Search results for: nonlinear dynamical system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18578

Search results for: nonlinear dynamical system

18248 Mathematical and Numerical Analysis of a Reaction Diffusion System of Lambda-Omega Type

Authors: Hassan Al Salman, Ahmed Al Ghafli

Abstract:

In this study we consider a nonlinear in time finite element approximation of a reaction diffusion system of lambda-omega type. We use a fixed point theorem to prove existence of the approximations. Then, we derive some essential stability estimates and discuss the uniqueness of the approximations. Also, we prove an optimal error bound in time for d=1, 2 and 3 space dimensions. Finally, we present some numerical experiments to verify the theoretical results.

Keywords: reaction diffusion system, finite element approximation, fixed point theorem, an optimal error bound

Procedia PDF Downloads 536
18247 Control of Single Axis Magnetic Levitation System Using Fuzzy Logic Control

Authors: A. M. Benomair, M. O. Tokhi

Abstract:

This paper presents the investigation on a system model for the stabilization of a Magnetic Levitation System (Maglev’s). The magnetic levitation system is a challenging nonlinear mechatronic system in which an electromagnetic force is required to suspend an object (metal sphere) in air space. The electromagnetic force is very sensitive to the noise which can create acceleration forces on the metal sphere, causing the sphere to move into the unbalanced region. Maglev’s give the contribution in industry and this system has reduce the power consumption, has increase the power efficiency and reduce the cost maintenance. The common applications for Maglev’s Power Generation (e.g. wind turbine), Maglev’s trains and Medical Device (e.g. Magnetically suspended Artificial Heart Pump). This paper presents the comparison between dynamic response and robust characteristic for both conventional PD and Fuzzy PD controller. The main contribution of this paper is the proof of fuzzy PD type stabilization and robustness. By use of a method to tune the scaling factors of the linear PD type fuzzy controller from an equivalent tuned conventional PD.

Keywords: magnetic levitation system, PD controller, Fuzzy Logic Control, Fuzzy PD

Procedia PDF Downloads 277
18246 Investigate and Solving Analytically at Vibrational structures (In Arched Beam to Bridges) by New Method “AGM”

Authors: M. R. Akbari, P. Soleimani, R. Khalili, Sara Akbari

Abstract:

Analyzing and modeling the vibrational behavior of arched bridges during the earthquake in order to decrease the exerted damages to the structure is a very hard task to do. This item has been done analytically in the present paper for the first time. Due to the importance of building arched bridges as a great structure in the human being civilization and its specifications such as transferring vertical loads to its arcs and the lack of bending moments and shearing forces, this case study is devoted to this special issue. Here, the nonlinear vibration of arched bridges has been modeled and simulated by an arched beam with harmonic vertical loads and its behavior has been investigated by analyzing a nonlinear partial differential equation governing the system. It is notable that the procedure has been done analytically by AGM (Akbari, Ganji Method). Furthermore, comparisons have been made between the obtained results by numerical Method (rkf-45) and AGM in order to assess the scientific validity.

Keywords: new method (AGM), arched beam bridges, angular frequency, harmonic loads

Procedia PDF Downloads 299
18245 A 3D Model of the Sustainable Management of the Natural Environment in National Parks

Authors: Paolo Russu

Abstract:

This paper investigates the economic and ecological dynamics that emerge in Protected Areas (PAs) as a result of interactions between visitors to the area and the animals that live there. We suppose that the PAs contain two species whose interactions are determined by the Lotka-Volterra equations system. Visitors' decisions to visit PAs are influenced by the entrance cost required to enter the park as well as the chance of witnessing the species that live there. Visitors have contradictory effects on the species and thus on the sustainability of the protected areas: on the one hand, an increase in the number of tourists damages the natural habitat of the areas and thus the species living there; on the other hand, it increases the total amount of entrance fees that the managing body of the PAs can use to perform defensive expenditures that protect the species from extinction. For a given set of parameter values, the existence of saddle-node bifurcation, Hopf bifurcation, homoclinic orbits, and a Bogdanov–Takens bifurcation of codimension two has been investigated. The system displays periodic doubling and chaotic solutions, as demonstrated by numerical examples. Pontryagin's Maximum Principle was utilized to develop an optimal admission charge policy that maximized both social gain and ecosystem conservation.

Keywords: environmental preferences, singularities point, dynamical system, chaos

Procedia PDF Downloads 100
18244 Investigating the Dynamics of Knowledge Acquisition in Learning Using Differential Equations

Authors: Gilbert Makanda, Roelf Sypkens

Abstract:

A mathematical model for knowledge acquisition in teaching and learning is proposed. In this study we adopt the mathematical model that is normally used for disease modelling into teaching and learning. We derive mathematical conditions which facilitate knowledge acquisition. This study compares the effects of dropping out of the course at early stages with later stages of learning. The study also investigates effect of individual interaction and learning from other sources to facilitate learning. The study fits actual data to a general mathematical model using Matlab ODE45 and lsqnonlin to obtain a unique mathematical model that can be used to predict knowledge acquisition. The data used in this study was obtained from the tutorial test results for mathematics 2 students from the Central University of Technology, Free State, South Africa in the department of Mathematical and Physical Sciences. The study confirms already known results that increasing dropout rates and forgetting taught concepts reduce the population of knowledgeable students. Increasing teaching contacts and access to other learning materials facilitate knowledge acquisition. The effect of increasing dropout rates is more enhanced in the later stages of learning than earlier stages. The study opens up a new direction in further investigations in teaching and learning using differential equations.

Keywords: differential equations, knowledge acquisition, least squares nonlinear, dynamical systems

Procedia PDF Downloads 365
18243 Effect of Unbound Granular Materials Nonlinear Resilient Behaviour on Pavement Response and Performance of Low Volume Roads

Authors: Khaled Sandjak, Boualem Tiliouine

Abstract:

Structural analysis of flexible pavements has been and still is currently performed using multi-layer elastic theory. However, for thinly surfaced pavements subjected to low to medium volumes of traffics, the importance of non-linear stress-strain behaviour of unbound granular materials (UGM) requires the use of more sophisticated numerical models for structural design and performance of such pavements. In the present work, nonlinear unbound aggregates constitutive model is implemented within an axisymmetric finite element code developed to simulate the nonlinear behaviour of pavement structures including two local aggregates of different mineralogical nature, typically used in Algerian pavements. The performance of the mechanical model is examined about its capability of representing adequately, under various conditions, the granular material non-linearity in pavement analysis. In addition, deflection data collected by falling weight deflectometer (FWD) are incorporated into the analysis in order to assess the sensitivity of critical pavement design criteria and pavement design life to the constitutive model. Finally, conclusions of engineering significance are formulated.

Keywords: FWD backcalculations, finite element simulations, Nonlinear resilient behaviour, pavement response and performance, RLT test results, unbound granular materials

Procedia PDF Downloads 265
18242 Analytical Soliton Solutions of the Fractional Jaulent-Miodek System

Authors: Sajeda Elbashabsheh, Kamel Al-Khaled

Abstract:

This paper applies a modified Laplace Adomian decomposition method to solve the time-fractional JaulentMiodek system. The method produce convergent series solutions with easily compatible components. This paper considers the Caputo fractional derivative. The effectiveness and applicability of the method are demonstrated by comparing its results with those of prior studies. Results are presented in tables and figures. These solutions might be imperative and significant for the explanation of some practical physical phenomena. All computations and figures in the work are done using MATHEMATICA. The numerical results demonstrate that the current methods are effective, reliable, and simple to i implement for nonlinear fractional partial differential equations.

Keywords: approximate solutions, Jaulent-Miodek system, Adomian decomposition method, solitons

Procedia PDF Downloads 48
18241 A Modified Nonlinear Conjugate Gradient Algorithm for Large Scale Unconstrained Optimization Problems

Authors: Tsegay Giday Woldu, Haibin Zhang, Xin Zhang, Yemane Hailu Fissuh

Abstract:

It is well known that nonlinear conjugate gradient method is one of the widely used first order methods to solve large scale unconstrained smooth optimization problems. Because of the low memory requirement, attractive theoretical features, practical computational efficiency and nice convergence properties, nonlinear conjugate gradient methods have a special role for solving large scale unconstrained optimization problems. Large scale optimization problems are with important applications in practical and scientific world. However, nonlinear conjugate gradient methods have restricted information about the curvature of the objective function and they are likely less efficient and robust compared to some second order algorithms. To overcome these drawbacks, the new modified nonlinear conjugate gradient method is presented. The noticeable features of our work are that the new search direction possesses the sufficient descent property independent of any line search and it belongs to a trust region. Under mild assumptions and standard Wolfe line search technique, the global convergence property of the proposed algorithm is established. Furthermore, to test the practical computational performance of our new algorithm, numerical experiments are provided and implemented on the set of some large dimensional unconstrained problems. The numerical results show that the proposed algorithm is an efficient and robust compared with other similar algorithms.

Keywords: conjugate gradient method, global convergence, large scale optimization, sufficient descent property

Procedia PDF Downloads 211
18240 Solution of Nonlinear Fractional Programming Problem with Bounded Parameters

Authors: Mrinal Jana, Geetanjali Panda

Abstract:

In this paper a methodology is developed to solve a nonlinear fractional programming problem in which the coefficients of the objective function and constraints are interval parameters. This model is transformed into a general optimization problem and relation between the original problem and the transformed problem is established. Finally the proposed methodology is illustrated through a numerical example.

Keywords: fractional programming, interval valued function, interval inequalities, partial order relation

Procedia PDF Downloads 521
18239 Convergence Analysis of Reactive Power Based Schemes Used in Sensorless Control of Induction Motors

Authors: N. Ben Si Ali, N. Benalia, N. Zerzouri

Abstract:

Many electronic drivers for the induction motor control are based on sensorless technologies. Speed and torque control is usually attained by application of a speed or position sensor which requires the additional mounting space, reduce the reliability and increase the cost. This paper seeks to analyze dynamical performances and sensitivity to motor parameter changes of reactive power based technique used in sensorless control of induction motors. Validity of theoretical results is verified by simulation.

Keywords: adaptive observers, model reference adaptive system, RP-based estimator, sensorless control, stability analysis

Procedia PDF Downloads 550
18238 Soliton Interaction in Multi-Core Optical Fiber: Application to WDM System

Authors: S. Arun Prakash, V. Malathi, M. S. Mani Rajan

Abstract:

The analytical bright two soliton solution of the 3-coupled nonlinear Schrödinger equations with variable coefficients in birefringent optical fiber is obtained by Darboux transformation method. To the design of ultra-speed optical devices, Soliton interaction and control in birefringence fiber is investigated. Lax pair is constructed for N coupled NLS system through AKNS method. Using two soliton solution, we demonstrate different interaction behaviors of solitons in birefringent fiber depending on the choice of control parameters. Our results shows that interactions of optical solitons have some specific applications such as construction of logic gates, optical computing, soliton switching, and soliton amplification in wavelength division multiplexing (WDM) system.

Keywords: optical soliton, soliton interaction, soliton switching, WDM

Procedia PDF Downloads 512
18237 Numerical Approach to a Mathematical Modeling of Bioconvection Due to Gyrotactic Micro-Organisms over a Nonlinear Inclined Stretching Sheet

Authors: Madhu Aneja, Sapna Sharma

Abstract:

The water-based bioconvection of a nanofluid containing motile gyrotactic micro-organisms over nonlinear inclined stretching sheet has been investigated. The governing nonlinear boundary layer equations of the model are reduced to a system of ordinary differential equations via Oberbeck-Boussinesq approximation and similarity transformations. Further, the modified set of equations with associated boundary conditions are solved using Finite Element Method. The impact of various pertinent parameters on the velocity, temperature, nanoparticles concentration, density of motile micro-organisms profiles are obtained and analyzed in details. The results show that with the increase in angle of inclination δ, velocity decreases while temperature, nanoparticles concentration, a density of motile micro-organisms increases. Additionally, the skin friction coefficient, Nusselt number, Sherwood number, density number are computed for various thermophysical parameters. It is noticed that increasing Brownian motion and thermophoresis parameter leads to an increase in temperature of fluid which results in a reduction in Nusselt number. On the contrary, Sherwood number rises with an increase in Brownian motion and thermophoresis parameter. The findings have been validated by comparing the results of special cases with existing studies.

Keywords: bioconvection, finite element method, gyrotactic micro-organisms, inclined stretching sheet, nanofluid

Procedia PDF Downloads 192
18236 A Quick Method for Seismic Vulnerability Evaluation of Offshore Structures by Static and Dynamic Nonlinear Analyses

Authors: Somayyeh Karimiyan

Abstract:

To evaluate the seismic vulnerability of vital offshore structures with the highest possible precision, Nonlinear Time History Analyses (NLTHA), is the most reliable method. However, since it is very time-consuming, a quick procedure is greatly desired. This paper presents a quick method by combining the Push Over Analysis (POA) and the NLTHA. The POA is preformed first to recognize the more critical members, and then the NLTHA is performed to evaluate more precisely the critical members’ vulnerability. The proposed method has been applied to jacket type structure. Results show that combining POA and NLTHA is a reliable seismic evaluation method, and also that none of the earthquake characteristics alone, can be a dominant factor in vulnerability evaluation.

Keywords: jacket structure, seismic evaluation, push-over and nonlinear time history analyses, critical members

Procedia PDF Downloads 283
18235 On Deterministic Chaos: Disclosing the Missing Mathematics from the Lorenz-Haken Equations

Authors: Meziane Belkacem

Abstract:

We aim at converting the original 3D Lorenz-Haken equations, which describe laser dynamics –in terms of self-pulsing and chaos- into 2-second-order differential equations, out of which we extract the so far missing mathematics and corroborations with respect to nonlinear interactions. Leaning on basic trigonometry, we pull out important outcomes; a fundamental result attributes chaos to forbidden periodic solutions inside some precisely delimited region of the control parameter space that governs the bewildering dynamics.

Keywords: Physics, optics, nonlinear dynamics, chaos

Procedia PDF Downloads 160
18234 The Evaluation of the Performance of Different Filtering Approaches in Tracking Problem and the Effect of Noise Variance

Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri

Abstract:

Performance of different filtering approaches depends on modeling of dynamical system and algorithm structure. For modeling and smoothing the data the evaluation of posterior distribution in different filtering approach should be chosen carefully. In this paper different filtering approaches like filter KALMAN, EKF, UKF, EKS and smoother RTS is simulated in some trajectory tracking of path and accuracy and limitation of these approaches are explained. Then probability of model with different filters is compered and finally the effect of the noise variance to estimation is described with simulations results.

Keywords: Gaussian approximation, Kalman smoother, parameter estimation, noise variance

Procedia PDF Downloads 442
18233 Numerical Analysis of Gas-Particle Mixtures through Pipelines

Authors: G. Judakova, M. Bause

Abstract:

The ability to model and simulate numerically natural gas flow in pipelines has become of high importance for the design of pipeline systems. The understanding of the formation of hydrate particles and their dynamical behavior is of particular interest, since these processes govern the operation properties of the systems and are responsible for system failures by clogging of the pipelines under certain conditions. Mathematically, natural gas flow can be described by multiphase flow models. Using the two-fluid modeling approach, the gas phase is modeled by the compressible Euler equations and the particle phase is modeled by the pressureless Euler equations. The numerical simulation of compressible multiphase flows is an important research topic. It is well known that for nonlinear fluxes, even for smooth initial data, discontinuities in the solution are likely to occur in finite time. They are called shock waves or contact discontinuities. For hyperbolic and singularly perturbed parabolic equations the standard application of the Galerkin finite element method (FEM) leads to spurious oscillations (e.g. Gibb's phenomenon). In our approach, we use stabilized FEM, the streamline upwind Petrov-Galerkin (SUPG) method, where artificial diffusion acting only in the direction of the streamlines and using a special treatment of the boundary conditions in inviscid convective terms, is added. Numerical experiments show that the numerical solution obtained and stabilized by SUPG captures discontinuities or steep gradients of the exact solution in layers. However, within this layer the approximate solution may still exhibit overshoots or undershoots. To suitably reduce these artifacts we add a discontinuity capturing or shock capturing term. The performance properties of our numerical scheme are illustrated for two-phase flow problem.

Keywords: two-phase flow, gas-particle mixture, inviscid two-fluid model, euler equation, finite element method, streamline upwind petrov-galerkin, shock capturing

Procedia PDF Downloads 313
18232 A Novel Concept of Optical Immunosensor Based on High-Affinity Recombinant Protein Binders for Tailored Target-Specific Detection

Authors: Alena Semeradtova, Marcel Stofik, Lucie Mareckova, Petr Maly, Ondrej Stanek, Jan Maly

Abstract:

Recently, novel strategies based on so-called molecular evolution were shown to be effective for the production of various peptide ligand libraries with high affinities to molecular targets of interest comparable or even better than monoclonal antibodies. The major advantage of these peptide scaffolds is mainly their prevailing low molecular weight and simple structure. This study describes a new high-affinity binding molecules based immunesensor using a simple optical system for human serum albumin (HSA) detection as a model molecule. We present a comparison of two variants of recombinant binders based on albumin binding domain of the protein G (ABD) performed on micropatterned glass chip. Binding domains may be tailored to any specific target of interest by molecular evolution. Micropatterened glass chips were prepared using UV-photolithography on chromium sputtered glasses. Glass surface was modified by (3-aminopropyl)trietoxysilane and biotin-PEG-acid using EDC/NHS chemistry. Two variants of high-affinity binding molecules were used to detect target molecule. Firstly, a variant is based on ABD domain fused with TolA chain. This molecule is in vivo biotinylated and each molecule contains one molecule of biotin and one ABD domain. Secondly, the variant is ABD domain based on streptavidin molecule and contains four gaps for biotin and four ABD domains. These high-affinity molecules were immobilized to the chip surface via biotin-streptavidin chemistry. To eliminate nonspecific binding 1% bovine serum albumin (BSA) or 6% fetal bovine serum (FBS) were used in every step. For both variants range of measured concentrations of fluorescently labelled HSA was 0 – 30 µg/ml. As a control, we performed a simultaneous assay without high-affinity binding molecules. Fluorescent signal was measured using inverse fluorescent microscope Olympus IX 70 with COOL LED pE 4000 as a light source, related filters, and camera Retiga 2000R as a detector. The fluorescent signal from non-modified areas was substracted from the signal of the fluorescent areas. Results were presented in graphs showing the dependence of measured grayscale value on the log-scale of HSA concentration. For the TolA variant the limit of detection (LOD) of the optical immunosensor proposed in this study is calculated to be 0,20 µg/ml for HSA detection in 1% BSA and 0,24 µg/ml in 6% FBS. In the case of streptavidin-based molecule, it was 0,04 µg/ml and 0,07 µg/ml respectively. The dynamical range of the immunosensor was possible to estimate just in the case of TolA variant and it was calculated to be 0,49 – 3,75 µg/ml and 0,73-1,88 µg/ml respectively. In the case of the streptavidin-based the variant we didn´t reach the surface saturation even with the 480 ug/ml concentration and the upper value of dynamical range was not estimated. Lower value was calculated to be 0,14 µg/ml and 0,17 µg/ml respectively. Based on the obtained results, it´s clear that both variants are useful for creating the bio-recognizing layer on immunosensors. For this particular system, it is obvious that the variant based on streptavidin molecule is more useful for biosensing on glass planar surfaces. Immunosensors based on this variant would exhibit better limit of detection and wide dynamical range.

Keywords: high affinity binding molecules, human serum albumin, optical immunosensor, protein G, UV-photolitography

Procedia PDF Downloads 369
18231 A New Family of Integration Methods for Nonlinear Dynamic Analysis

Authors: Shuenn-Yih Chang, Chiu-LI Huang, Ngoc-Cuong Tran

Abstract:

A new family of structure-dependent integration methods, whose coefficients of the difference equation for displacement increment are functions of the initial structural properties and the step size for time integration, is proposed in this work. This family method can simultaneously integrate the controllable numerical dissipation, explicit formulation and unconditional stability together. In general, its numerical dissipation can be continuously controlled by a parameter and it is possible to achieve zero damping. In addition, it can have high-frequency damping to suppress or even remove the spurious oscillations high frequency modes. Whereas, the low frequency modes can be very accurately integrated due to the almost zero damping for these low frequency modes. It is shown herein that the proposed family method can have exactly the same numerical properties as those of HHT-α method for linear elastic systems. In addition, it still preserves the most important property of a structure-dependent integration method, which is an explicit formulation for each time step. Consequently, it can save a huge computational efforts in solving inertial problems when compared to the HHT-α method. In fact, it is revealed by numerical experiments that the CPU time consumed by the proposed family method is only about 1.6% of that consumed by the HHT-α method for the 125-DOF system while it reduces to be 0.16% for the 1000-DOF system. Apparently, the saving of computational efforts is very significant.

Keywords: structure-dependent integration method, nonlinear dynamic analysis, unconditional stability, numerical dissipation, accuracy

Procedia PDF Downloads 642
18230 Study of the Diaphragm Flexibility Effect on the Inelastic Seismic Response of Thin Wall Reinforced Concrete Buildings (TWRCB): A Purpose to Reduce the Uncertainty in the Vulnerability Estimation

Authors: A. Zapata, Orlando Arroyo, R. Bonett

Abstract:

Over the last two decades, the growing demand for housing in Latin American countries has led to the development of construction projects based on low and medium-rise buildings with thin reinforced concrete walls. This system, known as Thin Walls Reinforced Concrete Buildings (TWRCB), uses walls with thicknesses from 100 to 150 millimetres, with flexural reinforcement formed by welded wire mesh (WWM) with diameters between 5 and 7 millimetres, arranged in one or two layers. These walls often have irregular structural configurations, including combinations of rectangular shapes. Experimental and numerical research conducted in regions where this structural system is commonplace indicates inherent weaknesses, such as limited ductility due to the WWM reinforcement and thin element dimensions. Because of its complexity, numerical analyses have relied on two-dimensional models that don't explicitly account for the floor system, even though it plays a crucial role in distributing seismic forces among the resilient elements. Nonetheless, the numerical analyses assume a rigid diaphragm hypothesis. For this purpose, two study cases of buildings were selected, low-rise and mid-rise characteristics of TWRCB in Colombia. The buildings were analyzed in Opensees using the MVLEM-3D for walls and shell elements to simulate the slabs to involve the effect of coupling diaphragm in the nonlinear behaviour. Three cases are considered: a) models without a slab, b) models with rigid slabs, and c) models with flexible slabs. An incremental static (pushover) and nonlinear dynamic analyses were carried out using a set of 44 far-field ground motions of the FEMA P-695, scaled to 1.0 and 1.5 factors to consider the probability of collapse for the design base earthquake (DBE) and the maximum considered earthquake (MCE) for the model, according to the location sites and hazard zone of the archetypes in the Colombian NSR-10. Shear base capacity, maximum displacement at the roof, walls shear base individual demands and probabilities of collapse were calculated, to evaluate the effect of absence, rigid and flexible slabs in the nonlinear behaviour of the archetype buildings. The pushover results show that the building exhibits an overstrength between 1.1 to 2 when the slab is considered explicitly and depends on the structural walls plan configuration; additionally, the nonlinear behaviour considering no slab is more conservative than if the slab is represented. Include the flexible slab in the analysis remarks the importance to consider the slab contribution in the shear forces distribution between structural elements according to design resistance and rigidity. The dynamic analysis revealed that including the slab reduces the collapse probability of this system due to have lower displacements and deformations, enhancing the safety of residents and the seismic performance. The strategy of including the slab in modelling is important to capture the real effect on the distribution shear forces in walls due to coupling to estimate the correct nonlinear behaviour in this system and the adequate distribution to proportionate the correct resistance and rigidity of the elements in the design to reduce the possibility of damage to the elements during an earthquake.

Keywords: thin wall reinforced concrete buildings, coupling slab, rigid diaphragm, flexible diaphragm

Procedia PDF Downloads 76
18229 A Study on the Coefficient of Transforming Relative Lateral Displacement under Linear Analysis of Structure to Its Real Relative Lateral Displacement

Authors: Abtin Farokhipanah

Abstract:

In recent years, analysis of structures is based on ductility design in contradictory to strength design in surveying earthquake effects on structures. ASCE07-10 code offers to intensify relative drifts calculated from a linear analysis with Cd which is called (Deflection Amplification Factor) to obtain the real relative drifts which can be calculated using nonlinear analysis. This lateral drift should be limited to the code boundaries. Calculation of this amplification factor for different structures, comparing with ASCE07-10 code and offering the best coefficient are the purposes of this research. Following our target, short and tall building steel structures with various earthquake resistant systems in linear and nonlinear analysis should be surveyed, so these questions will be answered: 1. Does the Response Modification Coefficient (R) have a meaningful relation to Deflection Amplification Factor? 2. Does structure height, seismic zone, response spectrum and similar parameters have an effect on the conversion coefficient of linear analysis to real drift of structure? The procedure has used to conduct this research includes: (a) Study on earthquake resistant systems, (b) Selection of systems and modeling, (c) Analyzing modeled systems using linear and nonlinear methods, (d) Calculating conversion coefficient for each system and (e) Comparing conversion coefficients with the code offered ones and concluding results.

Keywords: ASCE07-10 code, deflection amplification factor, earthquake engineering, lateral displacement of structures, response modification coefficient

Procedia PDF Downloads 356
18228 Stability Analysis of Two-delay Differential Equation for Parkinson's Disease Models with Positive Feedback

Authors: M. A. Sohaly, M. A. Elfouly

Abstract:

Parkinson's disease (PD) is a heterogeneous movement disorder that often appears in the elderly. PD is induced by a loss of dopamine secretion. Some drugs increase the secretion of dopamine. In this paper, we will simply study the stability of PD models as a nonlinear delay differential equation. After a period of taking drugs, these act as positive feedback and increase the tremors of patients, and then, the differential equation has positive coefficients and the system is unstable under these conditions. We will present a set of suggested modifications to make the system more compatible with the biodynamic system. When giving a set of numerical examples, this research paper is concerned with the mathematical analysis, and no clinical data have been used.

Keywords: Parkinson's disease, stability, simulation, two delay differential equation

Procedia PDF Downloads 135
18227 Theoretical Study on the Nonlinear Optical Responses of Peptide Bonds Created between Alanine and Some Unnatural Amino Acids

Authors: S. N. Derrar, M. Sekkal-Rahal

Abstract:

The Nonlinear optics (NLO) technique is widely used in the field of biological imaging. In fact, grafting biological entities with a high NLO response on tissues and cells enhances the NLO responses of these latter, and ameliorates, consequently, their biological imaging quality. In this optics, we carried out a theoretical study, in the aim of analyzing the peptide bonds created between alanine amino acid and both unnatural amino acids: L-Dopa and Azatryptophan, respectively. Ramachandran plots have been performed for these systems, and their structural parameters have been analyzed. The NLO responses of these peptides have been reported by calculating the first hyperpolarizability values of all the minima found on the plots. The use of such unnatural amino acids as endogenous probing molecules has been investigated through this study. The Density Functional Theory (DFT) has been used for structural properties, while the Second-order Møller-Plesset Perturbation Theory (MP2) has been employed for the NLO calculations.

Keywords: biological imaging, hyperpolarizability, nonlinear optics, probing molecule

Procedia PDF Downloads 380
18226 A Coupled System of Caputo-Type Katugampola Fractional Differential Equations with Integral Boundary Conditions

Authors: Yacine Arioua

Abstract:

In this paper, we investigate the existence and uniqueness of solutions for a coupled system of nonlinear Caputo-type Katugampola fractional differential equations with integral boundary conditions. Based upon a contraction mapping principle, Schauders fixed point theorems, some new existence and uniqueness results of solutions for the given problems are obtained. For application, some examples are given to illustrate the usefulness of our main results.

Keywords: fractional differential equations, coupled system, Caputo-Katugampola derivative, fixed point theorems, existence, uniqueness

Procedia PDF Downloads 266
18225 Neural Network Based Compressor Flow Estimator in an Aircraft Vapor Cycle System

Authors: Justin Reverdi, Sixin Zhang, Serge Gratton, Said Aoues, Thomas Pellegrini

Abstract:

In Vapor Cycle Systems, the flow sensor plays a key role in different monitoring and control purposes. However, physical sensors can be expensive, inaccurate, heavy, cumbersome, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor based on other standard sensors is a good alternative. In this paper, a data-driven model using a Convolutional Neural Network is proposed to estimate the flow of the compressor. To fit the model to our dataset, we tested different loss functions. We show in our application that a Dynamic Time Warping based loss function called DILATE leads to better dynamical performance than the vanilla mean squared error (MSE) loss function. DILATE allows choosing a trade-off between static and dynamic performance.

Keywords: deep learning, dynamic time warping, vapor cycle system, virtual sensor

Procedia PDF Downloads 149
18224 Global Stability Analysis of a Coupled Model for Healthy and Cancerous Cells Dynamics in Acute Myeloid Leukemia

Authors: Abdelhafid Zenati, Mohamed Tadjine

Abstract:

The mathematical formulation of biomedical problems is an important phase to understand and predict the dynamic of the controlled population. In this paper we perform a stability analysis of a coupled model for healthy and cancerous cells dynamics in Acute Myeloid Leukemia, this represents our first aim. Second, we illustrate the effect of the interconnection between healthy and cancer cells. The PDE-based model is transformed to a nonlinear distributed state space model (delay system). For an equilibrium point of interest, necessary and sufficient conditions of global asymptotic stability are given. Thus, we came up to give necessary and sufficient conditions of global asymptotic stability of the origin and the healthy situation and control of the dynamics of normal hematopoietic stem cells and cancerous during myelode Acute leukemia. Simulation studies are given to illustrate the developed results.

Keywords: distributed delay, global stability, modelling, nonlinear models, PDE, state space

Procedia PDF Downloads 253
18223 Optimal Design of Multimachine Power System Stabilizers Using Improved Multi-Objective Particle Swarm Optimization Algorithm

Authors: Badr M. Alshammari, T. Guesmi

Abstract:

In this paper, the concept of a non-dominated sorting multi-objective particle swarm optimization with local search (NSPSO-LS) is presented for the optimal design of multimachine power system stabilizers (PSSs). The controller design is formulated as an optimization problem in order to shift the system electromechanical modes in a pre-specified region in the s-plan. A composite set of objective functions comprising the damping factor and the damping ratio of the undamped and lightly damped electromechanical modes is considered. The performance of the proposed optimization algorithm is verified for the 3-machine 9-bus system. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and superiority of the NSPSO-LS algorithm in tuning PSSs over a wide range of loading conditions and large disturbance compared to the classic PSO technique and genetic algorithms.

Keywords: multi-objective optimization, particle swarm optimization, power system stabilizer, low frequency oscillations

Procedia PDF Downloads 435
18222 Comparative Study of Numerical and Analytical Buckling Analysis of a Steel Column with Various Slenderness Ratios

Authors: Lahlou Dahmani, Warda Mekiri, Ahmed Boudjemia

Abstract:

This scientific paper explores the comparison between the ultimate buckling load obtained through the Eurocode 3 methodology and the ultimate buckling load obtained through finite element simulations for steel columns under compression. The study aims to provide insights into the adequacy of the design rules proposed in Eurocode 3 for different slenderness ratios. The finite element simulations with the Ansys commercial program involve a geometrical and material non-linear analysis of the columns with imperfections. The loss of equilibrium is generally caused by the geometrically nonlinear effects where the column begins to buckle and lose its stability when the load reaches a certain critical value. The linear buckling analysis predicts the theoretical buckling strength of an elastic structure but the nonlinear one is more accurate with taking into account the initial imperfection.

Keywords: Ansys, linear buckling, eigen value, nonlinear buckling, slenderness ratio, Eurocode 3

Procedia PDF Downloads 24
18221 Analysis of Nonlinear Dynamic Systems Excited by Combined Colored and White Noise Excitations

Authors: Siu-Siu Guo, Qingxuan Shi

Abstract:

In this paper, single-degree-of-freedom (SDOF) systems to white noise and colored noise excitations are investigated. By expressing colored noise excitation as a second-order filtered white noise process and introducing colored noise as an additional state variable, the equation of motion for SDOF system under colored noise is then transferred artificially to multi-degree-of-freedom (MDOF) system under white noise excitations. As a consequence, corresponding Fokker-Planck-Kolmogorov (FPK) equation governing the joint probabilistic density function (PDF) of state variables increases to 4-dimension (4-D). Solution procedure and computer programme become much more sophisticated. The exponential-polynomial closure (EPC) method, widely applied for cases of SDOF systems under white noise excitations, is developed and improved for cases of systems under colored noise excitations and for solving the complex 4-D FPK equation. On the other hand, Monte Carlo simulation (MCS) method is performed to test the approximate EPC solutions. Two examples associated with Gaussian and non-Gaussian colored noise excitations are considered. Corresponding band-limited power spectral densities (PSDs) for colored noise excitations are separately given. Numerical studies show that the developed EPC method provides relatively accurate estimates of the stationary probabilistic solutions. Moreover, statistical parameter of mean-up crossing rate (MCR) is taken into account, which is important for reliability and failure analysis.

Keywords: filtered noise, narrow-banded noise, nonlinear dynamic, random vibration

Procedia PDF Downloads 226
18220 A Simple Finite Element Method for Glioma Tumor Growth Model with Density Dependent Diffusion

Authors: Shangerganesh Lingeshwaran

Abstract:

In this presentation, we have performed numerical simulations for a reaction-diffusion equation with various nonlinear density-dependent diffusion operators and proliferation functions. The mathematical model represented by parabolic partial differential equation is considered to study the invasion of gliomas (the most common type of brain tumors) and to describe the growth of cancer cells and response to their treatment. The unknown quantity of the given reaction-diffusion equation is the density of cancer cells and the mathematical model based on the proliferation and migration of glioma cells. A standard Galerkin finite element method is used to perform the numerical simulations of the given model. Finally, important observations on the each of nonlinear diffusion functions and proliferation functions are presented with the help of computational results.

Keywords: glioma invasion, nonlinear diffusion, reaction-diffusion, finite eleament method

Procedia PDF Downloads 233
18219 A Deterministic Large Deviation Model Based on Complex N-Body Systems

Authors: David C. Ni

Abstract:

In the previous efforts, we constructed N-Body Systems by an extended Blaschke product (EBP), which represents a non-temporal and nonlinear extension of Lorentz transformation. In this construction, we rely only on two parameters, nonlinear degree, and relative momentum to characterize the systems. We further explored root computation via iteration with an algorithm extended from Jenkins-Traub method. The solution sets demonstrate a form of σ+ i [-t, t], where σ and t are the real numbers, and the [-t, t] shows various canonical distributions. In this paper, we correlate the convergent sets in the original domain with solution sets, which demonstrating large-deviation distributions in the codomain. We proceed to compare our approach with the formula or principles, such as Donsker-Varadhan and Wentzell-Freidlin theories. The deterministic model based on this construction allows us to explore applications in the areas of finance and statistical mechanics.

Keywords: nonlinear Lorentz transformation, Blaschke equation, iteration solutions, root computation, large deviation distribution, deterministic model

Procedia PDF Downloads 396