Search results for: geothermal gradient anomalies
825 Implementation of Model Reference Adaptive Control in Tuning of Controller Gains for Following-Vehicle System with Fixed Time Headway
Authors: Fatemeh Behbahani, Rubiyah Yusof
Abstract:
To avoid collision between following vehicles and vehicles in front, it is vital to keep appropriate, safe spacing between both vehicles over all speeds. Therefore, the following vehicle needs to have exact information regarding the speed and spacing between vehicles. This project is conducted to simulate the tuning of controller gain for a vehicle-following system through the selected control strategy, spacing control policy and fixed-time headway policy. In addition, the paper simulates and designs an adaptive gain controller for a road-vehicle-following system which uses information on the spacing, velocity and also acceleration of a preceding vehicle in the proposed one-vehicle look-ahead strategy. The mathematical model is implemented using Kirchhoff and Newton’s Laws, and stability simulated. The trial-error method was used to obtain a suitable value of controller gain. However, the adaptive-based controller system was able to optimize the gain value automatically. Model Reference Adaptive Control (MRAC) is designed and utilized and based on firstly the Gradient and secondly the Lyapunov approach. The Lyapunov approach considers stability. The Gradient approach was found to improve the best value of gain in the controller system with fixed-time headway.Keywords: one-vehicle look-ahead, model reference adaptive, stability, tuning gain controller, MRAC
Procedia PDF Downloads 238824 Concept, Modules and Objectives of the Syllabus Course: Small Power Plants and Renewable Energy Sources
Authors: Rade M. Ciric, Nikola L. J. Rajakovic
Abstract:
This paper presents a curriculum of the subject small power plants and renewable energy sources, dealing with the concept of distributed generation, renewable energy sources, hydropower, wind farms, geothermal power plants, cogeneration plants, biogas plants of agriculture and animal origin, solar power and fuel cells. The course is taught the manner of connecting small power plants to the grid, the impact of small generators on the distribution system, as well as economic, environmental and legal aspects of operation of distributed generators.Keywords: distributed generation, renewable energy sources, energy policy, curriculum
Procedia PDF Downloads 357823 Simulation of the Large Hadrons Collisions Using Monte Carlo Tools
Authors: E. Al Daoud
Abstract:
In many cases, theoretical treatments are available for models for which there is no perfect physical realization. In this situation, the only possible test for an approximate theoretical solution is to compare with data generated from a computer simulation. In this paper, Monte Carlo tools are used to study and compare the elementary particles models. All the experiments are implemented using 10000 events, and the simulated energy is 13 TeV. The mean and the curves of several variables are calculated for each model using MadAnalysis 5. Anomalies in the results can be seen in the muons masses of the minimal supersymmetric standard model and the two Higgs doublet model.Keywords: Feynman rules, hadrons, Lagrangian, Monte Carlo, simulation
Procedia PDF Downloads 319822 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities
Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun
Abstract:
The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids
Procedia PDF Downloads 68821 Regional Low Gravity Anomalies Influencing High Concentrations of Heavy Minerals on Placer Deposits
Authors: T. B. Karu Jayasundara
Abstract:
Regions of low gravity and gravity anomalies both influence heavy mineral concentrations on placer deposits. Economically imported heavy minerals are likely to have higher levels of deposition in low gravity regions of placer deposits. This can be found in coastal regions of Southern Asia, particularly in Sri Lanka and Peninsula India and areas located in the lowest gravity region of the world. The area about 70 kilometers of the east coast of Sri Lanka is covered by a high percentage of ilmenite deposits, and the southwest coast of the island consists of Monazite placer deposit. These deposits are one of the largest placer deposits in the world. In India, the heavy mineral industry has a good market. On the other hand, based on the coastal placer deposits recorded, the high gravity region located around Papua New Guinea, has no such heavy mineral deposits. In low gravity regions, with the help of other depositional environmental factors, the grains have more time and space to float in the sea, this helps bring high concentrations of heavy mineral deposits to the coast. The effect of low and high gravity can be demonstrated by using heavy mineral separation devices. The Wilfley heavy mineral separating table is one of these; it is extensively used in industries and in laboratories for heavy mineral separation. The horizontally oscillating Wilfley table helps to separate heavy and light mineral grains in to deferent fractions, with the use of water. In this experiment, the low and high angle of the Wilfley table are representing low and high gravity respectively. A sample mixture of grain size <0.85 mm of heavy and light mineral grains has been used for this experiment. The high and low angle of the table was 60 and 20 respectively for this experiment. The separated fractions from the table are again separated into heavy and light minerals, with the use of heavy liquid, which consists of a specific gravity of 2.85. The fractions of separated heavy and light minerals have been used for drawing the two-dimensional graphs. The graphs show that the low gravity stage has a high percentage of heavy minerals collected in the upper area of the table than in the high gravity stage. The results of the experiment can be used for the comparison of regional low gravity and high gravity levels of heavy minerals. If there are any heavy mineral deposits in the high gravity regions, these deposits will take place far away from the coast, within the continental shelf.Keywords: anomaly, gravity, influence, mineral
Procedia PDF Downloads 200820 High Resolution Image Generation Algorithm for Archaeology Drawings
Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu
Abstract:
Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.Keywords: archaeology drawings, digital heritage, image generation, deep learning
Procedia PDF Downloads 60819 Fuelwood Heating, Felling, Energy Renewing in Total Fueling of Fuelwood, Renewable Technologies
Authors: Adeiza Matthew, Oluwamishola Abubakar
Abstract:
In conclusion, Fuelwood is a traditional and renewable source of energy that can have both positive and negative impacts. Adopting sustainable practices for its collection, transportation, and use and investing in renewable technologies can help mitigate the negative effects and provide a clean and reliable source of energy, improve living standards and support economic development. For example, solar energy can be used to generate electricity, heat homes and water, and can even be used for cooking. Wind energy can be used to generate electricity, and geothermal energy can be used for heating and cooling. Biogas can be produced from waste products such as animal manure, sewage, and organic kitchen waste and can be used for cooking and lighting.Keywords: calorific, BTU, wood moisture content, density of wood
Procedia PDF Downloads 108818 Creating Renewable Energy Investment Portfolio in Turkey between 2018-2023: An Approach on Multi-Objective Linear Programming Method
Authors: Berker Bayazit, Gulgun Kayakutlu
Abstract:
The World Energy Outlook shows that energy markets will substantially change within a few forthcoming decades. First, determined action plans according to COP21 and aim of CO₂ emission reduction have already impact on policies of countries. Secondly, swiftly changed technological developments in the field of renewable energy will be influential upon medium and long-term energy generation and consumption behaviors of countries. Furthermore, share of electricity on global energy consumption is to be expected as high as 40 percent in 2040. Electrical vehicles, heat pumps, new electronical devices and digital improvements will be outstanding technologies and innovations will be the testimony of the market modifications. In order to meet highly increasing electricity demand caused by technologies, countries have to make new investments in the field of electricity production, transmission and distribution. Specifically, electricity generation mix becomes vital for both prevention of CO₂ emission and reduction of power prices. Majority of the research and development investments are made in the field of electricity generation. Hence, the prime source diversity and source planning of electricity generation are crucial for improving the wealth of citizen life. Approaches considering the CO₂ emission and total cost of generation, are necessary but not sufficient to evaluate and construct the product mix. On the other hand, employment and positive contribution to macroeconomic values are important factors that have to be taken into consideration. This study aims to constitute new investments in renewable energies (solar, wind, geothermal, biogas and hydropower) between 2018-2023 under 4 different goals. Therefore, a multi-objective programming model is proposed to optimize the goals of minimizing the CO₂ emission, investment amount and electricity sales price while maximizing the total employment and positive contribution to current deficit. In order to avoid the user preference among the goals, Dinkelbach’s algorithm and Guzel’s approach have been combined. The achievements are discussed with comparison to the current policies. Our study shows that new policies like huge capacity allotment might be discussible although obligation for local production is positive. The improvements in grid infrastructure and re-design support for the biogas and geothermal can be recommended.Keywords: energy generation policies, multi-objective linear programming, portfolio planning, renewable energy
Procedia PDF Downloads 245817 Segmentation of the Liver and Spleen From Abdominal CT Images Using Watershed Approach
Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid
Abstract:
The phase of segmentation is an important step in the processing and interpretation of medical images. In this paper, we focus on the segmentation of liver and spleen from the abdomen computed tomography (CT) images. The importance of our study comes from the fact that the segmentation of ROI from CT images is usually a difficult task. This difficulty is the gray’s level of which is similar to the other organ also the ROI are connected to the ribs, heart, kidneys, etc. Our proposed method is based on the anatomical information and mathematical morphology tools used in the image processing field. At first, we try to remove the surrounding and connected organs and tissues by applying morphological filters. This first step makes the extraction of interest regions easier. The second step consists of improving the quality of the image gradient. In this step, we propose a method for improving the image gradient to reduce these deficiencies by applying the spatial filters followed by the morphological filters. Thereafter we proceed to the segmentation of the liver, spleen. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.The system has been evaluated by computing the sensitivity and specificity between the semi-automatically segmented (liver and spleen) contour and the manually contour traced by radiological experts.Keywords: CT images, liver and spleen segmentation, anisotropic diffusion filter, morphological filters, watershed algorithm
Procedia PDF Downloads 496816 Optimal Dynamic Regime for CO Oxidation Reaction Discovered by Policy-Gradient Reinforcement Learning Algorithm
Authors: Lifar M. S., Tereshchenko A. A., Bulgakov A. N., Guda S. A., Guda A. A., Soldatov A. V.
Abstract:
Metal nanoparticles are widely used as heterogeneous catalysts to activate adsorbed molecules and reduce the energy barrier of the reaction. Reaction product yield depends on the interplay between elementary processes - adsorption, activation, reaction, and desorption. These processes, in turn, depend on the inlet feed concentrations, temperature, and pressure. At stationary conditions, the active surface sites may be poisoned by reaction byproducts or blocked by thermodynamically adsorbed gaseous reagents. Thus, the yield of reaction products can significantly drop. On the contrary, the dynamic control accounts for the changes in the surface properties and adjusts reaction parameters accordingly. Therefore dynamic control may be more efficient than stationary control. In this work, a reinforcement learning algorithm has been applied to control the simulation of CO oxidation on a catalyst. The policy gradient algorithm is learned to maximize the CO₂ production rate based on the CO and O₂ flows at a given time step. Nonstationary solutions were found for the regime with surface deactivation. The maximal product yield was achieved for periodic variations of the gas flows, ensuring a balance between available adsorption sites and the concentration of activated intermediates. This methodology opens a perspective for the optimization of catalytic reactions under nonstationary conditions.Keywords: artificial intelligence, catalyst, co oxidation, reinforcement learning, dynamic control
Procedia PDF Downloads 131815 Improvements in Double Q-Learning for Anomalous Radiation Source Searching
Authors: Bo-Bin Xiaoa, Chia-Yi Liua
Abstract:
In the task of searching for anomalous radiation sources, personnel holding radiation detectors to search for radiation sources may be exposed to unnecessary radiation risk, and automated search using machines becomes a required project. The research uses various sophisticated algorithms, which are double Q learning, dueling network, and NoisyNet, of deep reinforcement learning to search for radiation sources. The simulation environment, which is a 10*10 grid and one shielding wall setting in it, improves the development of the AI model by training 1 million episodes. In each episode of training, the radiation source position, the radiation source intensity, agent position, shielding wall position, and shielding wall length are all set randomly. The three algorithms are applied to run AI model training in four environments where the training shielding wall is a full-shielding wall, a lead wall, a concrete wall, and a lead wall or a concrete wall appearing randomly. The 12 best performance AI models are selected by observing the reward value during the training period and are evaluated by comparing these AI models with the gradient search algorithm. The results show that the performance of the AI model, no matter which one algorithm, is far better than the gradient search algorithm. In addition, the simulation environment becomes more complex, the AI model which applied Double DQN combined Dueling and NosiyNet algorithm performs better.Keywords: double Q learning, dueling network, NoisyNet, source searching
Procedia PDF Downloads 114814 Design and Implementation of the Embedded Control System for the Electrical Motor Based Cargo Vehicle
Authors: Syed M. Rizvi, Yiqing Meng, Simon Iwnicki
Abstract:
With an increased demand in the land cargo industry, it is predicted that the freight trade will rise to a record $1.1 trillion in revenue and volume in the following years to come. This increase is mainly driven by the e-commerce model ever so popular in the consumer market. Many innovative ideas have stemmed from this demand and change in lifestyle likes of which include e-bike cargo and drones. Rural and urban areas are facing air quality challenges to keep pollution levels in city centre to a minimum. For this purpose, this paper presents the design and implementation of a non-linear PID control system, employing a micro-controller and low cost sensing technique, for controlling an electrical motor based cargo vehicle with various loads, to follow a leading vehicle (bike). Within using this system, the cargo vehicle will have no load influence on the bike rider on different gradient conditions, such as hill climbing. The system is being integrated with a microcontroller to continuously measure several parameters such as relative displacement between bike and the cargo vehicle and gradient of the road, and process these measurements to create a portable controller capable of controlling the performance of electrical vehicle without the need of a PC. As a result, in the case of carrying 180kg of parcel weight, the cargo vehicle can maintain a reasonable spacing over a short length of sensor travel between the bike and itself.Keywords: cargo, e-bike, microcontroller, embedded system, nonlinear pid, self-adaptive, inertial measurement unit (IMU)
Procedia PDF Downloads 209813 Parkinson’s Disease Detection Analysis through Machine Learning Approaches
Authors: Muhtasim Shafi Kader, Fizar Ahmed, Annesha Acharjee
Abstract:
Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used.Keywords: naive bayes, adaptive boosting, bagging classifier, decision tree classifier, random forest classifier, XBG classifier, k nearest neighbor classifier, support vector classifier, gradient boosting classifier
Procedia PDF Downloads 130812 Adversarial Attacks and Defenses on Deep Neural Networks
Authors: Jonathan Sohn
Abstract:
Deep neural networks (DNNs) have shown state-of-the-art performance for many applications, including computer vision, natural language processing, and speech recognition. Recently, adversarial attacks have been studied in the context of deep neural networks, which aim to alter the results of deep neural networks by modifying the inputs slightly. For example, an adversarial attack on a DNN used for object detection can cause the DNN to miss certain objects. As a result, the reliability of DNNs is undermined by their lack of robustness against adversarial attacks, raising concerns about their use in safety-critical applications such as autonomous driving. In this paper, we focus on studying the adversarial attacks and defenses on DNNs for image classification. There are two types of adversarial attacks studied which are fast gradient sign method (FGSM) attack and projected gradient descent (PGD) attack. A DNN forms decision boundaries that separate the input images into different categories. The adversarial attack slightly alters the image to move over the decision boundary, causing the DNN to misclassify the image. FGSM attack obtains the gradient with respect to the image and updates the image once based on the gradients to cross the decision boundary. PGD attack, instead of taking one big step, repeatedly modifies the input image with multiple small steps. There is also another type of attack called the target attack. This adversarial attack is designed to make the machine classify an image to a class chosen by the attacker. We can defend against adversarial attacks by incorporating adversarial examples in training. Specifically, instead of training the neural network with clean examples, we can explicitly let the neural network learn from the adversarial examples. In our experiments, the digit recognition accuracy on the MNIST dataset drops from 97.81% to 39.50% and 34.01% when the DNN is attacked by FGSM and PGD attacks, respectively. If we utilize FGSM training as a defense method, the classification accuracy greatly improves from 39.50% to 92.31% for FGSM attacks and from 34.01% to 75.63% for PGD attacks. To further improve the classification accuracy under adversarial attacks, we can also use a stronger PGD training method. PGD training improves the accuracy by 2.7% under FGSM attacks and 18.4% under PGD attacks over FGSM training. It is worth mentioning that both FGSM and PGD training do not affect the accuracy of clean images. In summary, we find that PGD attacks can greatly degrade the performance of DNNs, and PGD training is a very effective way to defend against such attacks. PGD attacks and defence are overall significantly more effective than FGSM methods.Keywords: deep neural network, adversarial attack, adversarial defense, adversarial machine learning
Procedia PDF Downloads 196811 Computer-Aided Detection of Simultaneous Abdominal Organ CT Images by Iterative Watershed Transform
Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid
Abstract:
Interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis applications. Segmentation of liver, spleen and kidneys is regarded as a major primary step in the computer-aided diagnosis of abdominal organ diseases. In this paper, a semi-automated method for medical image data is presented for the abdominal organ segmentation data using mathematical morphology. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. Our algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter, we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.Keywords: anisotropic diffusion filter, CT images, morphological filter, mosaic image, simultaneous organ segmentation, the watershed algorithm
Procedia PDF Downloads 441810 Performance of the Abbott RealTime High Risk HPV Assay with SurePath Liquid Based Cytology Specimens from Women with Low Grade Cytological Abnormalities
Authors: Alexandra Sargent, Sarah Ferris, Ioannis Theofanous
Abstract:
The Abbott RealTime High Risk HPV test (RealTime HPV) is one of five assays clinically validated and approved by the English NHS Cervical Screening Programme (CSP) for HPV triage of low grade dyskaryosis and test-of-cure of treated Cervical Intraepithelial Neoplasia. The assay is a highly automated multiplex real-time PCR test for detecting 14 high risk (hr) HPV types, with simultaneous differentiation of HPV 16 and HPV 18 versus non-HPV 16/18 hrHPV. An endogenous internal control ensures sample cellularity, controls extraction efficiency and PCR inhibition. The original cervical specimen collected in SurePath (SP) liquid-based cytology (LBC) medium (BD Diagnostics) and the SP post-gradient cell pellets (SPG) after cytological processing are both CE marked for testing with the RealTime HPV test. During the 2011 NHSCSP validation of new tests only the original aliquot of SP LBC medium was investigated. Residual sample volume left after cytology slide preparation is low and may not always have sufficient volume for repeat HPV testing or for testing of other biomarkers that may be implemented in testing algorithms in the future. The SPG samples, however, have sufficient volumes to carry out additional testing and necessary laboratory validation procedures. This study investigates the correlation of RealTime HPV results of cervical specimens collected in SP LBC medium from women with low grade cytological abnormalities observed with matched pairs of original SP LBC medium and SP post-gradient cell pellets (SPG) after cytology processing. Matched pairs of SP and SPG samples from 750 women with borderline (N = 392) and mild (N = 351) cytology were available for this study. Both specimen types were processed and parallel tested for the presence of hrHPV with RealTime HPV according to the manufacturer´s instructions. HrHPV detection rates and concordance between test results from matched SP and SPGCP pairs were calculated. A total of 743 matched pairs with valid test results on both sample types were available for analysis. An overall-agreement of hrHPV test results of 97.5% (k: 0.95) was found with matched SP/SPG pairs and slightly lower concordance (96.9%; k: 0.94) was observed on 392 pairs from women with borderline cytology compared to 351 pairs from women with mild cytology (98.0%; k: 0.95). Partial typing results were highly concordant in matched SP/SPG pairs for HPV 16 (99.1%), HPV 18 (99.7%) and non-HPV16/18 hrHPV (97.0%), respectively. 19 matched pairs were found with discrepant results: 9 from women with borderline cytology and 4 from women with mild cytology were negative on SPG and positive on SP; 3 from women with borderline cytology and 3 from women with mild cytology were negative on SP and positive on SPG. Excellent correlation of hrHPV DNA test results was found between matched pairs of SP original fluid and post-gradient cell pellets from women with low grade cytological abnormalities tested with the Abbott RealTime High-Risk HPV assay, demonstrating robust performance of the test with both specimen types and reassuring the utility of the assay for cytology triage with both specimen types.Keywords: Abbott realtime test, HPV, SurePath liquid based cytology, surepath post-gradient cell pellet
Procedia PDF Downloads 259809 Investigating the Influence of Solidification Rate on the Microstructural, Mechanical and Physical Properties of Directionally Solidified Al-Mg Based Multicomponent Eutectic Alloys Containing High Mg Alloys
Authors: Fatih Kılıç, Burak Birol, Necmettin Maraşlı
Abstract:
The directional solidification process is generally used for homogeneous compound production, single crystal growth, and refining (zone refining), etc. processes. The most important two parameters that control eutectic structures are temperature gradient and grain growth rate which are called as solidification parameters The solidification behavior and microstructure characteristics is an interesting topic due to their effects on the properties and performance of the alloys containing eutectic compositions. The solidification behavior of multicomponent and multiphase systems is an important parameter for determining various properties of these materials. The researches have been conducted mostly on the solidification of pure materials or alloys containing two phases. However, there are very few studies on the literature about multiphase reactions and microstructure formation of multicomponent alloys during solidification. Because of this situation, it is important to study the microstructure formation and the thermodynamical, thermophysical and microstructural properties of these alloys. The production process is difficult due to easy oxidation of magnesium and therefore, there is not a comprehensive study concerning alloys containing high Mg (> 30 wt.% Mg). With the increasing amount of Mg inside Al alloys, the specific weight decreases, and the strength shows a slight increase, while due to formation of β-Al8Mg5 phase, ductility lowers. For this reason, production, examination and development of high Mg containing alloys will initiate the production of new advanced engineering materials. The original value of this research can be described as obtaining high Mg containing (> 30% Mg) Al based multicomponent alloys by melting under vacuum; controlled directional solidification with various growth rates at a constant temperature gradient; and establishing relationship between solidification rate and microstructural, mechanical, electrical and thermal properties. Therefore, within the scope of this research, some > 30% Mg containing ternary or quaternary Al alloy compositions were determined, and it was planned to investigate the effects of directional solidification rate on the mechanical, electrical and thermal properties of these alloys. Within the scope of the research, the influence of the growth rate on microstructure parameters, microhardness, tensile strength, electrical conductivity and thermal conductivity of directionally solidified high Mg containing Al-32,2Mg-0,37Si; Al-30Mg-12Zn; Al-32Mg-1,7Ni; Al-32,2Mg-0,37Fe; Al-32Mg-1,7Ni-0,4Si; Al-33,3Mg-0,35Si-0,11Fe (wt.%) alloys with wide range of growth rate (50-2500 µm/s) and fixed temperature gradient, will be investigated. The work can be planned as; (a) directional solidification of Al-Mg based Al-Mg-Si, Al-Mg-Zn, Al-Mg-Ni, Al-Mg-Fe, Al-Mg-Ni-Si, Al-Mg-Si-Fe within wide range of growth rates (50-2500 µm/s) at a constant temperature gradient by Bridgman type solidification system, (b) analysis of microstructure parameters of directionally solidified alloys by using an optical light microscopy and Scanning Electron Microscopy (SEM), (c) measurement of microhardness and tensile strength of directionally solidified alloys, (d) measurement of electrical conductivity by four point probe technique at room temperature (e) measurement of thermal conductivity by linear heat flow method at room temperature.Keywords: directional solidification, electrical conductivity, high Mg containing multicomponent Al alloys, microhardness, microstructure, tensile strength, thermal conductivity
Procedia PDF Downloads 261808 MIMIC: A Multi Input Micro-Influencers Classifier
Authors: Simone Leonardi, Luca Ardito
Abstract:
Micro-influencers are effective elements in the marketing strategies of companies and institutions because of their capability to create an hyper-engaged audience around a specific topic of interest. In recent years, many scientific approaches and commercial tools have handled the task of detecting this type of social media users. These strategies adopt solutions ranging from rule based machine learning models to deep neural networks and graph analysis on text, images, and account information. This work compares the existing solutions and proposes an ensemble method to generalize them with different input data and social media platforms. The deployed solution combines deep learning models on unstructured data with statistical machine learning models on structured data. We retrieve both social media accounts information and multimedia posts on Twitter and Instagram. These data are mapped into feature vectors for an eXtreme Gradient Boosting (XGBoost) classifier. Sixty different topics have been analyzed to build a rule based gold standard dataset and to compare the performances of our approach against baseline classifiers. We prove the effectiveness of our work by comparing the accuracy, precision, recall, and f1 score of our model with different configurations and architectures. We obtained an accuracy of 0.91 with our best performing model.Keywords: deep learning, gradient boosting, image processing, micro-influencers, NLP, social media
Procedia PDF Downloads 184807 A Hybrid Normalized Gradient Correlation Based Thermal Image Registration for Morphoea
Authors: L. I. Izhar, T. Stathaki, K. Howell
Abstract:
Analyzing and interpreting of thermograms have been increasingly employed in the diagnosis and monitoring of diseases thanks to its non-invasive, non-harmful nature and low cost. In this paper, a novel system is proposed to improve diagnosis and monitoring of morphoea skin disorder based on integration with the published lines of Blaschko. In the proposed system, image registration based on global and local registration methods are found inevitable. This paper presents a modified normalized gradient cross-correlation (NGC) method to reduce large geometrical differences between two multimodal images that are represented by smooth gray edge maps is proposed for the global registration approach. This method is improved further by incorporating an iterative-based normalized cross-correlation coefficient (NCC) method. It is found that by replacing the final registration part of the NGC method where translational differences are solved in the spatial Fourier domain with the NCC method performed in the spatial domain, the performance and robustness of the NGC method can be greatly improved. It is shown in this paper that the hybrid NGC method not only outperforms phase correlation (PC) method but also improved misregistration due to translation, suffered by the modified NGC method alone for thermograms with ill-defined jawline. This also demonstrates that by using the gradients of the gray edge maps and a hybrid technique, the performance of the PC based image registration method can be greatly improved.Keywords: Blaschko’s lines, image registration, morphoea, thermal imaging
Procedia PDF Downloads 311806 Influence of Farnesol on Growth and Development of Dysdercus koenigii
Authors: Shailendra Kumar, Kamal Kumar Gupta
Abstract:
Dysdercus koenigii is an economically important pest of cotton worldwide. The pest damages the crop by sucking sap, staining lint, reducing the oil content of the seeds and deteriorating the quality of cotton. Plant possesses a plethora of secondary metabolites which are used as defense mechanism against herbivores. One of the important categories of such chemicals is insect growth regulators and the intermediates in their biosynthesis. Farnesol belongs to sesquiterpenoid. It is an intermediate in Juvenile hormone biosynthetic pathway in insects has been widely reported in the variety of plants. This chemical can disrupt the normal metabolic function and therefore, affects various life processes of the insects. Present study tested the efficacy of farnesol against Dysdercus koenigii. 2μl of 5% (100µg) and 10% (200µg) of the farnesol was applied topically on the dorsum of thoracic region of the newly emerged fifth instar nymphs of Dysdercus. The treated insects were observed daily for their survival, weight gain, and developmental anomalies for a period of ten days. The results indicated that treatment with 200µg farnesol decreased survival of the insects to 70% after 24h of exposure. At lower doses, no significant decrease in the survival was observed. However, the surviving nymphs showed alteration in growth, development, and metamorphosis. The weight gain in the treated nymphs showed deviation from control. The treated nymphs showed an increase in mortality during subsequent days and increase in the nymphal duration. The number of nymphs undergoing metamorphosis decreased to 46% and 88% in the treatments with the dose of 200µg and 100µg respectively. Severe developmental anomalies were also observed in the treated nymphs. The treated nymphs moulted into supernumerary nymphs, adultoids, adults with exuviae attached and adults with wing deformities. On treatment with 200µg; 26% adultoid, 4% adults with exuviae attached and 12% adults with wing deformed were produced. Treatment with 100µg resulted in production of 34% adultoid, 26% adults with deformed wing and 4% adults with exuviae attached. Many of the treated nymphs did not metamorphose into adults, remained in nymphal stage and died. Our results indicated potential application plant-derived secondary metabolites like farnesol in the management of Dysdercus population.Keywords: development, Dysdercus koenigii, farnesol, survival
Procedia PDF Downloads 356805 A Review of Renewable Energy Conditions in Iran Country
Authors: Ehsan Atash Zaban, Mehdi Beyk
Abstract:
In recent years, concerns over the depletion of non-renewable fuels and environmental pollution have led countries around the world to look for alternative energy sources for these fuels. An energy source that can have the necessary reliability, be a suitable alternative to fossil fuels, be technologically achievable, comply with environmental standards to the maximum, and at the same time cause countries to meet domestic consumption for electricity production. Iran is one of the richest countries in the world in terms of various energy sources because, on the one hand, it has extensive sources of fossil and non-renewable fuels such as oil and gas, and on the other hand, it has great potential for renewable energy. In this paper, the potential of renewable energy in Iran, which includes solar, wind, geothermal, hydrogen technology, and biomass, has been reviewed and analyzed.Keywords: renewable energy, solar stations, wind, biomass, hydropower
Procedia PDF Downloads 91804 Comprehensive Study of Renewable Energy Resources and Present Scenario in India
Authors: Aparna Bhat, Rajeshwari Hegde
Abstract:
Renewable energy sources also called non-conventional energy sources that are continuously replenished by natural processes. For example, solar energy, wind energy, bio-energy- bio-fuels grown sustain ably), hydropower etc., are some of the examples of renewable energy sources. A renewable energy system converts the energy found in sunlight, wind, falling-water, sea-waves, geothermal heat, or biomass into a form, we can use such as heat or electricity. Most of the renewable energy comes either directly or indirectly from sun and wind and can never be exhausted, and therefore they are called renewable. This paper presents a review about conventional and renewable energy scenario of India. The paper also presents current status, major achievements and future aspects of renewable energy in India and implementing renewable for the future is also been presented.Keywords: solar energy, renewabe energy, wind energy, bio-diesel, biomass, feedin
Procedia PDF Downloads 615803 Magnetic and Optical Properties of GaFeMnN
Authors: A.Abbad, H.A.Bentounes, W.Benstaali
Abstract:
The full-potential linearized augmented plane wave method (FP-LAPW) within the Generalized Gradient Approximation (GGA) is used to calculate the magnetic and optical properties of quaternary GaFeMnN. The results show that the compound becomes magnetic and half metallic and there is an apparition of peaks at low frequencies for the optical properties.Keywords: FP-LAPW, LSDA, magnetic moment, reflectivity
Procedia PDF Downloads 524802 Unintended Health Inequity: Using the Relationship Between the Social Determinants of Health and Employer-Sponsored Health Insurance as a Catalyst for Organizational Development and Change
Authors: Dinamarie Fonzone
Abstract:
Employer-sponsored health insurance (ESI) strategic decision-making processes rely on financial analysis to guide leadership in choosing plans that will produce optimal organizational spending outcomes. These financial decision-making methods have not abated ESI costs. Previously unrecognized external social determinants, the impact on ESI plan spending, and other organizational strategies are emerging and are important considerations for organizational decision-makers and change management practitioners. The purpose of thisstudy is to examine the relationship between the social determinants of health (SDoH), employer-sponsored health insurance (ESI) plans, andthe unintended consequence of health inequity. A quantitative research design using selectemployee records from an existing employer human capital management database will be analyzed. Statistical regressionmethods will be used to study the relationships between certainSDoH (employee income, neighborhood geographic living area, and health care access) and health plan utilization, cost, and chronic disease prevalence. The discussion will include an application of the social gradient of health theory to the study findings, organizational transformation through changes in ESI decision-making mental models, and the connection of ESI health inequity to organizational development and changediversity, equity, and inclusion strategies.Keywords: employer-sponsored health insurance, social determinants of health, health inequity, mental models, organizational development, organizational change, social gradient of health theory
Procedia PDF Downloads 110801 Gradient-Based Reliability Optimization of Integrated Energy Systems Under Extreme Weather Conditions: A Case Study in Ningbo, China
Abstract:
Recent extreme weather events, such as the 2021 European floods and North American heatwaves, have exposed the vulnerability of energy systems to both extreme demand scenarios and potential physical damage. Current integrated energy system designs often overlook performance under these challenging conditions. This research, focusing on a regional integrated energy system in Ningbo, China, proposes a distinct design method to optimize system reliability during extreme events. A multi-scenario model was developed, encompassing various extreme load conditions and potential system damages caused by severe weather. Based on this model, a comprehensive reliability improvement scheme was designed, incorporating a gradient approach to address different levels of disaster severity through the integration of advanced technologies like distributed energy storage. The scheme's effectiveness was validated through Monte Carlo simulations. Results demonstrate significant enhancements in energy supply reliability and peak load reduction capability under extreme scenarios. The findings provide several insights for improving energy system adaptability in the face of climate-induced challenges, offering valuable references for building reliable energy infrastructure capable of withstanding both extreme demands and physical threats across a spectrum of disaster intensities.Keywords: extreme weather events, integrated energy systems, reliability improvement, climate change adaptation
Procedia PDF Downloads 29800 An Insight into the Paddy Soil Denitrifying Bacteria and Their Relation with Soil Phospholipid Fatty Acid Profile
Authors: Meenakshi Srivastava, A. K. Mishra
Abstract:
This study characterizes the metabolic versatility of denitrifying bacterial communities residing in the paddy soil using the GC-MS based Phospholipid Fatty Acid (PLFA) analyses simultaneously with nosZ gene based PCR-DGGE (Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis) and real time Q-PCR analysis. We have analyzed the abundance of nitrous oxide reductase (nosZ) genes, which was subsequently related to soil PLFA profile and DGGE based denitrifier community structure. Soil denitrifying bacterial community comprised majority or dominance of Ochrobactrum sp. following Cupriavidus and uncultured bacteria strains in paddy soil of selected sites. Initially, we have analyzed the abundance of the nitrous oxide reductase gene (nosZ), which was found to be related with PLFA based lipid profile. Chandauli of Eastern UP, India represented greater amount of lipid content (C18-C20) and denitrifier’s diversity. This study suggests the positive co-relation between soil PLFA profiles, DGGE, and Q-PCR data. Thus, a close networking among metabolic abilities and taxonomic composition of soil microbial communities existed, and subsequently, such work at greater extent could be helpful in managing nutrient dynamics as well as microbial dynamics of paddy soil ecosystem.Keywords: denaturing gradient gel electrophoresis, DGGE, nitrifying and denitrifying bacteria, PLFA, Q-PCR
Procedia PDF Downloads 125799 Approximation of a Wanted Flow via Topological Sensitivity Analysis
Authors: Mohamed Abdelwahed
Abstract:
We propose an optimization algorithm for the geometric control of fluid flow. The used approach is based on the topological sensitivity analysis method. It consists in studying the variation of a cost function with respect to the insertion of a small obstacle in the domain. Some theoretical and numerical results are presented in 2D and 3D.Keywords: sensitivity analysis, topological gradient, shape optimization, stokes equations
Procedia PDF Downloads 539798 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network
Authors: Gulfam Haider, sana danish
Abstract:
Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent
Procedia PDF Downloads 127797 Efficient Human Motion Detection Feature Set by Using Local Phase Quantization Method
Authors: Arwa Alzughaibi
Abstract:
Human Motion detection is a challenging task due to a number of factors including variable appearance, posture and a wide range of illumination conditions and background. So, the first need of such a model is a reliable feature set that can discriminate between a human and a non-human form with a fair amount of confidence even under difficult conditions. By having richer representations, the classification task becomes easier and improved results can be achieved. The Aim of this paper is to investigate the reliable and accurate human motion detection models that are able to detect the human motions accurately under varying illumination levels and backgrounds. Different sets of features are tried and tested including Histogram of Oriented Gradients (HOG), Deformable Parts Model (DPM), Local Decorrelated Channel Feature (LDCF) and Aggregate Channel Feature (ACF). However, we propose an efficient and reliable human motion detection approach by combining Histogram of oriented gradients (HOG) and local phase quantization (LPQ) as the feature set, and implementing search pruning algorithm based on optical flow to reduce the number of false positive. Experimental results show the effectiveness of combining local phase quantization descriptor and the histogram of gradient to perform perfectly well for a large range of illumination conditions and backgrounds than the state-of-the-art human detectors. Areaunder th ROC Curve (AUC) of the proposed method achieved 0.781 for UCF dataset and 0.826 for CDW dataset which indicates that it performs comparably better than HOG, DPM, LDCF and ACF methods.Keywords: human motion detection, histograms of oriented gradient, local phase quantization, local phase quantization
Procedia PDF Downloads 258796 A Study of High Viscosity Oil-Gas Slug Flow Using Gamma Densitometer
Authors: Y. Baba, A. Archibong-Eso, H. Yeung
Abstract:
Experimental study of high viscosity oil-gas flows in horizontal pipelines published in literature has indicated that hydrodynamic slug flow is the dominant flow pattern observed. Investigations have shown that hydrodynamic slugging brings about high instabilities in pressure that can damage production facilities thereby making it inherent to study high viscous slug flow regime so as to improve the understanding of its flow dynamics. Most slug flow models used in the petroleum industry for the design of pipelines together with their closure relationships were formulated based on observations of low viscosity liquid-gas flows. New experimental investigations and data are therefore required to validate these models. In cases where these models underperform, improving upon or building new predictive models and correlations will also depend on the new experimental dataset and further understanding of the flow dynamics in high viscous oil-gas flows. In this study conducted at the Flow laboratory, Oil and Gas Engineering Centre of Cranfield University, slug flow variables such as pressure gradient, mean liquid holdup, frequency and slug length for oil viscosity ranging from 1..0 – 5.5 Pa.s are experimentally investigated and analysed. The study was carried out in a 0.076m ID pipe, two fast sampling gamma densitometer and pressure transducers (differential and point) were used to obtain experimental measurements. Comparison of the measured slug flow parameters to the existing slug flow prediction models available in the literature showed disagreement with high viscosity experimental data thus highlighting the importance of building new predictive models and correlations.Keywords: gamma densitometer, mean liquid holdup, pressure gradient, slug frequency and slug length
Procedia PDF Downloads 330