Search results for: IT/OT convergence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 603

Search results for: IT/OT convergence

273 A Study on Mesh Size Dependency on Bed Expansion Zone in a Three-Phase Fluidized Bed Reactor

Authors: Liliana Patricia Olivo Arias

Abstract:

The present study focused on the hydrodynamic study in a three-phase fluidized bed reactor and the influence of important aspects, such as volume fractions (Hold up), velocity magnitude of gas, liquid and solid phases (hydrogen, gasoil, and gamma alumina), interactions of phases, through of drag models with the k-epsilon turbulence model. For this purpose was employed a Euler-Euler model and also considers the system is constituted of three phases, gaseous, liquid and solid, characterized by its physical and thermal properties, the transport processes that are developed within the transient regime. The proposed model of the three-phase fluidized bed reactor was solved numerically using the ANSYS-Fluent software with different mesh refinements on bed expansion zone in order to observe the influence of the hydrodynamic parameters and convergence criteria. With this model and the numerical simulations obtained for its resolution, it was possible to predict the results of the volume fractions (Hold ups) and the velocity magnitude for an unsteady system from the initial and boundaries conditions were established.

Keywords: three-phase fluidized bed system, CFD simulation, mesh dependency study, hydrodynamic study

Procedia PDF Downloads 166
272 Large Eddy Simulation of Particle Clouds Using Open-Source CFD

Authors: Ruo-Qian Wang

Abstract:

Open-source CFD has become increasingly popular and promising. The recent progress in multiphase flow enables new CFD applications, which provides an economic and flexible research tool for complex flow problems. Our numerical study using four-way coupling Euler-Lagrangian Large-Eddy Simulations to resolve particle cloud dynamics with OpenFOAM and CFDEM will be introduced: The fractioned Navier-Stokes equations are numerically solved for fluid phase motion, solid phase motion is addressed by Lagrangian tracking for every single particle, and total momentum is conserved by fluid-solid inter-phase coupling. The grid convergence test was performed, which proves the current resolution of the mesh is appropriate. Then, we validated the code by comparing numerical results with experiments in terms of particle cloud settlement and growth. A good comparison was obtained showing reliability of the present numerical schemes. The time and height at phase separations were defined and analyzed for a variety of initial release conditions. Empirical formulas were drawn to fit the results.

Keywords: four-way coupling, dredging, land reclamation, multiphase flows, oil spill

Procedia PDF Downloads 429
271 Polynomial Chaos Expansion Combined with Exponential Spline for Singularly Perturbed Boundary Value Problems with Random Parameter

Authors: W. K. Zahra, M. A. El-Beltagy, R. R. Elkhadrawy

Abstract:

So many practical problems in science and technology developed over the past decays. For instance, the mathematical boundary layer theory or the approximation of solution for different problems described by differential equations. When such problems consider large or small parameters, they become increasingly complex and therefore require the use of asymptotic methods. In this work, we consider the singularly perturbed boundary value problems which contain very small parameters. Moreover, we will consider these perturbation parameters as random variables. We propose a numerical method to solve this kind of problems. The proposed method is based on an exponential spline, Shishkin mesh discretization, and polynomial chaos expansion. The polynomial chaos expansion is used to handle the randomness exist in the perturbation parameter. Furthermore, the Monte Carlo Simulations (MCS) are used to validate the solution and the accuracy of the proposed method. Numerical results are provided to show the applicability and efficiency of the proposed method, which maintains a very remarkable high accuracy and it is ε-uniform convergence of almost second order.

Keywords: singular perturbation problem, polynomial chaos expansion, Shishkin mesh, two small parameters, exponential spline

Procedia PDF Downloads 160
270 Worst-Case Load Shedding in Electric Power Networks

Authors: Fu Lin

Abstract:

We consider the worst-case load-shedding problem in electric power networks where a number of transmission lines are to be taken out of service. The objective is to identify a prespecified number of line outages that lead to the maximum interruption of power generation and load at the transmission level, subject to the active power-flow model, the load and generation capacity of the buses, and the phase-angle limit across the transmission lines. For this nonlinear model with binary constraints, we show that all decision variables are separable except for the nonlinear power-flow equations. We develop an iterative decomposition algorithm, which converts the worst-case load shedding problem into a sequence of small subproblems. We show that the subproblems are either convex problems that can be solved efficiently or nonconvex problems that have closed-form solutions. Consequently, our approach is scalable for large networks. Furthermore, we prove the convergence of our algorithm to a critical point, and the objective value is guaranteed to decrease throughout the iterations. Numerical experiments with IEEE test cases demonstrate the effectiveness of the developed approach.

Keywords: load shedding, power system, proximal alternating linearization method, vulnerability analysis

Procedia PDF Downloads 140
269 Eros and Postmodern Nihilism in Don Delillo’s Zero K (2016): A Psychoanalytical Reading

Authors: Nouioua Wafa

Abstract:

It is broadly accepted that the existence of postmodern individuals is distinguished by a predominant presence of skepticism, anxiety and loneliness. This social unrest is the consequence of a drastic shift in how reality and meaning are conceived, which has been replaced by something that is referred to in media theory and criticism as hyperreality. The purpose of this paper is to investigate the hyperreality that exists in the postmodern nihilistic American community that Don Delillo depicts in Zero K (2016) through the use of Jean Baudrillard's notions of Simulacra and Simulations. It is a troubled technological late capitalist society obsessed with immortality and fear of demise, and ergo it is an appropriate reading to implement Sigmund Freud’s theory of life drive (Eros), which refers to the life instinct fundamental to all humans and the urge to support productivity and construction. The results obtained from a qualitative analysis of Zero K indicate the presence of a clash between the character’s life drive and fear of mortality. In an effort to escape loneliness and death, the character Ross Lockhart undergoes, after a moment of hesitation, cryonic freezing in the convergence to preserve his life as well as that of his wife Artis, yet his son Jeffery is firmly convinced of the uselessness of combating the inevitable death.

Keywords: Don DeLillo, Eros, postmodernism Nihilism, Zero K

Procedia PDF Downloads 82
268 Eros and Postmodern Nihilism in Don Delillo’s Zero K (2016): A Psychoanalytical Reading

Authors: Wafa Nouioua

Abstract:

It is broadly accepted that the existence of postmodern individuals is distinguished by a predominant presence of skepticism, anxiety and loneliness. This social unrest is the consequence of a drastic shift in how reality and meaning are conceived, which has been replaced by something that is referred to in media theory and criticism as hyperreality. The purpose of this paper is to investigate the hyperreality that exists in the postmodern nihilistic American community that Don Delillo depicts in Zero K (2016) through the use of Jean Baudrillard notions of Simulacra and Simulations. It is a troubled technological late capitalist society obsessed with immortality and fear of demise, ergo it is an appropriate reading to implement Sigmund Freud’s theory of life drive (Eros), which refers to the life instinct fundamental to all humans and the urge to support productivity and construction. The results obtained from a qualitative analysis of Zero K indicate the presence of a clash between the character’s life drive and fear of mortality. In an effort to escape loneliness and death, the character Ross Lockhart undergoes, after a moment of hesitation, cryonic freezing in the convergence to preserve his life as well as that of his wife Artis, yet his son Jeffery is firmly convinced of the uselessness of combating the inevitable death.

Keywords: Don Dellilo, Eros, Postmodernism Nihilism, Zero K

Procedia PDF Downloads 74
267 Iterative Solver for Solving Large-Scale Frictional Contact Problems

Authors: Thierno Diop, Michel Fortin, Jean Deteix

Abstract:

Since the precise formulation of the elastic part is irrelevant for the description of the algorithm, we shall consider a generic case. In practice, however, we will have to deal with a non linear material (for instance a Mooney-Rivlin model). We are interested in solving a finite element approximation of the problem, leading to large-scale non linear discrete problems and, after linearization, to large linear systems and ultimately to calculations needing iterative methods. This also implies that penalty method, and therefore augmented Lagrangian method, are to be banned because of their negative effect on the condition number of the underlying discrete systems and thus on the convergence of iterative methods. This is in rupture to the mainstream of methods for contact in which augmented Lagrangian is the principal tool. We shall first present the problem and its discretization; this will lead us to describe a general solution algorithm relying on a preconditioner for saddle-point problems which we shall describe in some detail as it is not entirely standard. We will propose an iterative approach for solving three-dimensional frictional contact problems between elastic bodies, including contact with a rigid body, contact between two or more bodies and also self-contact.

Keywords: frictional contact, three-dimensional, large-scale, iterative method

Procedia PDF Downloads 211
266 Using Personalized Spiking Neural Networks, Distinct Techniques for Self-Governing

Authors: Brwa Abdulrahman Abubaker

Abstract:

Recently, there has been a lot of interest in the difficult task of applying reinforcement learning to autonomous mobile robots. Conventional reinforcement learning (TRL) techniques have many drawbacks, such as lengthy computation times, intricate control frameworks, a great deal of trial and error searching, and sluggish convergence. In this paper, a modified Spiking Neural Network (SNN) is used to offer a distinct method for autonomous mobile robot learning and control in unexpected surroundings. As a learning algorithm, the suggested model combines dopamine modulation with spike-timing-dependent plasticity (STDP). In order to create more computationally efficient, biologically inspired control systems that are adaptable to changing settings, this work uses the effective and physiologically credible Izhikevich neuron model. This study is primarily focused on creating an algorithm for target tracking in the presence of obstacles. Results show that the SNN trained with three obstacles yielded an impressive 96% success rate for our proposal, with collisions happening in about 4% of the 214 simulated seconds.

Keywords: spiking neural network, spike-timing-dependent plasticity, dopamine modulation, reinforcement learning

Procedia PDF Downloads 21
265 Use the Null Space to Create Starting Point for Stochastic Programming

Authors: Ghussoun Al-Jeiroudi

Abstract:

Stochastic programming is one of the powerful technique which is used to solve real-life problems. Hence, the data of real-life problems is subject to significant uncertainty. Uncertainty is well studied and modeled by stochastic programming. Each day, problems become bigger and bigger and the need for a tool, which does deal with large scale problems, increase. Interior point method is a perfect tool to solve such problems. Interior point method is widely employed to solve the programs, which arise from stochastic programming. It is an iterative technique, so it is required a starting point. Well design starting point plays an important role in improving the convergence speed. In this paper, we propose a starting point for interior point method for multistage stochastic programming. Usually, the optimal solution of stage k+1 is used as starting point for the stage k. This point has the advantage of being close to the solution of the current program. However, it has a disadvantage; it is not in the feasible region of the current program. So, we suggest to take this point and modifying it. That is by adding to it a vector in the null space of the matrix of the unchanged constraints because the solution will change only in the null space of this matrix.

Keywords: interior point methods, stochastic programming, null space, starting points

Procedia PDF Downloads 418
264 Numerical Study on Pretensioned Bridge Girder Using Thermal Strain Technique

Authors: Prashant Motwani, Arghadeep Laskar

Abstract:

The transfer of prestress force from prestressing strands to the surrounding concrete is dependent on the bond between the two materials. It is essential to understand the actual bond stress distribution along the transfer length to determine the transfer zone in pre-tensioned concrete. A 3-D nonlinear finite element model has been developed to simulate the transfer of prestress force from steel to concrete in pre-tensioned bridge girders through thermal strain technique using commercially available package ABAQUS. Full-scale bridge girder has been analyzed with thermal strain approach where the damage plasticity constitutive model has been used to model concrete. Parameters such as concrete strain, effective prestress, upward camber and longitudinal stress have been compared with analytical results. The discrepancy between numerical and analytical values was within 20%. The paper also presents a convergence study on mesh density and aspect ratio of the elements to perform the finite element study.

Keywords: aspect ratio, bridge girder, centre of gravity of strand, mesh density, finite element model, pretensioned bridge girder

Procedia PDF Downloads 243
263 The Convergence of IoT and Machine Learning: A Survey of Real-time Stress Detection System

Authors: Shreyas Gambhirrao, Aditya Vichare, Aniket Tembhurne, Shahuraj Bhosale

Abstract:

In today's rapidly evolving environment, stress has emerged as a significant health concern across different age groups. Stress that isn't controlled, whether it comes from job responsibilities, health issues, or the never-ending news cycle, can have a negative effect on our well-being. The problem is further aggravated by the ongoing connection to technology. In this high-tech age, identifying and controlling stress is vital. In order to solve this health issue, the study focuses on three key metrics for stress detection: body temperature, heart rate, and galvanic skin response (GSR). These parameters along with the Support Vector Machine classifier assist the system to categorize stress into three groups: 1) Stressed, 2) Not stressed, and 3) Moderate stress. Proposed training model, a NodeMCU combined with particular sensors collects data in real-time and rapidly categorizes individuals based on their stress levels. Real-time stress detection is made possible by this creative combination of hardware and software.

Keywords: real time stress detection, NodeMCU, sensors, heart-rate, body temperature, galvanic skin response (GSR), support vector machine

Procedia PDF Downloads 72
262 Improved Multi-Objective Particle Swarm Optimization Applied to Design Problem

Authors: Kapse Swapnil, K. Shankar

Abstract:

Aiming at optimizing the weight and deflection of cantilever beam subjected to maximum stress and maximum deflection, Multi-objective Particle Swarm Optimization (MOPSO) with Utopia Point based local search is implemented. Utopia point is used to govern the search towards the Pareto Optimal set. The elite candidates obtained during the iterations are stored in an archive according to non-dominated sorting and also the archive is truncated based on least crowding distance. Local search is also performed on elite candidates and the most diverse particle is selected as the global best. This method is implemented on standard test functions and it is observed that the improved algorithm gives better convergence and diversity as compared to NSGA-II in fewer iterations. Implementation on practical structural problem shows that in 5 to 6 iterations, the improved algorithm converges with better diversity as evident by the improvement of cantilever beam on an average of 0.78% and 9.28% in the weight and deflection respectively compared to NSGA-II.

Keywords: Utopia point, multi-objective particle swarm optimization, local search, cantilever beam

Procedia PDF Downloads 520
261 High Performance Field Programmable Gate Array-Based Stochastic Low-Density Parity-Check Decoder Design for IEEE 802.3an Standard

Authors: Ghania Zerari, Abderrezak Guessoum, Rachid Beguenane

Abstract:

This paper introduces high-performance architecture for fully parallel stochastic Low-Density Parity-Check (LDPC) field programmable gate array (FPGA) based LDPC decoder. The new approach is designed to decrease the decoding latency and to reduce the FPGA logic utilisation. To accomplish the target logic utilisation reduction, the routing of the proposed sub-variable node (VN) internal memory is designed to utilize one slice distributed RAM. Furthermore, a VN initialization, using the channel input probability, is achieved to enhance the decoder convergence, without extra resources and without integrating the output saturated-counters. The Xilinx FPGA implementation, of IEEE 802.3an standard LDPC code, shows that the proposed decoding approach attain high performance along with reduction of FPGA logic utilisation.

Keywords: low-density parity-check (LDPC) decoder, stochastic decoding, field programmable gate array (FPGA), IEEE 802.3an standard

Procedia PDF Downloads 297
260 A Unified Approach for Naval Telecommunication Architectures

Authors: Y. Lacroix, J.-F. Malbranque

Abstract:

We present a chronological evolution for naval telecommunication networks. We distinguish periods: with or without multiplexers, with switch systems, with federative systems, with medium switching, and with medium switching with wireless networks. This highlights the introduction of new layers and technology in the architecture. These architectures are presented using layer models of transmission, in a unified way, which enables us to integrate pre-existing models. A ship of a naval fleet has internal communications (i.e. applications' networks of the edge) and external communications (i.e. the use of the means of transmission between edges). We propose architectures, deduced from the layer model, which are the point of convergence between the networks on board and the HF, UHF radio, and satellite resources. This modelling allows to consider end-to-end naval communications, and in a more global way, that is from the user on board towards the user on shore, including transmission and networks on the shore side. The new architectures need take care of quality of services for end-to-end communications, the more remote control develops a lot and will do so in the future. Naval telecommunications will be more and more complex and will use more and more advanced technologies, it will thus be necessary to establish clear global communication schemes to grant consistency of the architectures. Our latest model has been implemented in a military naval situation, and serves as the basic architecture for the RIFAN2 network.

Keywords: equilibrium beach profile, eastern tombolo of Giens, potential function, erosion

Procedia PDF Downloads 291
259 Improved Multi-Channel Separation Algorithm for Satellite-Based Automatic Identification System Signals Based on Artificial Bee Colony and Adaptive Moment Estimation

Authors: Peng Li, Luan Wang, Haifeng Fei, Renhong Xie, Yibin Rui, Shanhong Guo

Abstract:

The applications of satellite-based automatic identification system (S-AIS) pave the road for wide-range maritime traffic monitoring and management. But the coverage of satellite’s view includes multiple AIS self-organizing networks, which leads to the collision of AIS signals from different cells. The contribution of this work is to propose an improved multi-channel blind source separation algorithm based on Artificial Bee Colony (ABC) and advanced stochastic optimization to perform separation of the mixed AIS signals. The proposed approach adopts modified ABC algorithm to get an optimized initial separating matrix, which can expedite the initialization bias correction, and utilizes the Adaptive Moment Estimation (Adam) to update the separating matrix by adjusting the learning rate for each parameter dynamically. Simulation results show that the algorithm can speed up convergence and lead to better performance in separation accuracy.

Keywords: satellite-based automatic identification system, blind source separation, artificial bee colony, adaptive moment estimation

Procedia PDF Downloads 186
258 Quasi-Photon Monte Carlo on Radiative Heat Transfer: An Importance Sampling and Learning Approach

Authors: Utkarsh A. Mishra, Ankit Bansal

Abstract:

At high temperature, radiative heat transfer is the dominant mode of heat transfer. It is governed by various phenomena such as photon emission, absorption, and scattering. The solution of the governing integrodifferential equation of radiative transfer is a complex process, more when the effect of participating medium and wavelength properties are taken into consideration. Although a generic formulation of such radiative transport problem can be modeled for a wide variety of problems with non-gray, non-diffusive surfaces, there is always a trade-off between simplicity and accuracy of the problem. Recently, solutions of complicated mathematical problems with statistical methods based on randomization of naturally occurring phenomena have gained significant importance. Photon bundles with discrete energy can be replicated with random numbers describing the emission, absorption, and scattering processes. Photon Monte Carlo (PMC) is a simple, yet powerful technique, to solve radiative transfer problems in complicated geometries with arbitrary participating medium. The method, on the one hand, increases the accuracy of estimation, and on the other hand, increases the computational cost. The participating media -generally a gas, such as CO₂, CO, and H₂O- present complex emission and absorption spectra. To model the emission/absorption accurately with random numbers requires a weighted sampling as different sections of the spectrum carries different importance. Importance sampling (IS) was implemented to sample random photon of arbitrary wavelength, and the sampled data provided unbiased training of MC estimators for better results. A better replacement to uniform random numbers is using deterministic, quasi-random sequences. Halton, Sobol, and Faure Low-Discrepancy Sequences are used in this study. They possess better space-filling performance than the uniform random number generator and gives rise to a low variance, stable Quasi-Monte Carlo (QMC) estimators with faster convergence. An optimal supervised learning scheme was further considered to reduce the computation costs of the PMC simulation. A one-dimensional plane-parallel slab problem with participating media was formulated. The history of some randomly sampled photon bundles is recorded to train an Artificial Neural Network (ANN), back-propagation model. The flux was calculated using the standard quasi PMC and was considered to be the training target. Results obtained with the proposed model for the one-dimensional problem are compared with the exact analytical and PMC model with the Line by Line (LBL) spectral model. The approximate variance obtained was around 3.14%. Results were analyzed with respect to time and the total flux in both cases. A significant reduction in variance as well a faster rate of convergence was observed in the case of the QMC method over the standard PMC method. However, the results obtained with the ANN method resulted in greater variance (around 25-28%) as compared to the other cases. There is a great scope of machine learning models to help in further reduction of computation cost once trained successfully. Multiple ways of selecting the input data as well as various architectures will be tried such that the concerned environment can be fully addressed to the ANN model. Better results can be achieved in this unexplored domain.

Keywords: radiative heat transfer, Monte Carlo Method, pseudo-random numbers, low discrepancy sequences, artificial neural networks

Procedia PDF Downloads 223
257 Finite Element Analysis of Thermally-Induced Bistable Plate Using Four Plate Elements

Authors: Jixiao Tao, Xiaoqiao He

Abstract:

The present study deals with the finite element (FE) analysis of thermally-induced bistable plate using various plate elements. The quadrilateral plate elements include the 4-node conforming plate element based on the classical laminate plate theory (CLPT), the 4-node and 9-node Mindlin plate element based on the first-order shear deformation laminated plate theory (FSDT), and a displacement-based 4-node quadrilateral element (RDKQ-NL20). Using the von-Karman’s large deflection theory and the total Lagrangian (TL) approach, the nonlinear FE governing equations for plate under thermal load are derived. Convergence analysis for four elements is first conducted. These elements are then used to predict the stable shapes of thermally-induced bistable plate. Numerical test shows that the plate element based on FSDT, namely the 4-node and 9-node Mindlin, and the RDKQ-NL20 plate element can predict two stable cylindrical shapes while the 4-node conforming plate predicts a saddles shape. Comparing the simulation results with ABAQUS, the RDKQ-NL20 element shows the best accuracy among all the elements.

Keywords: Bistable, finite element method, geometrical nonlinearity, quadrilateral plate elements

Procedia PDF Downloads 220
256 Regionalism or Ladder-Up: A Theoretical Perspective of Association of Southeast Asian Nations’ Reactions to Belt and Road Initiative

Authors: Yunqi Wang

Abstract:

As a vital region to the Chinese Belt and Road Initiative (BRI), members of the Association of Southeast Asian Nations (ASEAN) have responded to the grand strategy differently. Some expressed fervent support, while others played the 'hedging' card between great powers. This paper explores the underlying rationale behind such complexity by proposing two theoretical explanations: a Regionalism Hypothesis, where countries respond with hedging, balancing, and bandwagoning behaviours in line with national interests and norm-based 'ASEAN-Way'; and a Ladder-up Hypothesis, where countries consider the initiative as an incentive to remove bottlenecks of climbing up the economic ladder in Rostow's stage of the growth model. By analysing reactions from Myanmar, Laos, Indonesia, and Singapore, two patterns are observed. On an empirical note, the more developed economies are more inclined to the Regionalist explanation. On a theoretical note, there has been a gradual convergence between the two explanations, given the impact of economic globalisation on ASEAN. This paper will contribute to the current theoretical vacancy in the study of ASEAN and BRI by capturing the particular norms shared by this regional entity.

Keywords: ASEAN, belt and road initiative, hedging, Rostow's stages of growth, regionalism

Procedia PDF Downloads 117
255 Heuristic Search Algorithm (HSA) for Enhancing the Lifetime of Wireless Sensor Networks

Authors: Tripatjot S. Panag, J. S. Dhillon

Abstract:

The lifetime of a wireless sensor network can be effectively increased by using scheduling operations. Once the sensors are randomly deployed, the task at hand is to find the largest number of disjoint sets of sensors such that every sensor set provides complete coverage of the target area. At any instant, only one of these disjoint sets is switched on, while all other are switched off. This paper proposes a heuristic search method to find the maximum number of disjoint sets that completely cover the region. A population of randomly initialized members is made to explore the solution space. A set of heuristics has been applied to guide the members to a possible solution in their neighborhood. The heuristics escalate the convergence of the algorithm. The best solution explored by the population is recorded and is continuously updated. The proposed algorithm has been tested for applications which require sensing of multiple target points, referred to as point coverage applications. Results show that the proposed algorithm outclasses the existing algorithms. It always finds the optimum solution, and that too by making fewer number of fitness function evaluations than the existing approaches.

Keywords: coverage, disjoint sets, heuristic, lifetime, scheduling, Wireless sensor networks, WSN

Procedia PDF Downloads 452
254 Conventional and Islamic Perspective in Accounting: Potential for Alternative Reporting Framework

Authors: Shibly Abdullah

Abstract:

This paper provides an overview of fundamental philosophical and functional differences in conventional and Islamic accounting. The aim of this research is to undertake a detailed analysis focus on specific illustrations drawn from both these systems and highlight how these differences implicate in recording financial transactions and preparation of financial reports for a range of stakeholders. Accounting as being universally considered as a platform for providing a ‘true and fair’ view of corporate entities can be challenged in the current world view, as the business environment has evolved and transformed significantly. Growth of the non-traditional corporate entity such as Islamic financial institutions, fundamentally questions the applicability of conventional accounting standards in preparation of Shariah-compliant financial reporting. Coupled with this, there are significant concerns about the wider applicability of Islamic accounting standards and framework in order to achieve reporting practices satisfying the information needs generally. Against the backdrop of such a context, this paper raises fundamental question as to how potential convergence could be achieved between these two systems in order to provide users’ a transparent and comparable state of financial information resulting in an alternative framework of financial reporting.

Keywords: accounting, conventional accounting, corporate reporting, Islamic accounting

Procedia PDF Downloads 282
253 Inverse Heat Conduction Analysis of Cooling on Run-Out Tables

Authors: M. S. Gadala, Khaled Ahmed, Elasadig Mahdi

Abstract:

In this paper, we introduced a gradient-based inverse solver to obtain the missing boundary conditions based on the readings of internal thermocouples. The results show that the method is very sensitive to measurement errors, and becomes unstable when small time steps are used. The artificial neural networks are shown to be capable of capturing the whole thermal history on the run-out table, but are not very effective in restoring the detailed behavior of the boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary condition profile is different. GA and PSO are more effective in finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear cases. However, their convergence takes longer. A variation of the basic PSO, called CRPSO, showed the best performance among the three versions. Also, PSO proved to be effective in handling noisy data, especially when its performance parameters were tuned. An increase in the self-confidence parameter was also found to be effective, as it increased the global search capabilities of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it combines the efficiency and effectiveness required by these problems.

Keywords: inverse analysis, function specification, neural net works, particle swarm, run-out table

Procedia PDF Downloads 240
252 A Comparative Study of the Maximum Power Point Tracking Methods for PV Systems Using Boost Converter

Authors: M. Doumi, A. Miloudi, A.G. Aissaoui, K. Tahir, C. Belfedal, S. Tahir

Abstract:

The studies on the photovoltaic system are extensively increasing because of a large, secure, essentially exhaustible and broadly available resource as a future energy supply. However, the output power induced in the photovoltaic modules is influenced by an intensity of solar cell radiation, temperature of the solar cells and so on. Therefore, to maximize the efficiency of the photovoltaic system, it is necessary to track the maximum power point of the PV array, for this Maximum Power Point Tracking (MPPT) technique is used. These algorithms are based on the Perturb-Observe, Conductance-Increment and the Fuzzy Logic methods. These techniques vary in many aspects as: simplicity, convergence speed, digital or analogical implementation, sensors required, cost, range of effectiveness, and in other aspects. This paper presents a comparative study of three widely-adopted MPPT algorithms; their performance is evaluated on the energy point of view, by using the simulation tool Simulink®, considering different solar irradiance variations. MPPT using fuzzy logic shows superior performance and more reliable control to the other methods for this application.

Keywords: photovoltaic system, MPPT, perturb and observe (P&O), incremental conductance (INC), Fuzzy Logic (FLC)

Procedia PDF Downloads 411
251 Human Rights Violation in Modern Society

Authors: Shenouda Salib Hosni Rofail

Abstract:

The interface between development and human rights has long been the subject of scholarly debate. As a result, a set of principles ranging from the right to development to a human rights-based approach to development has been adopted to understand the dynamics between the two concepts. Despite these attempts, the exact link between development and human rights is not yet fully understood. However, the inevitable interdependence between the two concepts and the idea that development efforts must be made while respecting human rights have gained prominence in recent years. On the other hand, the emergence of sustainable development as a widely accepted approach to development goals and policies further complicates this unresolved convergence. The place of sustainable development in the human rights discourse and its role in ensuring the sustainability of development programs require systematic research. The aim of this article is, therefore, to examine the relationship between development and human rights, with a particular focus on the place of the principles of sustainable development in international human rights law. It will continue to examine whether it recognizes the right to sustainable development. Thus, the Article states that the principles of sustainable development are recognized directly or implicitly in various human rights instruments, which is an affirmative answer to the question posed above. Accordingly, this document scrutinizes international and regional human rights instruments, as well as the case law and interpretations of human rights bodies, to support this hypothesis.

Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security.

Procedia PDF Downloads 50
250 Adopting Flocks of Birds Approach to Predator for Anomalies Detection on Industrial Control Systems

Authors: M. Okeke, A. Blyth

Abstract:

Industrial Control Systems (ICS) such as Supervisory Control And Data Acquisition (SCADA) can be seen in many different critical infrastructures, from nuclear management to utility, medical equipment, power, waste and engine management on ships and planes. The role SCADA plays in critical infrastructure has resulted in a call to secure them. Many lives depend on it for daily activities and the attack vectors are becoming more sophisticated. Hence, the security of ICS is vital as malfunction of it might result in huge risk. This paper describes how the application of Prey Predator (PP) approach in flocks of birds could enhance the detection of malicious activities on ICS. The PP approach explains how these animals in groups or flocks detect predators by following some simple rules. They are not necessarily very intelligent animals but their approach in solving complex issues such as detection through corporation, coordination and communication worth emulating. This paper will emulate flocking behavior seen in birds in detecting predators. The PP approach will adopt six nearest bird approach in detecting any predator. Their local and global bests are based on the individual detection as well as group detection. The PP algorithm was designed following MapReduce methodology that follows a Split Detection Convergence (SDC) approach.

Keywords: artificial life, industrial control system (ICS), IDS, prey predator (PP), SCADA, SDC

Procedia PDF Downloads 301
249 Methaheuristic Bat Algorithm in Training of Feed-Forward Neural Network for Stock Price Prediction

Authors: Marjan Golmaryami, Marzieh Behzadi

Abstract:

Recent developments in stock exchange highlight the need for an efficient and accurate method that helps stockholders make better decision. Since stock markets have lots of fluctuations during the time and different effective parameters, it is difficult to make good decisions. The purpose of this study is to employ artificial neural network (ANN) which can deal with time series data and nonlinear relation among variables to forecast next day stock price. Unlike other evolutionary algorithms which were utilized in stock exchange prediction, we trained our proposed neural network with metaheuristic bat algorithm, with fast and powerful convergence and applied it in stock price prediction for the first time. In order to prove the performance of the proposed method, this research selected a 7 year dataset from Parsian Bank stocks and after imposing data preprocessing, used 3 types of ANN (back propagation-ANN, particle swarm optimization-ANN and bat-ANN) to predict the closed price of stocks. Afterwards, this study engaged MATLAB to simulate 3 types of ANN, with the scoring target of mean absolute percentage error (MAPE). The results may be adapted to other companies stocks too.

Keywords: artificial neural network (ANN), bat algorithm, particle swarm optimization algorithm (PSO), stock exchange

Procedia PDF Downloads 548
248 Energy Efficient Clustering with Adaptive Particle Swarm Optimization

Authors: KumarShashvat, ArshpreetKaur, RajeshKumar, Raman Chadha

Abstract:

Wireless sensor networks have principal characteristic of having restricted energy and with limitation that energy of the nodes cannot be replenished. To increase the lifetime in this scenario WSN route for data transmission is opted such that utilization of energy along the selected route is negligible. For this energy efficient network, dandy infrastructure is needed because it impinges the network lifespan. Clustering is a technique in which nodes are grouped into disjoints and non–overlapping sets. In this technique data is collected at the cluster head. In this paper, Adaptive-PSO algorithm is proposed which forms energy aware clusters by minimizing the cost of locating the cluster head. The main concern is of the suitability of the swarms by adjusting the learning parameters of PSO. Particle Swarm Optimization converges quickly at the beginning stage of the search but during the course of time, it becomes stable and may be trapped in local optima. In suggested network model swarms are given the intelligence of the spiders which makes them capable enough to avoid earlier convergence and also help them to escape from the local optima. Comparison analysis with traditional PSO shows that new algorithm considerably enhances the performance where multi-dimensional functions are taken into consideration.

Keywords: Particle Swarm Optimization, adaptive – PSO, comparison between PSO and A-PSO, energy efficient clustering

Procedia PDF Downloads 246
247 The Fusion of Blockchain and AI in Supply Chain Finance: Scalability in Distributed Systems

Authors: Wu You, Burra Venkata Durga Kumar

Abstract:

This study examines the promising potential of integrating Blockchain and Artificial Intelligence (AI) technologies to scalability in Distributed Systems within the field of supply chain finance. The finance industry is continually confronted with scalability challenges in its Distributed Systems, particularly within the supply chain finance sector, impacting efficiency and security. Blockchain, with its inherent attributes of high scalability and secure distributed ledger system, coupled with AI's strengths in optimizing data processing and decision-making, holds the key to innovating the industry's approach to these issues. This study elucidates the synergistic interplay between Blockchain and AI, detailing how their fusion can drive a significant transformation in the supply chain finance sector's Distributed Systems. It offers specific use-cases within this field to illustrate the practical implications and potential benefits of this technological convergence. The study also discusses future possibilities and current challenges in implementing this groundbreaking approach within the context of supply chain finance. It concludes that the intersection of Blockchain and AI could ignite a new epoch of enhanced efficiency, security, and transparency in the Distributed Systems of supply chain finance within the financial industry.

Keywords: blockchain, artificial intelligence (AI), scaled distributed systems, supply chain finance, efficiency and security

Procedia PDF Downloads 93
246 Support Vector Regression Combined with Different Optimization Algorithms to Predict Global Solar Radiation on Horizontal Surfaces in Algeria

Authors: Laidi Maamar, Achwak Madani, Abdellah El Ahdj Abdellah

Abstract:

The aim of this work is to use Support Vector regression (SVR) combined with dragonfly, firefly, Bee Colony and particle swarm Optimization algorithm to predict global solar radiation on horizontal surfaces in some cities in Algeria. Combining these optimization algorithms with SVR aims principally to enhance accuracy by fine-tuning the parameters, speeding up the convergence of the SVR model, and exploring a larger search space efficiently; these parameters are the regularization parameter (C), kernel parameters, and epsilon parameter. By doing so, the aim is to improve the generalization and predictive accuracy of the SVR model. Overall, the aim is to leverage the strengths of both SVR and optimization algorithms to create a more powerful and effective regression model for various cities and under different climate conditions. Results demonstrate close agreement between predicted and measured data in terms of different metrics. In summary, SVM has proven to be a valuable tool in modeling global solar radiation, offering accurate predictions and demonstrating versatility when combined with other algorithms or used in hybrid forecasting models.

Keywords: support vector regression (SVR), optimization algorithms, global solar radiation prediction, hybrid forecasting models

Procedia PDF Downloads 35
245 Investigating Safe Operation Condition for Iterative Learning Control under Load Disturbances Effect in Singular Values

Authors: Muhammad A. Alsubaie

Abstract:

An iterative learning control framework designed in state feedback structure suffers a lack in investigating load disturbance considerations. The presented work discusses the controller previously designed, highlights the disturbance problem, finds new conditions using singular value principle to assure safe operation conditions with error convergence and reference tracking under the influence of load disturbance. It is known that periodic disturbances can be represented by a delay model in a positive feedback loop acting on the system input. This model can be manipulated by isolating the delay model and finding a controller for the overall system around the delay model to remedy the periodic disturbances using the small signal theorem. The overall system is the base for control design and load disturbance investigation. The major finding of this work is the load disturbance condition found which clearly sets safe operation condition under the influence of load disturbances such that the error tends to nearly zero as the system keeps operating trial after trial.

Keywords: iterative learning control, singular values, state feedback, load disturbance

Procedia PDF Downloads 158
244 Rule Based Architecture for Collaborative Multidisciplinary Aircraft Design Optimisation

Authors: Nickolay Jelev, Andy Keane, Carren Holden, András Sóbester

Abstract:

In aircraft design, the jump from the conceptual to preliminary design stage introduces a level of complexity which cannot be realistically handled by a single optimiser, be that a human (chief engineer) or an algorithm. The design process is often partitioned along disciplinary lines, with each discipline given a level of autonomy. This introduces a number of challenges including, but not limited to: coupling of design variables; coordinating disciplinary teams; handling of large amounts of analysis data; reaching an acceptable design within time constraints. A number of classical Multidisciplinary Design Optimisation (MDO) architectures exist in academia specifically designed to address these challenges. Their limited use in the industrial aircraft design process has inspired the authors of this paper to develop an alternative strategy based on well established ideas from Decision Support Systems. The proposed rule based architecture sacrifices possibly elusive guarantees of convergence for an attractive return in simplicity. The method is demonstrated on analytical and aircraft design test cases and its performance is compared to a number of classical distributed MDO architectures.

Keywords: Multidisciplinary Design Optimisation, Rule Based Architecture, Aircraft Design, Decision Support System

Procedia PDF Downloads 355