Search results for: Extended Park´s vector approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16483

Search results for: Extended Park´s vector approach

16153 Surface Characteristics of Bacillus megaterium and Its Adsorption Behavior onto Dolomite

Authors: Mohsen Farahat, Tsuyoshi Hirajima

Abstract:

Surface characteristics of Bacillus megaterium strain were investigated; zeta potential, FTIR and contact angle were measured. Surface energy components including Lifshitz-van der Waals, Hamaker constant, and acid/base components (Lewis acid/Lewis base) were calculated from the contact angle data. The results showed that the microbial cells were negatively charged over all pH regions with high values at alkaline region. A hydrophilic nature for the strain was confirmed by contact angle and free energy of adhesion between microbial cells. Adsorption affinity of the strain toward dolomite was studied at different pH values. The results showed that the cells had a high affinity to dolomite at acid pH comparing to neutral and alkaline pH. Extended DLVO theory was applied to calculate interaction energy between B. megaterium cells and dolomite particles. The adsorption results were in agreement with the results of Extended DLVO approach. Surface changes occurred on dolomite surface after the bio-treatment were monitored; contact angle decreased from 69° to 38° and the mineral’s floatability decreased from 95% to 25% after the treatment.

Keywords: Bacillus megaterium, surface modification, flotation, dolomite, adhesion energy

Procedia PDF Downloads 245
16152 MSIpred: A Python 2 Package for the Classification of Tumor Microsatellite Instability from Tumor Mutation Annotation Data Using a Support Vector Machine

Authors: Chen Wang, Chun Liang

Abstract:

Microsatellite instability (MSI) is characterized by high degree of polymorphism in microsatellite (MS) length due to a deficiency in mismatch repair (MMR) system. MSI is associated with several tumor types and its status can be considered as an important indicator for tumor prognostic. Conventional clinical diagnosis of MSI examines PCR products of a panel of MS markers using electrophoresis (MSI-PCR) which is laborious, time consuming, and less reliable. MSIpred, a python 2 package for automatic classification of MSI was released by this study. It computes important somatic mutation features from files in mutation annotation format (MAF) generated from paired tumor-normal exome sequencing data, subsequently using these to predict tumor MSI status with a support vector machine (SVM) classifier trained by MAF files of 1074 tumors belonging to four types. Evaluation of MSIpred on an independent 358-tumor test set achieved overall accuracy of over 98% and area under receiver operating characteristic (ROC) curve of 0.967. These results indicated that MSIpred is a robust pan-cancer MSI classification tool and can serve as a complementary diagnostic to MSI-PCR in MSI diagnosis.

Keywords: microsatellite instability, pan-cancer classification, somatic mutation, support vector machine

Procedia PDF Downloads 174
16151 Status of Alien Invasive Trees on the Grassland Plateau in Nyika National Park

Authors: Andrew Kanzunguze, Sopani Sichinga, Paston Simkoko, George Nxumayo, Cosmas, V. B. Dambo

Abstract:

Early detection of plant invasions is a necessary prerequisite for effective invasive plant management in protected areas. This study was conducted to determine the distribution and abundance of alien invasive trees in Nyika National Park (NNP). Data on species' presence and abundance were collected from belt transects (n=31) in a 100 square kilometer area on the central plateau. The data were tested for normality using the Shapiro-Wilk test; Mann-Whitney test was carried out to compare frequencies and abundances between the species, and geographical information systems were used for spatial analyses. Results revealed that Black Wattle (Acacia mearnsii), Mexican Pine (Pinus patula) and Himalayan Raspberry (Rubus ellipticus) were the main alien invasive trees on the plateau. A. mearnsii was localized in the areas where it was first introduced, whereas P. patula and R. ellipticus were spread out beyond original points of introduction. R. ellipticus occurred as dense, extensive (up to 50 meters) thickets on the margins of forest patches and pine stands, whilst P. patula trees were frequent in the valleys, occurring most densely (up to 39 stems per 100 square meters) south-west of Chelinda camp on the central plateau with high variation in tree heights. Additionally, there were no significant differences in abundance between R. ellipticus (48) and P. patula (48) in the study area (p > 0.05) It was concluded that R. ellipticus and P. patula require more attention as compared to A. mearnsii. Howbeit, further studies into the invasion ecology of both P. patula and R. ellipticus on the Nyika plateau are highly recommended so as to assess the threat posed by the species on biodiversity, and recommend appropriate conservation measures in the national park.

Keywords: alien-invasive trees, Himalayan raspberry, Nyika National Park, Mexican pine

Procedia PDF Downloads 210
16150 Robust Processing of Antenna Array Signals under Local Scattering Environments

Authors: Ju-Hong Lee, Ching-Wei Liao

Abstract:

An adaptive array beamformer is designed for automatically preserving the desired signals while cancelling interference and noise. Providing robustness against model mismatches and tracking possible environment changes calls for robust adaptive beamforming techniques. The design criterion yields the well-known generalized sidelobe canceller (GSC) beamformer. In practice, the knowledge of the desired steering vector can be imprecise, which often occurs due to estimation errors in the DOA of the desired signal or imperfect array calibration. In these situations, the SOI is considered as interference, and the performance of the GSC beamformer is known to degrade. This undesired behavior results in a reduction of the array output signal-to-interference plus-noise-ratio (SINR). Therefore, it is worth developing robust techniques to deal with the problem due to local scattering environments. As to the implementation of adaptive beamforming, the required computational complexity is enormous when the array beamformer is equipped with massive antenna array sensors. To alleviate this difficulty, a generalized sidelobe canceller (GSC) with partially adaptivity for less adaptive degrees of freedom and faster adaptive response has been proposed in the literature. Unfortunately, it has been shown that the conventional GSC-based adaptive beamformers are usually very sensitive to the mismatch problems due to local scattering situations. In this paper, we present an effective GSC-based beamformer against the mismatch problems mentioned above. The proposed GSC-based array beamformer adaptively estimates the actual direction of the desired signal by using the presumed steering vector and the received array data snapshots. We utilize the predefined steering vector and a presumed angle tolerance range to carry out the required estimation for obtaining an appropriate steering vector. A matrix associated with the direction vector of signal sources is first created. Then projection matrices related to the matrix are generated and are utilized to iteratively estimate the actual direction vector of the desired signal. As a result, the quiescent weight vector and the required signal blocking matrix required for performing adaptive beamforming can be easily found. By utilizing the proposed GSC-based beamformer, we find that the performance degradation due to the considered local scattering environments can be effectively mitigated. To further enhance the beamforming performance, a signal subspace projection matrix is also introduced into the proposed GSC-based beamformer. Several computer simulation examples show that the proposed GSC-based beamformer outperforms the existing robust techniques.

Keywords: adaptive antenna beamforming, local scattering, signal blocking, steering mismatch

Procedia PDF Downloads 114
16149 Texture-Based Image Forensics from Video Frame

Authors: Li Zhou, Yanmei Fang

Abstract:

With current technology, images and videos can be obtained more easily than ever. It is so easy to manipulate these digital multimedia information when obtained, and that the content or source of the image and video could be easily tampered. In this paper, we propose to identify the image and video frame by the texture-based approach, e.g. Markov Transition Probability (MTP), which is in space domain, DCT domain and DWT domain, respectively. In the experiment, image and video frame database is constructed, and is used to train and test the classifier Support Vector Machine (SVM). Experiment results show that the texture-based approach has good performance. In order to verify the experiment result, and testify the universality and robustness of algorithm, we build a random testing dataset, the random testing result is in keeping with above experiment.

Keywords: multimedia forensics, video frame, LBP, MTP, SVM

Procedia PDF Downloads 428
16148 Performance Analysis of New Types of Reference Targets Based on Spaceborne and Airborne SAR Data

Authors: Y. S. Zhou, C. R. Li, L. L. Tang, C. X. Gao, D. J. Wang, Y. Y. Guo

Abstract:

Triangular trihedral corner reflector (CR) has been widely used as point target for synthetic aperture radar (SAR) calibration and image quality assessment. The additional “tip” of the triangular plate does not contribute to the reflector’s theoretical RCS and if it interacts with a perfectly reflecting ground plane, it will yield an increase of RCS at the radar bore-sight and decrease the accuracy of SAR calibration and image quality assessment. Regarding this problem, two types of CRs were manufactured. One was the hexagonal trihedral CR. It is a self-illuminating CR with relatively small plate edge length, while large edge length usually introduces unexpected edge diffraction error. The other was the triangular trihedral CR with extended bottom plate which considers the effect of ‘tip’ into the total RCS. In order to assess the performance of the two types of new CRs, flight campaign over the National Calibration and Validation Site for High Resolution Remote Sensors was carried out. Six hexagonal trihedral CRs and two bottom-extended trihedral CRs, as well as several traditional triangular trihedral CRs, were deployed. KOMPSAT-5 X-band SAR image was acquired for the performance analysis of the hexagonal trihedral CRs. C-band airborne SAR images were acquired for the performance analysis of the bottom-extended trihedral CRs. The analysis results showed that the impulse response function of both the hexagonal trihedral CRs and bottom-extended trihedral CRs were much closer to the ideal sinc-function than the traditional triangular trihedral CRs. The flight campaign results validated the advantages of new types of CRs and they might be useful in the future SAR calibration mission.

Keywords: synthetic aperture radar, calibration, corner reflector, KOMPSAT-5

Procedia PDF Downloads 276
16147 Shelf Life of Frozen Processed Foods for Extended Durability

Authors: Manfreda Gerardo, Pasquali Frederique, Pepe Tiziana, Anastasio Aniello, Ianieri Adriana

Abstract:

The aim of the research was to evaluate the shelf life of a REPFED’s product (lasagna alla bolognese), developed as a product to be marketed fresh after defrosting. Three different samples were prepared: A, B and C, which presented differences in relation to the recipe, pasteurization technique and packaging on which the trend of the shelf-life indicator parameters was evaluated during a period of prolonged shelf life. The analytical plan involved the measurement of microbiological, chemical-physical and organoleptic parameters over 7 moments of storage selected in a period of 33 days. CBT, LAB, enterobacteria, E. coli, yeasts, molds, S. coagulase positive, B. cereus, Salmonella spp and L. monocytogenes, pH, Aw, Kreiss test, peroxides, atmosphere inside the packages, and organoleptic characteristics were determined. The results demonstrated the effect of post-packaging pasteurization on the shelf life of fresh from frozen products. However, the products pasteurized at 95°C in the absence of steam showed microbiological parameters that were not appropriate for an extended shelf life of up to 60 days. On the contrary, the samples pasteurized at 98°C with steam saturation and counterpressure showed values compatible with an extended shelf life. The results of the chemical-physical analyses highlighted how recipe and packaging affect the chemical-physical and organoleptic parameters. In conclusion, this preliminary study confirmed the effectiveness of post-packaging pasteurization treatments aimed at extending the shelf life of the product, helping the food company to occupy market niches even very distant from the production sites.

Keywords: shelf life, REPFED’s product, extended durability, pasteurization

Procedia PDF Downloads 30
16146 Damage Localization of Deterministic-Stochastic Systems

Authors: Yen-Po Wang, Ming-Chih Huang, Ming-Lian Chang

Abstract:

A scheme integrated with deterministic–stochastic subspace system identification and the method of damage localization vector is proposed in this study for damage detection of structures based on seismic response data. A series of shaking table tests using a five-storey steel frame has been conducted in National Center for Research on Earthquake Engineering (NCREE), Taiwan. Damage condition is simulated by reducing the cross-sectional area of some of the columns at the bottom. Both single and combinations of multiple damage conditions at various locations have been considered. In the system identification analysis, either full or partial observation conditions have been taken into account. It has been shown that the damaged stories can be identified from global responses of the structure to earthquakes if sufficiently observed. In addition to detecting damage(s) with respect to the intact structure, identification of new or extended damages of the as-damaged (ill-conditioned) counterpart has also been studied. The proposed scheme proves to be effective.

Keywords: damage locating vectors, deterministic-stochastic subspace system, shaking table tests, system identification

Procedia PDF Downloads 328
16145 Study of Deflection at Junction in the Precast on Cyclic Loading

Authors: Jongho Park, Ui-Cheol Shin, Jinwoong Choi, Sungnam Hong, Sun-Kyu Park

Abstract:

While the numerous structures built the industrialization are aging, the effort for the maintenance is concentrated in many countries. However, the traffic jam, environmental damage, and enormous maintenance cost, and etc become a problem. So, in order to solve this, the modular bridge has been studied. This bridge is the structure which utilizes and assembles the standard precast member. Through this, the substitution of the existing bridge and advantage of the easy maintenance will be achieved. However, the reliability in the long-term behavior is insufficient due to the junction part between modular precast members. Therefore, in this research, the cyclic load loading experiment was performed on the junction and deflection was analyzed by long-term service in modular slab connection. The deflection of modular slab with junction was mostly generated when initial and final test.

Keywords: modular bridge, deflection, cyclic loading, junction

Procedia PDF Downloads 513
16144 Optimization of Machine Learning Regression Results: An Application on Health Expenditures

Authors: Songul Cinaroglu

Abstract:

Machine learning regression methods are recommended as an alternative to classical regression methods in the existence of variables which are difficult to model. Data for health expenditure is typically non-normal and have a heavily skewed distribution. This study aims to compare machine learning regression methods by hyperparameter tuning to predict health expenditure per capita. A multiple regression model was conducted and performance results of Lasso Regression, Random Forest Regression and Support Vector Machine Regression recorded when different hyperparameters are assigned. Lambda (λ) value for Lasso Regression, number of trees for Random Forest Regression, epsilon (ε) value for Support Vector Regression was determined as hyperparameters. Study results performed by using 'k' fold cross validation changed from 5 to 50, indicate the difference between machine learning regression results in terms of R², RMSE and MAE values that are statistically significant (p < 0.001). Study results reveal that Random Forest Regression (R² ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤ 0.4000) outperforms other machine learning regression methods. It is highly advisable to use machine learning regression methods for modelling health expenditures.

Keywords: machine learning, lasso regression, random forest regression, support vector regression, hyperparameter tuning, health expenditure

Procedia PDF Downloads 226
16143 Optimal Rotor Design of an 150kW-Class IPMSM through the 3D Voltage-Inductance Map Analysis Method

Authors: Eung-Seok Park, Tae-Chul Jeong, Hyun-Jong Park, Hyun-Woo Jun, Dong-Woo Kang, Ju Lee

Abstract:

This presents a methodology to determine detail design directions of an 150kW-class IPMSM (interior permanent magnet synchronous motor) and its detail design. The basic design of the stator and rotor was conducted. After dividing the designed models into the best cases and the worst cases based on rotor shape parameters, Sensitivity analysis and 3D Voltage-Inductance Map (3D EL-Map) parameters were analyzed. Then, the design direction for the final model was predicted. Based on the prediction, the final model was extracted with Trend analysis. Lastly, the final model was validated with experiments.

Keywords: PMSM, optimal design, rotor design, voltage-inductance map

Procedia PDF Downloads 674
16142 Numerical Analysis of Shear Crack Propagation in a Concrete Beam without Transverse Reinforcement

Authors: G. A. Rombach, A. Faron

Abstract:

Crack formation and growth in reinforced concrete members are, in many cases, the cause of the collapse of technical structures. Such serious failures impair structural behavior and can also damage property and persons. An intensive investigation of the crack propagation is indispensable. Numerical methods are being developed to analyze crack growth in an element and to detect fracture failure at an early stage. For reinforced concrete components, however, further research and action are required in the analysis of shear cracks. This paper presents numerical simulations and continuum mechanical modeling of bending shear crack propagation in a three-dimensional reinforced concrete beam without transverse reinforcement. The analysis will provide a further understanding of crack growth and redistribution of inner forces in concrete members. As a numerical method to map discrete cracks, the extended finite element method (XFEM) is applied. The crack propagation is compared with the smeared crack approach using concrete damage plasticity. For validation, the crack patterns of real experiments are compared with the results of the different finite element models. The evaluation is based on single span beams under bending. With the analysis, it is possible to predict the fracture behavior of concrete members.

Keywords: concrete damage plasticity, crack propagation, extended finite element method, fracture mechanics

Procedia PDF Downloads 120
16141 The Optimum Mel-Frequency Cepstral Coefficients (MFCCs) Contribution to Iranian Traditional Music Genre Classification by Instrumental Features

Authors: M. Abbasi Layegh, S. Haghipour, K. Athari, R. Khosravi, M. Tafkikialamdari

Abstract:

An approach to find the optimum mel-frequency cepstral coefficients (MFCCs) for the Radif of Mirzâ Ábdollâh, which is the principal emblem and the heart of Persian music, performed by most famous Iranian masters on two Iranian stringed instruments ‘Tar’ and ‘Setar’ is proposed. While investigating the variance of MFCC for each record in themusic database of 1500 gushe of the repertoire belonging to 12 modal systems (dastgâh and âvâz), we have applied the Fuzzy C-Mean clustering algorithm on each of the 12 coefficient and different combinations of those coefficients. We have applied the same experiment while increasing the number of coefficients but the clustering accuracy remained the same. Therefore, we can conclude that the first 7 MFCCs (V-7MFCC) are enough for classification of The Radif of Mirzâ Ábdollâh. Classical machine learning algorithms such as MLP neural networks, K-Nearest Neighbors (KNN), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) and Support Vector Machine (SVM) have been employed. Finally, it can be realized that SVM shows a better performance in this study.

Keywords: radif of Mirzâ Ábdollâh, Gushe, mel frequency cepstral coefficients, fuzzy c-mean clustering algorithm, k-nearest neighbors (KNN), gaussian mixture model (GMM), hidden markov model (HMM), support vector machine (SVM)

Procedia PDF Downloads 448
16140 Spin Coherent States Without Squeezing

Authors: A. Dehghani, S. Shirin

Abstract:

We propose in this article a new configuration of quantum states, |α, β> := |α>×|β>. Which are composed of vector products of two different copies of spin coherent states, |α> and |β>. Some mathematical as well as physical properties of such states are discussed. For instance, it has been shown that the cross products of two coherent vectors remain coherent again. They admit a resolution of the identity through positive definite measures on the complex plane. They represent packets similar to the true coherent states, in other words we would not expect to take spin squeezing in any of the field quadratures Lˆx, Lˆy and Lˆz. Depending on the particular choice of parameters in the above scenarios, they can be converted into the so-called Dicke states which minimize the uncertainty relations of each pair of the angular momentum components.

Keywords: vector (Cross-)products, minimum uncertainty, angular momentum, measurement, Dicke states

Procedia PDF Downloads 412
16139 Polarimetric Synthetic Aperture Radar Data Classification Using Support Vector Machine and Mahalanobis Distance

Authors: Najoua El Hajjaji El Idrissi, Necip Gokhan Kasapoglu

Abstract:

Polarimetric Synthetic Aperture Radar-based imaging is a powerful technique used for earth observation and classification of surfaces. Forest evolution has been one of the vital areas of attention for the remote sensing experts. The information about forest areas can be achieved by remote sensing, whether by using active radars or optical instruments. However, due to several weather constraints, such as cloud cover, limited information can be recovered using optical data and for that reason, Polarimetric Synthetic Aperture Radar (PolSAR) is used as a powerful tool for forestry inventory. In this [14paper, we applied support vector machine (SVM) and Mahalanobis distance to the fully polarimetric AIRSAR P, L, C-bands data from the Nezer forest areas, the classification is based in the separation of different tree ages. The classification results were evaluated and the results show that the SVM performs better than the Mahalanobis distance and SVM achieves approximately 75% accuracy. This result proves that SVM classification can be used as a useful method to evaluate fully polarimetric SAR data with sufficient value of accuracy.

Keywords: classification, synthetic aperture radar, SAR polarimetry, support vector machine, mahalanobis distance

Procedia PDF Downloads 133
16138 Super-ellipsoidal Potential Function for Autonomous Collision Avoidance of a Teleoperated UAV

Authors: Mohammed Qasim, Kyoung-Dae Kim

Abstract:

In this paper, we present the design of the super-ellipsoidal potential function (SEPF), that can be used for autonomous collision avoidance of an unmanned aerial vehicle (UAV) in a 3-dimensional space. In the design of SEPF, we have the full control over the shape and size of the potential function. In particular, we can adjust the length, width, height, and the amount of flattening at the tips of the potential function so that the collision avoidance motion vector generated from the potential function can be adjusted accordingly. Based on the idea of the SEPF, we also propose an approach for the local autonomy of a UAV for its collision avoidance when the UAV is teleoperated by a human operator. In our proposed approach, a teleoperated UAV can not only avoid collision autonomously with other surrounding objects but also track the operator’s control input as closely as possible. As a result, an operator can always be in control of the UAV for his/her high-level guidance and navigation task without worrying too much about the UAVs collision avoidance while it is being teleoperated. The effectiveness of the proposed approach is demonstrated through a human-in-the-loop simulation of quadrotor UAV teleoperation using virtual robot experimentation platform (v-rep) and Matlab programs.

Keywords: artificial potential function, autonomous collision avoidance, teleoperation, quadrotor

Procedia PDF Downloads 399
16137 Examination of Recreation Possibilities and Determination of Efficiency Zone in Bursa, Province Nilufer Creek

Authors: Zeynep Pirselimoglu Batman, Elvan Ender Altay, Murat Zencirkiran

Abstract:

Water and water resources are characteristic areas with their special ecosystems Their natural, cultural and economic value and recreation opportunities are high. Recreational activities differ according to the natural, cultural, socio-economic resource values of the areas. In this sense, water and water edge areas, which are important for their resource values, are also important landscape values for recreational activities. From these landscapes values, creeks and the surrounding areas have become a major source of daily life in the past, as well as a major attraction for people's leisure time. However, their qualities and quantities must be sufficient to enable these areas to be used effectively in a recreational sense and to be able to fulfill their recreational functions. The purpose of the study is to identify the recreational use of the water-based activities and identify effective service areas in dense urbanization zones along the creek and green spaces around them. For this purpose, the study was carried out in the vicinity of Nilufer Creek in Bursa. The study area and its immediate surroundings are in the boundaries of Osmangazi and Nilufer districts. The study was carried out in the green spaces along the creek with an individual interaction of 17.930m. These areas are Hudavendigar Urban Park, Atatürk Urban Forest, Bursa Zoo, Soganlı Botanical Park, Mihrapli Park, Nilufer Valley Park. In the first phase of the study, the efficiency zones of these locations were calculated according to international standards. 3200m of this locations are serving the city population and 800m are serving the district and neighborhood population. These calculations are processed on the digitized map by the AUTOCAD program using the satellite image. The efficiency zone of these green spaces in the city were calculated as 71.04 km². In the second phase of the study, water-based current activities were determined by evaluating the recreational potential of these green spaces, which are located along the Nilufer Creek, where efficiency zones have been identified. It has been determined that water-based activities are used intensively in Hudavendigar Urban Park and interacted with Nilufer Creek. Within the scope of effective zones for the study area, appropriate recreational planning proposals have been developed and water-based activities have been suggested.

Keywords: Bursa, efficiency zone, Nilufer Creek, recreation, water-based activities

Procedia PDF Downloads 162
16136 SVM-DTC Using for PMSM Speed Tracking Control

Authors: Kendouci Khedidja, Mazari Benyounes, Benhadria Mohamed Rachid, Dadi Rachida

Abstract:

In recent years, direct torque control (DTC) has become an alternative to the well-known vector control especially for permanent magnet synchronous motor (PMSM). However, it presents a problem of field linkage and torque ripple. In order to solve this problem, the conventional DTC is combined with space vector pulse width modulation (SVPWM). This control theory has achieved great success in the control of PMSM. That has become a hotspot for resolving. The main objective of this paper gives us an introduction of the DTC and SVPWM-DTC control theory of PMSM which has been simulating on each part of the system via Matlab/Simulink based on the mathematical modeling. Moreover, the outcome of the simulation proved that the improved SVPWM- DTC of PMSM has a good dynamic and static performance.

Keywords: PMSM, DTC, SVM, speed control

Procedia PDF Downloads 391
16135 Data and Model-based Metamodels for Prediction of Performance of Extended Hollo-Bolt Connections

Authors: M. Cabrera, W. Tizani, J. Ninic, F. Wang

Abstract:

Open section beam to concrete-filled tubular column structures has been increasingly utilized in construction over the past few decades due to their enhanced structural performance, as well as economic and architectural advantages. However, the use of this configuration in construction is limited due to the difficulties in connecting the structural members as there is no access to the inner part of the tube to install standard bolts. Blind-bolted systems are a relatively new approach to overcome this limitation as they only require access to one side of the tubular section to tighten the bolt. The performance of these connections in concrete-filled steel tubular sections remains uncharacterized due to the complex interactions between concrete, bolt, and steel section. Over the last years, research in structural performance has moved to a more sophisticated and efficient approach consisting of machine learning algorithms to generate metamodels. This method reduces the need for developing complex, and computationally expensive finite element models, optimizing the search for desirable design variables. Metamodels generated by a data fusion approach use numerical and experimental results by combining multiple models to capture the dependency between the simulation design variables and connection performance, learning the relations between different design parameters and predicting a given output. Fully characterizing this connection will transform high-rise and multistorey construction by means of the introduction of design guidance for moment-resisting blind-bolted connections, which is currently unavailable. This paper presents a review of the steps taken to develop metamodels generated by means of artificial neural network algorithms which predict the connection stress and stiffness based on the design parameters when using Extended Hollo-Bolt blind bolts. It also provides consideration of the failure modes and mechanisms that contribute to the deformability as well as the feasibility of achieving blind-bolted rigid connections when using the blind fastener.

Keywords: blind-bolted connections, concrete-filled tubular structures, finite element analysis, metamodeling

Procedia PDF Downloads 158
16134 Bridging Livelihood and Conservation: The Role of Ecotourism in the Campo Ma’an National Park, Cameroon

Authors: Gadinga Walter Forje, Martin Ngankam Tchamba, Nyong Princely Awazi, Barnabas Neba Nfornka

Abstract:

Ecotourism is viewed as a double edge sword for the enhancement of conservation and local livelihood within a protected landscape. The Campo Ma’an National Park (CMNP) adopted ecotourism in its management plan as a strategic axis for better management of the park. The growing importance of ecotourism as a strategy for the sustainable management of CMNP and its environs requires adequate information to bolster the sector. This study was carried out between November 2018 and September 2021, with the main objective to contribute to the sustainable management of the CMNP through suggestions for enhancing the capacity of ecotourism in and around the park. More specifically, the study aimed at; 1) Analyse the governance of ecotourism in the CMNP and its surrounding; 2) Assessing the impact of ecotourism on local livelihood around the CMNP; 3) Evaluating the contribution of ecotourism to biodiversity conservation in and around the CMNP; 4) Evaluate the determinants of ecotourism possibilities in achieving sustainable livelihood and biodiversity conservation in and around the CMNP. Data were collected from both primary and secondary sources. Primary data were obtained from household surveys (N=124), focus group discussions (N=8), and key informant interviews (N=16). Data collected were coded and imputed into SPSS (version 19.0) software and Microsoft Excel spreadsheet for both quantitative and qualitative analysis. Findings from the Chi-square test revealed overall poor ecotourism governance in and around the CMNP, with benefit sharing (X2 = 122.774, p <0.01) and conflict management (X2 = 90.839, p<0.01) viewed to be very poor. For the majority of the local population sampled, 65% think ecotourism does not contribute to local livelihood around CMNP. The main factors influencing the impact of ecotourism around the CMNP on the local population’s livelihood were gender (logistic regression (β) = 1.218; p = 0.000); and level of education (logistic regression (β) = 0.442; p = 0.000). Furthermore, 55.6% of the local population investigated believed ecotourism activities do not contribute to the biodiversity conservation of CMNP. Spearman correlation between socio-economic variables and ecotourism impact on biodiversity conservation indicated relationships with gender (r = 0.200, p = 0.032), main occupation (r = 0.300 p = 0.012), time spent in the community (r = 0.287 p = 0.017), and number of children (r =-0.286 p = 0.018). Variables affecting ecotourism impact on biodiversity conservation were age (logistic regression (β) = -0.683; p = 0.037) and gender (logistic regression (β) = 0.917; p = 0.045). This study recommends the development of ecotourism-friendly policies that can accelerate Public Private Partnership for the sustainable management of the CMNP as a commitment toward good governance. It also recommends the development of gender-sensitive ecotourism packages, with fair opportunities for rural women and more parity in benefit sharing to improve livelihood and contribute more to biodiversity conservation in and around the Park.

Keywords: biodiversity conservation, Campo Ma’an national park, ecotourism, ecotourism governance, rural livelihoods, protected area management

Procedia PDF Downloads 122
16133 Diagnosis of Alzheimer Diseases in Early Step Using Support Vector Machine (SVM)

Authors: Amira Ben Rabeh, Faouzi Benzarti, Hamid Amiri, Mouna Bouaziz

Abstract:

Alzheimer is a disease that affects the brain. It causes degeneration of nerve cells (neurons) and in particular cells involved in memory and intellectual functions. Early diagnosis of Alzheimer Diseases (AD) raises ethical questions, since there is, at present, no cure to offer to patients and medicines from therapeutic trials appear to slow the progression of the disease as moderate, accompanying side effects sometimes severe. In this context, analysis of medical images became, for clinical applications, an essential tool because it provides effective assistance both at diagnosis therapeutic follow-up. Computer Assisted Diagnostic systems (CAD) is one of the possible solutions to efficiently manage these images. In our work; we proposed an application to detect Alzheimer’s diseases. For detecting the disease in early stage we used the three sections: frontal to extract the Hippocampus (H), Sagittal to analysis the Corpus Callosum (CC) and axial to work with the variation features of the Cortex(C). Our method of classification is based on Support Vector Machine (SVM). The proposed system yields a 90.66% accuracy in the early diagnosis of the AD.

Keywords: Alzheimer Diseases (AD), Computer Assisted Diagnostic(CAD), hippocampus, Corpus Callosum (CC), cortex, Support Vector Machine (SVM)

Procedia PDF Downloads 385
16132 Least-Square Support Vector Machine for Characterization of Clusters of Microcalcifications

Authors: Baljit Singh Khehra, Amar Partap Singh Pharwaha

Abstract:

Clusters of Microcalcifications (MCCs) are most frequent symptoms of Ductal Carcinoma in Situ (DCIS) recognized by mammography. Least-Square Support Vector Machine (LS-SVM) is a variant of the standard SVM. In the paper, LS-SVM is proposed as a classifier for classifying MCCs as benign or malignant based on relevant extracted features from enhanced mammogram. To establish the credibility of LS-SVM classifier for classifying MCCs, a comparative evaluation of the relative performance of LS-SVM classifier for different kernel functions is made. For comparative evaluation, confusion matrix and ROC analysis are used. Experiments are performed on data extracted from mammogram images of DDSM database. A total of 380 suspicious areas are collected, which contain 235 malignant and 145 benign samples, from mammogram images of DDSM database. A set of 50 features is calculated for each suspicious area. After this, an optimal subset of 23 most suitable features is selected from 50 features by Particle Swarm Optimization (PSO). The results of proposed study are quite promising.

Keywords: clusters of microcalcifications, ductal carcinoma in situ, least-square support vector machine, particle swarm optimization

Procedia PDF Downloads 354
16131 Analyzing Extended Reality Technologies for Human Space Exploration

Authors: Morgan Kuligowski, Marientina Gotsis

Abstract:

Extended reality (XR) technologies share an intertwined history with spaceflight and innovation. New advancements in XR technologies offer expanding possibilities to advance the future of human space exploration with increased crew autonomy. This paper seeks to identify implementation gaps between existing and proposed XR space applications to inform future mission planning. A review of virtual reality, augmented reality, and mixed reality technologies implemented aboard the International Space Station revealed a total of 16 flown investigations. A secondary set of ground-tested XR human spaceflight applications were systematically retrieved from literature sources. The two sets of XR technologies, those flown and those existing in the literature were analyzed to characterize application domains and device types. Comparisons between these groups revealed untapped application areas for XR to support crew psychological health, in-flight training, and extravehicular operations on future flights. To fill these roles, integrating XR technologies with advancements in biometric sensors and machine learning tools is expected to transform crew capabilities.

Keywords: augmented reality, extended reality, international space station, mixed reality, virtual reality

Procedia PDF Downloads 216
16130 Planning for Brownfield Regeneration in Malaysia: An Integrated Approach in Creating Sustainable Ex-Landfill Redevelopment

Authors: Mazifah Simis, Azahan Awang, Kadir Arifin

Abstract:

The brownfield regeneration is being implemented in developped countries. However, as a group 1 developing country in the South East Asia, the rapid development and increasing number of urban population in Malaysia have urged the needs to incorporate the brownfield regeneration into its physical planning development. The increasing number of urban ex-landfills is seen as a new resource that could overcome the issues of inadequate urban green space provisions. With regards to the new development approach in urban planning, this perception study aims to identify the sustainable planning approach based on what the stakeholders have in mind. Respondents consist of 375 local communities within four urban ex-landfill areas and 61 landscape architect and town planner officers in the Malaysian Local Authorities. Three main objectives are set to be achieved, which are (i) to identify ex-landfill issues that need to be overcome prior to the ex-landfill redevelopment (ii) to identify the most suitable types of ex-landfill redevelopment, and (iii) to identify the priority function for ex-landfill redevelopment as the public parks. From the data gathered through the survey method, the order of priorities based on stakeholders' perception was produced. The results show different perception among the stakeholders, but they agreed to the development of the public park as the main development. Hence, this study attempts to produce an integrated approach as a model for sustainable ex-landfill redevelopment that could be accepted by the stakeholders as a beneficial future development that could change the image of 296 ex-landfills in Malaysia into the urban public parks by the year 2020.

Keywords: brownfield regeneration, ex-landfill redevelopment, integrated approach, stakeholders' perception

Procedia PDF Downloads 355
16129 Classification of Crisp Petri Nets

Authors: Riddhi Jangid, Gajendra Pratap Singh

Abstract:

Petri nets, a formalized modeling language that was introduced back around 50-60 years, have been widely used for modeling discrete event dynamic systems and simulating their behavior. Reachability analysis of Petri nets gives many insights into a modeled system. This idea leads us to study the reachability technique and use it in the reachability problem in the state space of reachable markings. With the same concept, Crisp Boolean Petri nets were defined in which the marking vectors that are boolean are distinct in the reachability analysis of the nets. We generalize the concept and define ‘Crisp’ Petri nets that generate the marking vectors exactly once in their reachability-based analysis, not necessarily Boolean.

Keywords: marking vector, n-vector, Petri nets, reachability

Procedia PDF Downloads 84
16128 Post-Earthquake Road Damage Detection by SVM Classification from Quickbird Satellite Images

Authors: Moein Izadi, Ali Mohammadzadeh

Abstract:

Detection of damaged parts of roads after earthquake is essential for coordinating rescuers. In this study, an approach is presented for the semi-automatic detection of damaged roads in a city using pre-event vector maps and both pre- and post-earthquake QuickBird satellite images. Damage is defined in this study as the debris of damaged buildings adjacent to the roads. Some spectral and texture features are considered for SVM classification step to detect damages. Finally, the proposed method is tested on QuickBird pan-sharpened images from the Bam City earthquake and the results show that an overall accuracy of 81% and a kappa coefficient of 0.71 are achieved for the damage detection. The obtained results indicate the efficiency and accuracy of the proposed approach.

Keywords: SVM classifier, disaster management, road damage detection, quickBird images

Procedia PDF Downloads 623
16127 A Study on Inverse Determination of Impact Force on a Honeycomb Composite Panel

Authors: Hamed Kalhori, Lin Ye

Abstract:

In this study, an inverse method was developed to reconstruct the magnitude and duration of impact forces exerted to a rectangular carbon fibre-epoxy composite honeycomb sandwich panel. The dynamic signals captured by Piezoelectric (PZT) sensors installed on the panel remotely from the impact locations were utilized to reconstruct the impact force generated by an instrumented hammer through an extended deconvolution approach. Two discretized forms of convolution integral are considered; the traditional one with an explicit transfer function and the modified one without an explicit transfer function. Deconvolution, usually applied to reconstruct the time history (e.g. magnitude) of a stochastic force at a defined location, is extended to identify both the location and magnitude of the impact force among a number of potential impact locations. It is assumed that a number of impact forces are simultaneously exerted to all potential locations, but the magnitude of all forces except one is zero, implicating that the impact occurs only at one location. The extended deconvolution is then applied to determine the magnitude as well as location (among the potential ones), incorporating the linear superposition of responses resulted from impact at each potential location. The problem can be categorized into under-determined (the number of sensors is less than that of impact locations), even-determined (the number of sensors equals that of impact locations), or over-determined (the number of sensors is greater than that of impact locations) cases. For an under-determined case, it comprises three potential impact locations and one PZT sensor for the rectangular carbon fibre-epoxy composite honeycomb sandwich panel. Assessments are conducted to evaluate the factors affecting the precision of the reconstructed force. Truncated Singular Value Decomposition (TSVD) and the Tikhonov regularization are independently chosen to regularize the problem to find the most suitable method for this system. The selection of optimal value of the regularization parameter is investigated through L-curve and Generalized Cross Validation (GCV) methods. In addition, the effect of different width of signal windows on the reconstructed force is examined. It is observed that the impact force generated by the instrumented impact hammer is sensitive to the impact locations of the structure, having a shape from a simple half-sine to a complicated one. The accuracy of the reconstructed impact force is evaluated using the correlation co-efficient between the reconstructed force and the actual one. Based on this criterion, it is concluded that the forces reconstructed by using the extended deconvolution without an explicit transfer function together with Tikhonov regularization match well with the actual forces in terms of magnitude and duration.

Keywords: honeycomb composite panel, deconvolution, impact localization, force reconstruction

Procedia PDF Downloads 536
16126 Quality of Service of Transportation Networks: A Hybrid Measurement of Travel Time and Reliability

Authors: Chin-Chia Jane

Abstract:

In a transportation network, travel time refers to the transmission time from source node to destination node, whereas reliability refers to the probability of a successful connection from source node to destination node. With an increasing emphasis on quality of service (QoS), both performance indexes are significant in the design and analysis of transportation systems. In this work, we extend the well-known flow network model for transportation networks so that travel time and reliability are integrated into the QoS measurement simultaneously. In the extended model, in addition to the general arc capacities, each intermediate node has a time weight which is the travel time for per unit of commodity going through the node. Meanwhile, arcs and nodes are treated as binary random variables that switch between operation and failure with associated probabilities. For pre-specified travel time limitation and demand requirement, the QoS of a transportation network is the probability that source can successfully transport the demand requirement to destination while the total transmission time is under the travel time limitation. This work is pioneering, since existing literatures that evaluate travel time reliability via a single optimization path, the proposed QoS focuses the performance of the whole network system. To compute the QoS of transportation networks, we first transfer the extended network model into an equivalent min-cost max-flow network model. In the transferred network, each arc has a new travel time weight which takes value 0. Each intermediate node is replaced by two nodes u and v, and an arc directed from u to v. The newly generated nodes u and v are perfect nodes. The new direct arc has three weights: travel time, capacity, and operation probability. Then the universal set of state vectors is recursively decomposed into disjoint subsets of reliable, unreliable, and stochastic vectors until no stochastic vector is left. The decomposition is made possible by applying existing efficient min-cost max-flow algorithm. Because the reliable subsets are disjoint, QoS can be obtained directly by summing the probabilities of these reliable subsets. Computational experiments are conducted on a benchmark network which has 11 nodes and 21 arcs. Five travel time limitations and five demand requirements are set to compute the QoS value. To make a comparison, we test the exhaustive complete enumeration method. Computational results reveal the proposed algorithm is much more efficient than the complete enumeration method. In this work, a transportation network is analyzed by an extended flow network model where each arc has a fixed capacity, each intermediate node has a time weight, and both arcs and nodes are independent binary random variables. The quality of service of the transportation network is an integration of customer demands, travel time, and the probability of connection. We present a decomposition algorithm to compute the QoS efficiently. Computational experiments conducted on a prototype network show that the proposed algorithm is superior to existing complete enumeration methods.

Keywords: quality of service, reliability, transportation network, travel time

Procedia PDF Downloads 222
16125 The Use of Remotely Sensed Data to Extract Wetlands Area in the Cultural Park of Ahaggar, South of Algeria

Authors: Y. Fekir, K. Mederbal, M. A. Hammadouche, D. Anteur

Abstract:

The cultural park of the Ahaggar, occupying a large area of Algeria, is characterized by a rich wetlands area to be preserved and managed both in time and space. The management of a large area, by its complexity, needs large amounts of data, which for the most part, are spatially localized (DEM, satellite images and socio-economic information...), where the use of conventional and traditional methods is quite difficult. The remote sensing, by its efficiency in environmental applications, became an indispensable solution for this kind of studies. Remote sensing imaging data have been very useful in the last decade in very interesting applications. They can aid in several domains such as the detection and identification of diverse wetland surface targets, topographical details, and geological features... In this work, we try to extract automatically wetlands area using multispectral remotely sensed data on-board the Earth Observing 1 (EO-1) and Landsat satellite. Both are high-resolution multispectral imager with a 30 m resolution. The instrument images an interesting surface area. We have used images acquired over the several area of interesting in the National Park of Ahaggar in the south of Algeria. An Extraction Algorithm is applied on the several spectral index obtained from combination of different spectral bands to extract wetlands fraction occupation of land use. The obtained results show an accuracy to distinguish wetlands area from the other lad use themes using a fine exploitation on spectral index.

Keywords: multispectral data, EO1, landsat, wetlands, Ahaggar, Algeria

Procedia PDF Downloads 378
16124 A Survey on Quasi-Likelihood Estimation Approaches for Longitudinal Set-ups

Authors: Naushad Mamode Khan

Abstract:

The Com-Poisson (CMP) model is one of the most popular discrete generalized linear models (GLMS) that handles both equi-, over- and under-dispersed data. In longitudinal context, an integer-valued autoregressive (INAR(1)) process that incorporates covariate specification has been developed to model longitudinal CMP counts. However, the joint likelihood CMP function is difficult to specify and thus restricts the likelihood based estimating methodology. The joint generalized quasilikelihood approach (GQL-I) was instead considered but is rather computationally intensive and may not even estimate the regression effects due to a complex and frequently ill conditioned covariance structure. This paper proposes a new GQL approach for estimating the regression parameters (GQLIII) that are based on a single score vector representation. The performance of GQL-III is compared with GQL-I and separate marginal GQLs (GQL-II) through some simulation experiments and is proved to yield equally efficient estimates as GQL-I and is far more computationally stable.

Keywords: longitudinal, com-Poisson, ill-conditioned, INAR(1), GLMS, GQL

Procedia PDF Downloads 355