Search results for: constriction factor based particle swarm optimization (CPSO)
33997 Investigation Particle Behavior in Gas-Solid Filtration with Electrostatic Discharge in a Hybrid System
Authors: Flávia M. Oliveira, Marcos V. Rodrigues, Mônica L. Aguiar
Abstract:
Synthetic fibers are widely used in gas filtration. Previous attempts to optimize the filtration process have employed mixed fibers as the filter medium in gas-solid separation. Some of the materials most frequently used this purpose are composed of polyester, polypropylene, and glass fibers. In order to improve the retention of cement particles in bag filters, the present study investigates the use of synthetic glass fiber filters and polypropylene fiber for particle filtration, with electrostatic discharge of 0 to -2 kV in cement particles. The filtration curves obtained showed that charging increased the particle collection efficiency and lowered the pressure drop. Particle diameter had a direct influence on the formation of the dust cake, and the application of electrostatic discharge to the particles resulted in the retention of more particles, hence increasing the lifetime of fabric filters.Keywords: glass fiber filter, particle, electrostatic discharge, cement
Procedia PDF Downloads 38933996 Inverse Heat Conduction Analysis of Cooling on Run-Out Tables
Authors: M. S. Gadala, Khaled Ahmed, Elasadig Mahdi
Abstract:
In this paper, we introduced a gradient-based inverse solver to obtain the missing boundary conditions based on the readings of internal thermocouples. The results show that the method is very sensitive to measurement errors, and becomes unstable when small time steps are used. The artificial neural networks are shown to be capable of capturing the whole thermal history on the run-out table, but are not very effective in restoring the detailed behavior of the boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary condition profile is different. GA and PSO are more effective in finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear cases. However, their convergence takes longer. A variation of the basic PSO, called CRPSO, showed the best performance among the three versions. Also, PSO proved to be effective in handling noisy data, especially when its performance parameters were tuned. An increase in the self-confidence parameter was also found to be effective, as it increased the global search capabilities of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it combines the efficiency and effectiveness required by these problems.Keywords: inverse analysis, function specification, neural net works, particle swarm, run-out table
Procedia PDF Downloads 24033995 Optimization of Interface Radio of Universal Mobile Telecommunication System Network
Authors: O. Mohamed Amine, A. Khireddine
Abstract:
Telecoms operators are always looking to meet their share of the other customers, they try to gain optimum utilization of the deployed equipment and network optimization has become essential. This project consists of optimizing UMTS network, and the study area is an urban area situated in the center of Algiers. It was initially questions to become familiar with the different communication systems (3G) and the optimization technique, its main components, and its fundamental characteristics radios were introduced.Keywords: UMTS, UTRAN, WCDMA, optimization
Procedia PDF Downloads 38333994 Evaluation of Solid-Gas Separation Efficiency in Natural Gas Cyclones
Authors: W. I. Mazyan, A. Ahmadi, M. Hoorfar
Abstract:
Objectives/Scope: This paper proposes a mathematical model for calculating the solid-gas separation efficiency in cyclones. This model provides better agreement with experimental results compared to existing mathematical models. Methods: The separation ratio efficiency, ϵsp, is evaluated by calculating the outlet to inlet count ratio. Similar to mathematical derivations in the literature, the inlet and outlet particle count were evaluated based on Eulerian approach. The model also includes the external forces acting on the particle (i.e., centrifugal and drag forces). In addition, the proposed model evaluates the exact length that the particle travels inside the cyclone for the evaluation of number of turns inside the cyclone. The separation efficiency model derivation using Stoke’s law considers the effect of the inlet tangential velocity on the separation performance. In cyclones, the inlet velocity is a very important factor in determining the performance of the cyclone separation. Therefore, the proposed model provides accurate estimation of actual cyclone separation efficiency. Results/Observations/Conclusion: The separation ratio efficiency, ϵsp, is studied to evaluate the performance of the cyclone for particles ranging from 1 microns to 10 microns. The proposed model is compared with the results in the literature. It is shown that the proposed mathematical model indicates an error of 7% between its efficiency and the efficiency obtained from the experimental results for 1 micron particles. At the same time, the proposed model gives the user the flexibility to analyze the separation efficiency at different inlet velocities. Additive Information: The proposed model determines the separation efficiency accurately and could also be used to optimize the separation efficiency of cyclones at low cost through trial and error testing, through dimensional changes to enhance separation and through increasing the particle centrifugal forces. Ultimately, the proposed model provides a powerful tool to optimize and enhance existing cyclones at low cost.Keywords: cyclone efficiency, solid-gas separation, mathematical model, models error comparison
Procedia PDF Downloads 39233993 Influence of the Coarse-Graining Method on a DEM-CFD Simulation of a Pilot-Scale Gas Fluidized Bed
Authors: Theo Ndereyimana, Yann Dufresne, Micael Boulet, Stephane Moreau
Abstract:
The DEM (Discrete Element Method) is used a lot in the industry to simulate large-scale flows of particles; for instance, in a fluidized bed, it allows to predict of the trajectory of every particle. One of the main limits of the DEM is the computational time. The CGM (Coarse-Graining Method) has been developed to tackle this issue. The goal is to increase the size of the particle and, by this means, decrease the number of particles. The method leads to a reduction of the collision frequency due to the reduction of the number of particles. Multiple characteristics of the particle movement and the fluid flow - when there is a coupling between DEM and CFD (Computational Fluid Dynamics). The main characteristic that is impacted is the energy dissipation of the system, to regain the dissipation, an ADM (Additional Dissipative Mechanism) can be added to the model. The objective of this current work is to observe the influence of the choice of the ADM and the factor of coarse-graining on the numerical results. These results will be compared with experimental results of a fluidized bed and with a numerical model of the same fluidized bed without using the CGM. The numerical model is one of a 3D cylindrical fluidized bed with 9.6M Geldart B-type particles in a bubbling regime.Keywords: additive dissipative mechanism, coarse-graining, discrete element method, fluidized bed
Procedia PDF Downloads 7033992 Optimization Based Obstacle Avoidance
Authors: R. Dariani, S. Schmidt, R. Kasper
Abstract:
Based on a non-linear single track model which describes the dynamics of vehicle, an optimal path planning strategy is developed. Real time optimization is used to generate reference control values to allow leading the vehicle alongside a calculated lane which is optimal for different objectives such as energy consumption, run time, safety or comfort characteristics. Strict mathematic formulation of the autonomous driving allows taking decision on undefined situation such as lane change or obstacle avoidance. Based on position of the vehicle, lane situation and obstacle position, the optimization problem is reformulated in real-time to avoid the obstacle and any car crash.Keywords: autonomous driving, obstacle avoidance, optimal control, path planning
Procedia PDF Downloads 36933991 A Review on Bearing Capacity Factor Nγ of Foundations with Different Shapes
Authors: R. Ziaie Moayed, S. Taghvamanesh
Abstract:
So far several methods by different researchers have been developed in order to calculate the bearing capacity factors of foundations and retaining walls. In this paper, the bearing capacity factor Ny (shape factor) for different types of foundation have been investigated. The formula for bearing capacity on c–φ–γ soil can still be expressed by Terzaghi’s equation except that the bearing capacity factor Ny depends on the surcharge ratio, and friction angle φ. Many empirical definitions have been used for measurement of the bearing capacity factors NKeywords: bearing capacity, bearing capacity factor Nγ, irregular foundations, shape factor
Procedia PDF Downloads 15033990 Application of Adaptive Particle Filter for Localizing a Mobile Robot Using 3D Camera Data
Authors: Maysam Shahsavari, Seyed Jamalaldin Haddadi
Abstract:
There are several methods to localize a mobile robot such as relative, absolute and probabilistic. In this paper, particle filter due to its simple implementation and the fact that it does not need to know to the starting position will be used. This method estimates the position of the mobile robot using a probabilistic distribution, relying on a known map of the environment instead of predicting it. Afterwards, it updates this estimation by reading input sensors and control commands. To receive information from the surrounding world, distance to obstacles, for example, a Kinect is used which is much cheaper than a laser range finder. Finally, after explaining the Adaptive Particle Filter method and its implementation in detail, we will compare this method with the dead reckoning method and show that this method is much more suitable for situations in which we have a map of the environment.Keywords: particle filter, localization, methods, odometry, kinect
Procedia PDF Downloads 26933989 Chemical Reaction Algorithm for Expectation Maximization Clustering
Authors: Li Ni, Pen ManMan, Li KenLi
Abstract:
Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.Keywords: chemical reaction optimization, expection maimization, initia, objective function clustering
Procedia PDF Downloads 71333988 Quantum Mechanics as A Limiting Case of Relativistic Mechanics
Authors: Ahmad Almajid
Abstract:
The idea of unifying quantum mechanics with general relativity is still a dream for many researchers, as physics has only two paths, no more. Einstein's path, which is mainly based on particle mechanics, and the path of Paul Dirac and others, which is based on wave mechanics, the incompatibility of the two approaches is due to the radical difference in the initial assumptions and the mathematical nature of each approach. Logical thinking in modern physics leads us to two problems: - In quantum mechanics, despite its success, the problem of measurement and the problem of wave function interpretation is still obscure. - In special relativity, despite the success of the equivalence of rest-mass and energy, but at the speed of light, the fact that the energy becomes infinite is contrary to logic because the speed of light is not infinite, and the mass of the particle is not infinite too. These contradictions arise from the overlap of relativistic and quantum mechanics in the neighborhood of the speed of light, and in order to solve these problems, one must understand well how to move from relativistic mechanics to quantum mechanics, or rather, to unify them in a way different from Dirac's method, in order to go along with God or Nature, since, as Einstein said, "God doesn't play dice." From De Broglie's hypothesis about wave-particle duality, Léon Brillouin's definition of the new proper time was deduced, and thus the quantum Lorentz factor was obtained. Finally, using the Euler-Lagrange equation, we come up with new equations in quantum mechanics. In this paper, the two problems in modern physics mentioned above are solved; it can be said that this new approach to quantum mechanics will enable us to unify it with general relativity quite simply. If the experiments prove the validity of the results of this research, we will be able in the future to transport the matter at speed close to the speed of light. Finally, this research yielded three important results: 1- Lorentz quantum factor. 2- Planck energy is a limited case of Einstein energy. 3- Real quantum mechanics, in which new equations for quantum mechanics match and exceed Dirac's equations, these equations have been reached in a completely different way from Dirac's method. These equations show that quantum mechanics is a limited case of relativistic mechanics. At the Solvay Conference in 1927, the debate about quantum mechanics between Bohr, Einstein, and others reached its climax, while Bohr suggested that if particles are not observed, they are in a probabilistic state, then Einstein said his famous claim ("God does not play dice"). Thus, Einstein was right, especially when he didn't accept the principle of indeterminacy in quantum theory, although experiments support quantum mechanics. However, the results of our research indicate that God really does not play dice; when the electron disappears, it turns into amicable particles or an elastic medium, according to the above obvious equations. Likewise, Bohr was right also, when he indicated that there must be a science like quantum mechanics to monitor and study the motion of subatomic particles, but the picture in front of him was blurry and not clear, so he resorted to the probabilistic interpretation.Keywords: lorentz quantum factor, new, planck’s energy as a limiting case of einstein’s energy, real quantum mechanics, new equations for quantum mechanics
Procedia PDF Downloads 7733987 Developing Model for Fuel Consumption Optimization in Aviation Industry
Authors: Somesh Kumar Sharma, Sunanad Gupta
Abstract:
The contribution of aviation to society and economy is undisputedly significant. The aviation industry drives economic and social progress by contributing prominently to tourism, commerce and improved quality of life. Identifying the amount of fuel consumed by an aircraft while moving in both airspace and ground networks is critical to air transport economics. Aviation fuel is a major operating cost parameter of the aviation industry and at the same time it is prone to various constraints. This article aims to develop a model for fuel consumption of aviation product. The paper tailors the information for the fuel consumption optimization in terms of information development, information evaluation and information refinement. The information is evaluated and refined using statistical package R and Factor Analysis which is further validated with neural networking. The study explores three primary dimensions which are finally summarized into 23 influencing variables in contrast to 96 variables available in literature. The 23 variables explored in this study should be considered as highly influencing variables for fuel consumption which will contribute significantly towards fuel optimization.Keywords: fuel consumption, civil aviation industry, neural networking, optimization
Procedia PDF Downloads 34033986 A Fuzzy Satisfactory Optimization Method Based on Stress Analysis for a Hybrid Composite Flywheel
Authors: Liping Yang, Curran Crawford, Jr. Ren, Zhengyi Ren
Abstract:
Considering the cost evaluation and the stress analysis, a fuzzy satisfactory optimization (FSO) method has been developed for a hybrid composite flywheel. To evaluate the cost, the cost coefficients of the flywheel components are obtained through calculating the weighted sum of the scores of the material manufacturability, the structure character, and the material price. To express the satisfactory degree of the energy, the cost, and the mass, the satisfactory functions are proposed by using the decline function and introducing a satisfactory coefficient. To imply the different significance of the objectives, the object weight coefficients are defined. Based on the stress analysis of composite material, the circumferential and radial stresses are considered into the optimization formulation. The simulations of the FSO method with different weight coefficients and storage energy density optimization (SEDO) method of a flywheel are contrasted. The analysis results show that the FSO method can satisfy different requirements of the designer and the FSO method with suitable weight coefficients can replace the SEDO method.Keywords: flywheel energy storage, fuzzy, optimization, stress analysis
Procedia PDF Downloads 34733985 Purity Monitor Studies in Medium Liquid Argon TPC
Authors: I. Badhrees
Abstract:
This paper is an attempt to describe some of the results that had been found through a journey of study in the field of particle physics. This study consists of two parts, one about the measurement of the cross section of the decay of the Z particle in two electrons, and the other deals with the measurement of the cross section of the multi-photon absorption process using a beam of laser in the Liquid Argon Time Projection Chamber. The first part of the paper concerns the results based on the analysis of a data sample containing 8120 ee candidates to reconstruct the mass of the Z particle for each event where each event has an ee pair with PT(e) > 20GeV, and η(e) < 2.5. Monte Carlo templates of the reconstructed Z particle were produced as a function of the Z mass scale. The distribution of the reconstructed Z mass in the data was compared to the Monte Carlo templates, where the total cross section is calculated to be equal to 1432 pb. The second part concerns the Liquid Argon Time Projection Chamber, LAr TPC, the results of the interaction of the UV Laser, Nd-YAG with λ= 266mm, with LAr and through the study of the multi-photon ionization process as a part of the R&D at Bern University. The main result of this study was the cross section of the process of the multi-photon ionization process of the LAr, σe = 1.24±0.10stat±0.30sys.10 -56cm4.Keywords: ATLAS, CERN, KACST, LArTPC, particle physics
Procedia PDF Downloads 34633984 A Reinforcement Learning Based Method for Heating, Ventilation, and Air Conditioning Demand Response Optimization Considering Few-Shot Personalized Thermal Comfort
Authors: Xiaohua Zou, Yongxin Su
Abstract:
The reasonable operation of heating, ventilation, and air conditioning (HVAC) is of great significance in improving the security, stability, and economy of power system operation. However, the uncertainty of the operating environment, thermal comfort varies by users and rapid decision-making pose challenges for HVAC demand response optimization. In this regard, this paper proposes a reinforcement learning-based method for HVAC demand response optimization considering few-shot personalized thermal comfort (PTC). First, an HVAC DR optimization framework based on few-shot PTC model and DRL is designed, in which the output of few-shot PTC model is regarded as the input of DRL. Then, a few-shot PTC model that distinguishes between awake and asleep states is established, which has excellent engineering usability. Next, based on soft actor criticism, an HVAC DR optimization algorithm considering the user’s PTC is designed to deal with uncertainty and make decisions rapidly. Experiment results show that the proposed method can efficiently obtain use’s PTC temperature, reduce energy cost while ensuring user’s PTC, and achieve rapid decision-making under uncertainty.Keywords: HVAC, few-shot personalized thermal comfort, deep reinforcement learning, demand response
Procedia PDF Downloads 8533983 Optimization of Cutting Parameters on Delamination Using Taguchi Method during Drilling of GFRP Composites
Authors: Vimanyu Chadha, Ranganath M. Singari
Abstract:
Drilling composite materials is a frequently practiced machining process during assembling in various industries such as automotive and aerospace. However, drilling of glass fiber reinforced plastic (GFRP) composites is significantly affected by damage tendency of these materials under cutting forces such as thrust force and torque. The aim of this paper is to investigate the influence of the various cutting parameters such as cutting speed and feed rate; subsequently also to study the influence of number of layers on delamination produced while drilling a GFRP composite. A plan of experiments, based on Taguchi techniques, was instituted considering drilling with prefixed cutting parameters in a hand lay-up GFRP material. The damage induced associated with drilling GFRP composites were measured. Moreover, Analysis of Variance (ANOVA) was performed to obtain minimization of delamination influenced by drilling parameters and number layers. The optimum drilling factor combination was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that feed rate was the most influential factor on the delamination. The best results of the delamination were obtained with composites with a greater number of layers at lower cutting speeds and feed rates.Keywords: analysis of variance, delamination, design optimization, drilling, glass fiber reinforced plastic composites, Taguchi method
Procedia PDF Downloads 25833982 CFD-DEM Modelling of Liquid Fluidizations of Ellipsoidal Particles
Authors: Esmaeil Abbaszadeh Molaei, Zongyan Zhou, Aibing Yu
Abstract:
The applications of liquid fluidizations have been increased in many parts of industries such as particle classification, backwashing of granular filters, crystal growth, leaching and washing, and bioreactors due to high-efficient liquid–solid contact, favorable mass and heat transfer, high operation flexibilities, and reduced back mixing of phases. In most of these multiphase operations the particles properties, i.e. size, density, and shape, may change during the process because of attrition, coalescence or chemical reactions. Previous studies, either experimentally or numerically, mainly have focused on studies of liquid-solid fluidized beds containing spherical particles; however, the role of particle shape on the hydrodynamics of liquid fluidized beds is still not well-known. A three-dimensional Discrete Element Model (DEM) and Computational Fluid Dynamics (CFD) are coupled to study the influence of particles shape on particles and liquid flow patterns in liquid-solid fluidized beds. In the simulations, ellipsoid particles are used to study the shape factor since they can represent a wide range of particles shape from oblate and sphere to prolate shape particles. Different particle shapes from oblate (disk shape) to elongated particles (rod shape) are selected to investigate the effect of aspect ratio on different flow characteristics such as general particles and liquid flow pattern, pressure drop, and particles orientation. First, the model is verified based on experimental observations, then further detail analyses are made. It was found that spherical particles showed a uniform particle distribution in the bed, which resulted in uniform pressure drop along the bed height. However for particles with aspect ratios less than one (disk-shape), some particles were carried into the freeboard region, and the interface between the bed and freeboard was not easy to be determined. A few particle also intended to leave the bed. On the other hand, prolate particles showed different behaviour in the bed. They caused unstable interface and some flow channeling was observed for low liquid velocities. Because of the non-uniform particles flow pattern for particles with aspect ratios lower (oblate) and more (prolate) than one, the pressure drop distribution in the bed was not observed as uniform as what was found for spherical particles.Keywords: CFD, DEM, ellipsoid, fluidization, multiphase flow, non-spherical, simulation
Procedia PDF Downloads 31033981 Topology Optimization of Composite Structures with Material Nonlinearity
Authors: Mengxiao Li, Johnson Zhang
Abstract:
Currently, topology optimization technique is widely used to define the layout design of structures that are presented as truss-like topologies. However, due to the difficulty in combining optimization technique with more realistic material models where their nonlinear properties should be considered, the achieved optimized topologies are commonly unable to apply straight towards the practical design problems. This study presented an optimization procedure of composite structures where different elastic stiffness, yield criteria, and hardening models are assumed for the candidate materials. From the results, it can be concluded that a more explicit modeling has the significant influence on the resulting topologies. Also, the isotropic or kinematic hardening is important for elastoplastic structural optimization design. The capability of the proposed optimization procedure is shown through several cases.Keywords: topology optimization, material composition, nonlinear modeling, hardening rules
Procedia PDF Downloads 48233980 Digestion Optimization Algorithm: A Novel Bio-Inspired Intelligence for Global Optimization Problems
Authors: Akintayo E. Akinsunmade
Abstract:
The digestion optimization algorithm is a novel biological-inspired metaheuristic method for solving complex optimization problems. The algorithm development was inspired by studying the human digestive system. The algorithm mimics the process of food ingestion, breakdown, absorption, and elimination to effectively and efficiently search for optimal solutions. This algorithm was tested for optimal solutions on seven different types of optimization benchmark functions. The algorithm produced optimal solutions with standard errors, which were compared with the exact solution of the test functions.Keywords: bio-inspired algorithm, benchmark optimization functions, digestive system in human, algorithm development
Procedia PDF Downloads 833979 Artificial Intelligent Methodology for Liquid Propellant Engine Design Optimization
Authors: Hassan Naseh, Javad Roozgard
Abstract:
This paper represents the methodology based on Artificial Intelligent (AI) applied to Liquid Propellant Engine (LPE) optimization. The AI methodology utilized from Adaptive neural Fuzzy Inference System (ANFIS). In this methodology, the optimum objective function means to achieve maximum performance (specific impulse). The independent design variables in ANFIS modeling are combustion chamber pressure and temperature and oxidizer to fuel ratio and output of this modeling are specific impulse that can be applied with other objective functions in LPE design optimization. To this end, the LPE’s parameter has been modeled in ANFIS methodology based on generating fuzzy inference system structure by using grid partitioning, subtractive clustering and Fuzzy C-Means (FCM) clustering for both inferences (Mamdani and Sugeno) and various types of membership functions. The final comparing optimization results shown accuracy and processing run time of the Gaussian ANFIS Methodology between all methods.Keywords: ANFIS methodology, artificial intelligent, liquid propellant engine, optimization
Procedia PDF Downloads 58833978 Optimum Design of Grillage Systems Using Firefly Algorithm Optimization Method
Authors: F. Erdal, E. Dogan, F. E. Uz
Abstract:
In this study, firefly optimization based optimum design algorithm is presented for the grillage systems. Naming of the algorithm is derived from the fireflies, whose sense of movement is taken as a model in the development of the algorithm. Fireflies’ being unisex and attraction between each other constitute the basis of the algorithm. The design algorithm considers the displacement and strength constraints which are implemented from LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Construction). It selects the appropriate W (Wide Flange)-sections for the transverse and longitudinal beams of the grillage system among 272 discrete W-section designations given in LRFD-AISC so that the design limitations described in LRFD are satisfied and the weight of the system is confined to be minimal. Number of design examples is considered to demonstrate the efficiency of the algorithm presented.Keywords: firefly algorithm, steel grillage systems, optimum design, stochastic search techniques
Procedia PDF Downloads 43433977 Acceleration Techniques of DEM Simulation for Dynamics of Particle Damping
Authors: Masato Saeki
Abstract:
Presented herein is a novel algorithms for calculating the damping performance of particle dampers. The particle damper is a passive vibration control technique and has many practical applications due to simple design. It consists of granular materials constrained to move between two ends in the cavity of a primary vibrating system. The damping effect results from the exchange of momentum during the impact of granular materials against the wall of the cavity. This damping has the advantage of being independent of the environment. Therefore, particle damping can be applied in extreme temperature environments, where most conventional dampers would fail. It was shown experimentally in many papers that the efficiency of the particle dampers is high in the case of resonant vibration. In order to use the particle dampers effectively, it is necessary to solve the equations of motion for each particle, considering the granularity. The discrete element method (DEM) has been found to be effective for revealing the dynamics of particle damping. In this method, individual particles are assumed as rigid body and interparticle collisions are modeled by mechanical elements as springs and dashpots. However, the computational cost is significant since the equation of motion for each particle must be solved at each time step. In order to improve the computational efficiency of the DEM, the new algorithms are needed. In this study, new algorithms are proposed for implementing the high performance DEM. On the assumption that behaviors of the granular particles in the each divided area of the damper container are the same, the contact force of the primary system with all particles can be considered to be equal to the product of the divided number of the damper area and the contact force of the primary system with granular materials per divided area. This convenience makes it possible to considerably reduce the calculation time. The validity of this calculation method was investigated and the calculated results were compared with the experimental ones. This paper also presents the results of experimental studies of the performance of particle dampers. It is shown that the particle radius affect the noise level. It is also shown that the particle size and the particle material influence the damper performance.Keywords: particle damping, discrete element method (DEM), granular materials, numerical analysis, equivalent noise level
Procedia PDF Downloads 45333976 The Whale Optimization Algorithm and Its Implementation in MATLAB
Authors: S. Adhirai, R. P. Mahapatra, Paramjit Singh
Abstract:
Optimization is an important tool in making decisions and in analysing physical systems. In mathematical terms, an optimization problem is the problem of finding the best solution from among the set of all feasible solutions. The paper discusses the Whale Optimization Algorithm (WOA), and its applications in different fields. The algorithm is tested using MATLAB because of its unique and powerful features. The benchmark functions used in WOA algorithm are grouped as: unimodal (F1-F7), multimodal (F8-F13), and fixed-dimension multimodal (F14-F23). Out of these benchmark functions, we show the experimental results for F7, F11, and F19 for different number of iterations. The search space and objective space for the selected function are drawn, and finally, the best solution as well as the best optimal value of the objective function found by WOA is presented. The algorithmic results demonstrate that the WOA performs better than the state-of-the-art meta-heuristic and conventional algorithms.Keywords: optimization, optimal value, objective function, optimization problems, meta-heuristic optimization algorithms, Whale Optimization Algorithm, implementation, MATLAB
Procedia PDF Downloads 37133975 Engineered Bio-Coal from Pressed Seed Cake for Removal of 2, 4, 6-Trichlorophenol with Parametric Optimization Using Box–Behnken Method
Authors: Harsha Nagar, Vineet Aniya, Alka Kumari, Satyavathi B.
Abstract:
In the present study, engineered bio-coal was produced from pressed seed cake, which otherwise is non-edible in origin. The production process involves a slow pyrolysis wherein, based on the optimization of process parameters; a substantial reduction in H/C and O/C of 77% was achieved with respect to the original ratio of 1.67 and 0.8, respectively. The bio-coal, so the product was found to have a higher heating value of 29899 kJ/kg with surface area 17 m²/g and pore volume of 0.002 cc/g. The functional characterization of bio-coal and its subsequent modification was carried out to enhance its active sites, which were further used as an adsorbent material for removal of 2,4,6-Trichlorophenol (2,4,6-TCP) herbicide from the aqueous stream. The point of zero charge for the bio-coal was found to be pH < 3 where its surface is positively charged and attracts anions resulting in the maximum 2, 4, 6-TCP adsorption at pH 2.0. The parametric optimization of the adsorption process was studied based on the Box-Behken design with the desirability approach. The results showed optimum values of adsorption efficiency of 74.04% and uptake capacity of 118.336 mg/g for an initial metal concentration of 250 mg/l and particle size of 0.12 mm at pH 2.0 and 1 g/L of bio-coal loading. Negative Gibbs free energy change values indicated the feasibility of 2,4,6-TCP adsorption on biochar. Decreasing the ΔG values with the rise in temperature indicated high favourability at low temperatures. The equilibrium modeling results showed that both isotherms (Langmuir and Freundlich) accurately predicted the equilibrium data, which may be attributed to the different affinity of the functional groups of bio-coal for 2,4,6-TCP removal. The possible mechanism for 2,4,6-TCP adsorption is found to be physisorption (pore diffusion, p*_p electron donor-acceptor interaction, H-bonding, and van der Waals dispersion forces) and chemisorption (phenolic and amine groups chemical bonding) based on the kinetics data modeling.Keywords: engineered biocoal, 2, 4, 6-trichlorophenol, box behnken design, biosorption
Procedia PDF Downloads 11733974 Application of Additive Manufacturing for Production of Optimum Topologies
Authors: Mahdi Mottahedi, Peter Zahn, Armin Lechler, Alexander Verl
Abstract:
Optimal topology of components leads to the maximum stiffness with the minimum material use. For the generation of these topologies, normally algorithms are employed, which tackle manufacturing limitations, at the cost of the optimal result. The global optimum result with penalty factor one, however, cannot be fabricated with conventional methods. In this article, an additive manufacturing method is introduced, in order to enable the production of global topology optimization results. For a benchmark, topology optimization with higher and lower penalty factors are performed. Different algorithms are employed in order to interpret the results of topology optimization with lower factors in many microstructure layers. These layers are then joined to form the final geometry. The algorithms’ benefits are then compared experimentally and numerically for the best interpretation. The findings demonstrate that by implementation of the selected algorithm, the stiffness of the components produced with this method is higher than what could have been produced by conventional techniques.Keywords: topology optimization, additive manufacturing, 3D-printer, laminated object manufacturing
Procedia PDF Downloads 33933973 A Numerical Study on Electrophoresis of a Soft Particle with Charged Core Coated with Polyelectrolyte Layer
Authors: Partha Sarathi Majee, S. Bhattacharyya
Abstract:
Migration of a core-shell soft particle under the influence of an external electric field in an electrolyte solution is studied numerically. The soft particle is coated with a positively charged polyelectrolyte layer (PEL) and the rigid core is having a uniform surface charge density. The Darcy-Brinkman extended Navier-Stokes equations are solved for the motion of the ionized fluid, the non-linear Nernst-Planck equations for the ion transport and the Poisson equation for the electric potential. A pressure correction based iterative algorithm is adopted for numerical computations. The effects of convection on double layer polarization (DLP) and diffusion dominated counter ions penetration are investigated for a wide range of Debye layer thickness, PEL fixed surface charge density, and permeability of the PEL. Our results show that when the Debye layer is in order of the particle size, the DLP effect is significant and produces a reduction in electrophoretic mobility. However, the double layer polarization effect is negligible for a thin Debye layer or low permeable cases. The point of zero mobility and the existence of mobility reversal depending on the electrolyte concentration are also presented.Keywords: debye length, double layer polarization, electrophoresis, mobility reversal, soft particle
Procedia PDF Downloads 34533972 Control of Biofilm Formation and Inorganic Particle Accumulation on Reverse Osmosis Membrane by Hypochlorite Washing
Authors: Masaki Ohno, Cervinia Manalo, Tetsuji Okuda, Satoshi Nakai, Wataru Nishijima
Abstract:
Reverse osmosis (RO) membranes have been widely used for desalination to purify water for drinking and other purposes. Although at present most RO membranes have no resistance to chlorine, chlorine-resistant membranes are being developed. Therefore, direct chlorine treatment or chlorine washing will be an option in preventing biofouling on chlorine-resistant membranes. Furthermore, if particle accumulation control is possible by using chlorine washing, expensive pretreatment for particle removal can be removed or simplified. The objective of this study was to determine the effective hypochlorite washing condition required for controlling biofilm formation and inorganic particle accumulation on RO membrane in a continuous flow channel with RO membrane and spacer. In this study, direct chlorine washing was done by soaking fouled RO membranes in hypochlorite solution and fluorescence intensity was used to quantify biofilm on the membrane surface. After 48 h of soaking the membranes in high fouling potential waters, the fluorescence intensity decreased to 0 from 470 using the following washing conditions: 10 mg/L chlorine concentration, 2 times/d washing interval, and 30 min washing time. The chlorine concentration required to control biofilm formation decreased as the chlorine concentration (0.5–10 mg/L), the washing interval (1–4 times/d), or the washing time (1–30 min) increased. For the sample solutions used in the study, 10 mg/L chlorine concentration with 2 times/d interval, and 5 min washing time was required for biofilm control. The optimum chlorine washing conditions obtained from soaking experiments proved to be applicable also in controlling biofilm formation in continuous flow experiments. Moreover, chlorine washing employed in controlling biofilm with suspended particles resulted in lower amounts of organic (0.03 mg/cm2) and inorganic (0.14 mg/cm2) deposits on the membrane than that for sample water without chlorine washing (0.14 mg/cm2 and 0.33 mg/cm2, respectively). The amount of biofilm formed was 79% controlled by continuous washing with 10 mg/L of free chlorine concentration, and the inorganic accumulation amount decreased by 58% to levels similar to that of pure water with kaolin (0.17 mg/cm2) as feed water. These results confirmed the acceleration of particle accumulation due to biofilm formation, and that the inhibition of biofilm growth can almost completely reduce further particle accumulation. In addition, effective hypochlorite washing condition which can control both biofilm formation and particle accumulation could be achieved.Keywords: reverse osmosis, washing condition optimization, hypochlorous acid, biofouling control
Procedia PDF Downloads 35133971 Security System for Safe Transmission of Medical Image
Authors: Mohammed Jamal Al-Mansor, Kok Beng Gan
Abstract:
This paper develops an optimized embedding of payload in medical image by using genetic optimization. The goal is to preserve region of interest from being distorted because of the watermark. By using this developed system there is no need of manual defining of region of interest through experts as the system will apply the genetic optimization to select the parts of image that can carry the watermark with guaranteeing less distortion. The experimental results assure that genetic based optimization is useful for performing steganography with less mean square error percentage.Keywords: AES, DWT, genetic algorithm, watermarking
Procedia PDF Downloads 41133970 A Bacterial Foraging Optimization Algorithm Applied to the Synthesis of Polyacrylamide Hydrogels
Authors: Florin Leon, Silvia Curteanu
Abstract:
The Bacterial Foraging Optimization (BFO) algorithm is inspired by the behavior of bacteria such as Escherichia coli or Myxococcus xanthus when searching for food, more precisely the chemotaxis behavior. Bacteria perceive chemical gradients in the environment, such as nutrients, and also other individual bacteria, and move toward or in the opposite direction to those signals. The application example considered as a case study consists in establishing the dependency between the reaction yield of hydrogels based on polyacrylamide and the working conditions such as time, temperature, monomer, initiator, crosslinking agent and inclusion polymer concentrations, as well as type of the polymer added. This process is modeled with a neural network which is included in an optimization procedure based on BFO. An experimental study of BFO parameters is performed. The results show that the algorithm is quite robust and can obtain good results for diverse combinations of parameter values.Keywords: bacterial foraging, hydrogels, modeling and optimization, neural networks
Procedia PDF Downloads 15233969 Structural Parameter-Induced Focusing Pattern Transformation in CEA Microfluidic Device
Authors: Xin Shi, Wei Tan, Guorui Zhu
Abstract:
The contraction-expansion array (CEA) microfluidic device is widely used for particle focusing and particle separation. Without the introduction of external fields, it can manipulate particles using hydrodynamic forces, including inertial lift forces and Dean drag forces. The focusing pattern of the particles in a CEA channel can be affected by the structural parameter, block ratio, and flow streamlines. Here, two typical focusing patterns with five different structural parameters were investigated, and the force mechanism was analyzed. We present nine CEA channels with different aspect ratios based on the process of changing the particle equilibrium positions. The results show that 10-15 μm particles have the potential to generate a side focusing line as the structural parameter (¬R𝓌) increases. For a determined channel structure and target particles, when the Reynolds number (Rₑ) exceeds the critical value, the focusing pattern will transform from a single pattern to a double pattern. The parameter α/R𝓌 can be used to calculate the critical Reynolds number for the focusing pattern transformation. The results can provide guidance for microchannel design and biomedical analysis.Keywords: microfluidic, inertial focusing, particle separation, Dean flow
Procedia PDF Downloads 7933968 Roullete Wheel Selection Mechanism for Solving Travelling Salesman Problem in Ant Colony Optimization
Authors: Sourabh Joshi, Geetinder Kaur, Sarabjit Kaur, Gulwatanpreet Singh, Geetika Mannan
Abstract:
In this paper, we have use an algorithm that able to obtain an optimal solution to travelling salesman problem from a huge search space, quickly. This algorithm is based upon the ant colony optimization technique and employees roulette wheel selection mechanism. To illustrate it more clearly, a program has been implemented which is based upon this algorithm, that presents the changing process of route iteration in a more intuitive way. In the event, we had find the optimal path between hundred cities and also calculate the distance between two cities.Keywords: ant colony, optimization, travelling salesman problem, roulette wheel selection
Procedia PDF Downloads 441