techniques to enhance the aerodynamic efficiency and mechanical stability of wind turbine blades. By leveraging multi-objective optimization algorithms, the study seeks to simultaneously optimize aerodynamic performance metrics such as lift-to-drag ratio and power coefficient while ensuring structural integrity and minimizing fatigue loads on the turbine components. Furthermore, the investigation will explore the influence of various design parameters, including blade geometry, airfoil profiles, and turbine operating conditions, on the overall performance and stability of wind turbines. Through detailed parametric studies and sensitivity analyses, valuable insights into the complex interplay between aerodynamics and structural dynamics will be gained, facilitating the development of next-generation wind turbine designs. Ultimately, this research endeavours to contribute to the advancement of sustainable energy technologies by providing innovative solutions to enhance the efficiency, reliability, and economic viability of wind power generation systems. The findings have the potential to inform the design and optimization of wind turbines, leading to increased energy output, reduced maintenance costs, and greater environmental benefits in the transition towards a cleaner and more sustainable energy future.

Keywords: computation, robotics, mathematics, simulation

Procedia PDF Downloads 49
5001 Spare Part Inventory Optimization Policy: A Study Literature

Authors: Zukhrof Romadhon, Nani Kurniati

Abstract:

Availability of Spare parts is critical to support maintenance tasks and the production system. Managing spare part inventory deals with some parameters and objective functions, as well as the tradeoff between inventory costs and spare parts availability. Several mathematical models and methods have been developed to optimize the spare part policy. Many researchers who proposed optimization models need to be considered to identify other potential models. This work presents a review of several pertinent literature on spare part inventory optimization and analyzes the gaps for future research. Initial investigation on scholars and many journal database systems under specific keywords related to spare parts found about 17K papers. Filtering was conducted based on five main aspects, i.e., replenishment policy, objective function, echelon network, lead time, model solving, and additional aspects of part classification. Future topics could be identified based on the number of papers that haven’t addressed specific aspects, including joint optimization of spare part inventory and maintenance.

Keywords: spare part, spare part inventory, inventory model, optimization, maintenance

Procedia PDF Downloads 50
5000 Optimization of Robot Motion Planning Using Biogeography Based Optimization (Bbo)

Authors: Jaber Nikpouri, Arsalan Amralizadeh

Abstract:

In robotics manipulators, the trajectory should be optimum, thus the torque of the robot can be minimized in order to save power. This paper includes an optimal path planning scheme for a robotic manipulator. Recently, techniques based on metaheuristics of natural computing, mainly evolutionary algorithms (EA), have been successfully applied to a large number of robotic applications. In this paper, the improved BBO algorithm is used to minimize the objective function in the presence of different obstacles. The simulation represents that the proposed optimal path planning method has satisfactory performance.

Keywords: biogeography-based optimization, path planning, obstacle detection, robotic manipulator

Procedia PDF Downloads 286
4999 Second Order Optimality Conditions in Nonsmooth Analysis on Riemannian Manifolds

Authors: Seyedehsomayeh Hosseini

Abstract:

Much attention has been paid over centuries to understanding and solving the problem of minimization of functions. Compared to linear programming and nonlinear unconstrained optimization problems, nonlinear constrained optimization problems are much more difficult. Since the procedure of finding an optimizer is a search based on the local information of the constraints and the objective function, it is very important to develop techniques using geometric properties of the constraints and the objective function. In fact, differential geometry provides a powerful tool to characterize and analyze these geometric properties. Thus, there is clearly a link between the techniques of optimization on manifolds and standard constrained optimization approaches. Furthermore, there are manifolds that are not defined as constrained sets in R^n an important example is the Grassmann manifolds. Hence, to solve optimization problems on these spaces, intrinsic methods are used. In a nondifferentiable problem, the gradient information of the objective function generally cannot be used to determine the direction in which the function is decreasing. Therefore, techniques of nonsmooth analysis are needed to deal with such a problem. As a manifold, in general, does not have a linear structure, the usual techniques, which are often used in nonsmooth analysis on linear spaces, cannot be applied and new techniques need to be developed. This paper presents necessary and sufficient conditions for a strict local minimum of extended real-valued, nonsmooth functions defined on Riemannian manifolds.

Keywords: Riemannian manifolds, nonsmooth optimization, lower semicontinuous functions, subdifferential

Procedia PDF Downloads 355
4998 Management as a Proxy for Firm Quality

Authors: Petar Dobrev

Abstract:

There is no agreed-upon definition of firm quality. While profitability and stock performance often qualify as popular proxies of quality, in this project, we aim to identify quality without relying on a firm’s financial statements or stock returns as selection criteria. Instead, we use firm-level data on management practices across small to medium-sized U.S. manufacturing firms from the World Management Survey (WMS) to measure firm quality. Each firm in the WMS dataset is assigned a mean management score from 0 to 5, with higher scores identifying better-managed firms. This management score serves as our proxy for firm quality and is the sole criteria we use to separate firms into portfolios comprised of high-quality and low-quality firms. We define high-quality (low-quality) firms as those firms with a management score of one standard deviation above (below) the mean. To study whether this proxy for firm quality can identify better-performing firms, we link this data to Compustat and The Center for Research in Security Prices (CRSP) to obtain firm-level data on financial performance and monthly stock returns, respectively. We find that from 1999 to 2019 (our sample data period), firms in the high-quality portfolio are consistently more profitable — higher operating profitability and return on equity compared to low-quality firms. In addition, high-quality firms also exhibit a lower risk of bankruptcy — a higher Altman Z-score. Next, we test whether the stocks of the firms in the high-quality portfolio earn superior risk-adjusted excess returns. We regress the monthly excess returns on each portfolio on the Fama-French 3-factor, 4-factor, and 5-factor models, the betting-against-beta factor, and the quality-minus-junk factor. We find no statistically significant differences in excess returns between both portfolios, suggesting that stocks of high-quality (well managed) firms do not earn superior risk-adjusted returns compared to low-quality (poorly managed) firms. In short, our proxy for firm quality, the WMS management score, can identify firms with superior financial performance (higher profitability and reduced risk of bankruptcy). However, our management proxy cannot identify stocks that earn superior risk-adjusted returns, suggesting no statistically significant relationship between managerial quality and stock performance.

Keywords: excess stock returns, management, profitability, quality

Procedia PDF Downloads 87
4997 Flowsheet Development, Simulation and Optimization of Carbon-Di-Oxide Removal System at Natural Gas Reserves by Aspen–Hysys Process Simulator

Authors: Mohammad Ruhul Amin, Nusrat Jahan

Abstract:

Natural gas is a cleaner fuel compared to the others. But it needs some treatment before it is in a state to be used. So natural gas purification is an integral part of any process where natural gas is used as raw material or fuel. There are several impurities in natural gas that have to be removed before use. CO2 is one of the major contaminants. In this project we have removed CO2 by amine process by using MEA solution. We have built up the whole amine process for removing CO2 in Aspen Hysys and simulated the process. At the end of simulation we have got very satisfactory results by using MEA solution for the removal of CO2. Simulation result shows that amine absorption process enables to reduce CO2 content from NG by 58%. HYSYS optimizer allowed us to get a perfect optimized plant. After optimization the profit of existing plant is increased by 2.34 %.Simulation and optimization by Aspen-HYSYS simulator makes available us to enormous information which will help us to further research in future.

Keywords: Aspen–Hysys, CO2 removal, flowsheet development, MEA solution, natural gas optimization

Procedia PDF Downloads 492