Search results for: panel data method
35070 The Management Accountant’s Roles for Creation of Corporate Shared Value
Authors: Prateep Wajeetongratana
Abstract:
This study investigates the management accountant’s roles that link with the creation of corporate shared value to enable more effective decision-making and improve the information needs of stakeholders. Mixed method is employed to collect using triangulation for credibility. A quantitative approach is employed to conduct a survey of 200 Thai companies providing annual reports in the Stock Exchange of Thailand. The results of the study reveal that environmental and social data incorporated in a corporate social responsibility (CSR) disclosure are based on the indicators of the Global Reporting Initiatives (GRI) at a statistically significant level of 0.01. Environmental and social indicators in CSR are associated with environmental and social data disclosed in the annual report to support stakeholders’ and the public’s interests that are addressed and show that a significant relationship between environmental and social in CSR disclosures and the information in annual reports is statistically significant at the 0.01 level.Keywords: corporate social responsibility, creating shared value, management accountant’s roles, stock exchange of Thailand
Procedia PDF Downloads 22135069 Investigating Dynamic Transition Process of Issues Using Unstructured Text Analysis
Authors: Myungsu Lim, William Xiu Shun Wong, Yoonjin Hyun, Chen Liu, Seongi Choi, Dasom Kim, Namgyu Kim
Abstract:
The amount of real-time data generated through various mass media has been increasing rapidly. In this study, we had performed topic analysis by using the unstructured text data that is distributed through news article. As one of the most prevalent applications of topic analysis, the issue tracking technique investigates the changes of the social issues that identified through topic analysis. Currently, traditional issue tracking is conducted by identifying the main topics of documents that cover an entire period at the same time and analyzing the occurrence of each topic by the period of occurrence. However, this traditional issue tracking approach has limitation that it cannot discover dynamic mutation process of complex social issues. The purpose of this study is to overcome the limitations of the existing issue tracking method. We first derived core issues of each period, and then discover the dynamic mutation process of various issues. In this study, we further analyze the mutation process from the perspective of the issues categories, in order to figure out the pattern of issue flow, including the frequency and reliability of the pattern. In other words, this study allows us to understand the components of the complex issues by tracking the dynamic history of issues. This methodology can facilitate a clearer understanding of complex social phenomena by providing mutation history and related category information of the phenomena.Keywords: Data Mining, Issue Tracking, Text Mining, topic Analysis, topic Detection, Trend Detection
Procedia PDF Downloads 40835068 Estimation of Solar Radiation Power Using Reference Evaluation of Solar Transmittance, 2 Bands Model: Case Study of Semarang, Central Java, Indonesia
Authors: Benedictus Asriparusa
Abstract:
Solar radiation is a green renewable energy which has the potential to answer the needs of energy problems on the period. Knowing how to estimate the strength of the solar radiation force may be one solution of sustainable energy development in an integrated manner. Unfortunately, a fairly extensive area of Indonesia is still very low availability of solar radiation data. Therefore, we need a method to estimate the exact strength of solar radiation. In this study, author used a model Reference Evaluation of Solar Transmittance, 2 Bands (REST 2). Validation of REST 2 model has been performed in Spain, India, Colorado, Saudi Arabia, and several other areas. But it is not widely used in Indonesia. Indonesian region study area is represented by the area of Semarang, Central Java. Solar radiation values estimated using REST 2 model was then verified by field data and gives average RMSE value of 6.53%. Based on the value, it can be concluded that the model REST 2 can be used to estimate the value of solar radiation in clear sky conditions in parts of Indonesia.Keywords: estimation, solar radiation power, REST 2, solar transmittance
Procedia PDF Downloads 42735067 An Industrial Workplace Alerting and Monitoring Platform to Prevent Workplace Injury and Accidents
Authors: Sanjay Adhikesaven
Abstract:
Workplace accidents are a critical problem that causes many deaths, injuries, and financial losses. Climate change has a severe impact on industrial workers, partially caused by global warming. To reduce such casualties, it is important to proactively find unsafe environments where injuries could occur by detecting the use of personal protective equipment (PPE) and identifying unsafe activities. Thus, we propose an industrial workplace alerting and monitoring platform to detect PPE use and classify unsafe activity in group settings involving multiple humans and objects over a long period of time. Our proposed method is the first to analyze prolonged actions involving multiple people or objects. It benefits from combining pose estimation with PPE detection in one platform. Additionally, we propose the first open-source annotated data set with video data from industrial workplaces annotated with the action classifications and detected PPE. The proposed system can be implemented within the surveillance cameras already present in industrial settings, making it a practical and effective solution.Keywords: computer vision, deep learning, workplace safety, automation
Procedia PDF Downloads 10335066 Extended Kalman Filter and Markov Chain Monte Carlo Method for Uncertainty Estimation: Application to X-Ray Fluorescence Machine Calibration and Metal Testing
Authors: S. Bouhouche, R. Drai, J. Bast
Abstract:
This paper is concerned with a method for uncertainty evaluation of steel sample content using X-Ray Fluorescence method. The considered method of analysis is a comparative technique based on the X-Ray Fluorescence; the calibration step assumes the adequate chemical composition of metallic analyzed sample. It is proposed in this work a new combined approach using the Kalman Filter and Markov Chain Monte Carlo (MCMC) for uncertainty estimation of steel content analysis. The Kalman filter algorithm is extended to the model identification of the chemical analysis process using the main factors affecting the analysis results; in this case, the estimated states are reduced to the model parameters. The MCMC is a stochastic method that computes the statistical properties of the considered states such as the probability distribution function (PDF) according to the initial state and the target distribution using Monte Carlo simulation algorithm. Conventional approach is based on the linear correlation, the uncertainty budget is established for steel Mn(wt%), Cr(wt%), Ni(wt%) and Mo(wt%) content respectively. A comparative study between the conventional procedure and the proposed method is given. This kind of approaches is applied for constructing an accurate computing procedure of uncertainty measurement.Keywords: Kalman filter, Markov chain Monte Carlo, x-ray fluorescence calibration and testing, steel content measurement, uncertainty measurement
Procedia PDF Downloads 28335065 Pulse Method for Investigation of Zr-C Phase Diagram at High Carbon Content Domain under High Temperatures
Authors: Arseniy M. Kondratyev, Sergey V. Onufriev, Alexander I. Savvatimskiy
Abstract:
The microsecond electrical pulse heating technique which provides uniform energy input into an investigated specimen is considered. In the present study we investigated ZrC+C carbide specimens in a form of a thin layer (about 5 microns thick) that were produced using a method of magnetron sputtering on insulating substrates. Specimens contained (at. %): Zr–17.88; C–67.69; N–8.13; O–5.98. Current through the specimen, voltage drop across it and radiation at the wavelength of 856 nm were recorded in the experiments. It enabled us to calculate the input energy, specific heat (from 2300 to 4500 K) and resistivity (referred to the initial dimensions of a specimen). To obtain the true temperature a black body specimen was used. Temperature of the beginning and completion of a phase transition (solid–liquid) was measured.Temperature of the onset of melting was 3150 K at the input energy 2.65 kJ/g; temperature of the completion of melting was 3450 K at the input energy 5.2 kJ/g. The specific heat of the solid phase of investigated carbide calculated using our data on temperature and imparted energy, is close to 0.75 J/gК for temperature range 2100–2800 K. Our results are considered together with the equilibrium Zr-C phase diagram.Keywords: pulse heating, zirconium carbide, high temperatures, melting
Procedia PDF Downloads 32335064 Roundabout Implementation Analyses Based on Traffic Microsimulation Model
Authors: Sanja Šurdonja, Aleksandra Deluka-Tibljaš, Mirna Klobučar, Irena Ištoka Otković
Abstract:
Roundabouts are a common choice in the case of reconstruction of an intersection, whether it is to improve the capacity of the intersection or traffic safety, especially in urban conditions. The regulation for the design of roundabouts is often related to driving culture, the tradition of using this type of intersection, etc. Individual values in the regulation are usually recommended in a wide range (this is the case in Croatian regulation), and the final design of a roundabout largely depends on the designer's experience and his/her choice of design elements. Therefore, before-after analyses are a good way to monitor the performance of roundabouts and possibly improve the recommendations of the regulation. This paper presents a comprehensive before-after analysis of a roundabout on the country road network near Rijeka, Croatia. The analysis is based on a thorough collection of traffic data (operating speeds and traffic load) and design elements data, both before and after the reconstruction into a roundabout. At the chosen location, the roundabout solution aimed to improve capacity and traffic safety. Therefore, the paper analyzed the collected data to see if the roundabout achieved the expected effect. A traffic microsimulation model (VISSIM) of the roundabout was created based on the real collected data, and the influence of the increase of traffic load and different traffic structures, as well as of the selected design elements on the capacity of the roundabout, were analyzed. Also, through the analysis of operating speeds and potential conflicts by application of the Surrogate Safety Assessment Model (SSAM), the traffic safety effect of the roundabout was analyzed. The results of this research show the practical value of before-after analysis as an indicator of roundabout effectiveness at a specific location. The application of a microsimulation model provides a practical method for analyzing intersection functionality from a capacity and safety perspective in present and changed traffic and design conditions.Keywords: before-after analysis, operating speed, capacity, design.
Procedia PDF Downloads 2335063 Perceptions and Experiences of Iranian Students of Human Dignity in Canada: A Phenomenological Comparative Study
Authors: Erfaneh Razavipour Naghani, Masoud Kianpour
Abstract:
Human dignity is a subjective concept indicating an inner feeling of worth which depends on one’s perceptions and life experiences. Yet the notion is also very much under the influence of societal and cultural factors. Scholars have identified human dignity as a context-based concept that lies at the intersection of culture, gender, religion, and individual characteristics. Migration may constitute an individual or collective strategy for people seeking to situations that bolster rather than undermine their human dignity. Through the use of a phenomenological method, this study will explore how Iranian students in Canada perceive human dignity through such values and characteristics as honor, respect, self-determination, self-worth, autonomy, freedom, love, and equality in Canada as compared to their perceptions of the same in Iran. In-depth interviewing will be used to collect data from Iranian students who have lived in Canada for at least two years. The aim is to discover which essential themes constitute participants’ understanding of human dignity and how this understanding compares to their pre-Canadian experience in Iran. We will use criterion sampling as our sampling method. This study will clarify how being exposed to a different culture can affect perceptions of human dignity among university students.Keywords: Canada, human dignity, Iran, migration, university students
Procedia PDF Downloads 13835062 The Solution of Nonlinear Partial Differential Equation for The Phenomenon of Instability in Homogeneous Porous Media by Homotopy Analysis Method
Authors: Kajal K. Patel, M. N. Mehta, T. R. Singh
Abstract:
When water is injected in oil formatted area in secondary oil recovery process the instability occurs near common interface due to viscosity difference of injected water and native oil. The governing equation gives rise to the non-linear partial differential equation and its solution has been obtained by Homotopy analysis method with appropriate guess value of the solution together with some conditions and standard relations. The solution gives the average cross-sectional area occupied by the schematic fingers during the occurs of instability phenomenon. The numerical and graphical presentation has developed by using Maple software.Keywords: capillary pressure, homotopy analysis method, instability phenomenon, viscosity
Procedia PDF Downloads 49635061 Error Amount in Viscoelasticity Analysis Depending on Time Step Size and Method used in ANSYS
Authors: A. Fettahoglu
Abstract:
Theory of viscoelasticity is used by many researchers to represent behavior of many materials such as pavements on roads or bridges. Several researches used analytical methods and rheology to predict the material behaviors of simple models. Today, more complex engineering structures are analyzed using Finite Element Method, in which material behavior is embedded by means of three dimensional viscoelastic material laws. As a result, structures of unordinary geometry and domain like pavements of bridges can be analyzed by means of Finite Element Method and three dimensional viscoelastic equations. In the scope of this study, rheological models embedded in ANSYS, namely, generalized Maxwell elements and Prony series, which are two methods used by ANSYS to represent viscoelastic material behavior, are presented explicitly. Subsequently, a practical problem, which has an analytical solution given in literature, is used to verify the applicability of viscoelasticity tool embedded in ANSYS. Finally, amount of error in the results of ANSYS is compared with the analytical results to indicate the influence of used method and time step size.Keywords: generalized Maxwell model, finite element method, prony series, time step size, viscoelasticity
Procedia PDF Downloads 36935060 Analysis, Evaluation and Optimization of Food Management: Minimization of Food Losses and Food Wastage along the Food Value Chain
Authors: G. Hafner
Abstract:
A method developed at the University of Stuttgart will be presented: ‘Analysis, Evaluation and Optimization of Food Management’. A major focus is represented by quantification of food losses and food waste as well as their classification and evaluation regarding a system optimization through waste prevention. For quantification and accounting of food, food losses and food waste along the food chain, a clear definition of core terms is required at the beginning. This includes their methodological classification and demarcation within sectors of the food value chain. The food chain is divided into agriculture, industry and crafts, trade and consumption (at home and out of home). For adjustment of core terms, the authors have cooperated with relevant stakeholders in Germany for achieving the goal of holistic and agreed definitions for the whole food chain. This includes modeling of sub systems within the food value chain, definition of terms, differentiation between food losses and food wastage as well as methodological approaches. ‘Food Losses’ and ‘Food Wastes’ are assigned to individual sectors of the food chain including a description of the respective methods. The method for analyzing, evaluation and optimization of food management systems consist of the following parts: Part I: Terms and Definitions. Part II: System Modeling. Part III: Procedure for Data Collection and Accounting Part. IV: Methodological Approaches for Classification and Evaluation of Results. Part V: Evaluation Parameters and Benchmarks. Part VI: Measures for Optimization. Part VII: Monitoring of Success The method will be demonstrated at the example of an invesigation of food losses and food wastage in the Federal State of Bavaria including an extrapolation of respective results to quantify food wastage in Germany.Keywords: food losses, food waste, resource management, waste management, system analysis, waste minimization, resource efficiency
Procedia PDF Downloads 40535059 Financial Literacy as an Important Skill for Household Financial Decision Making
Authors: Rimac Smiljanic Ana, Pepur Sandra, Bulog Ivana
Abstract:
Financial decision-making in the household is not simple, and it demands that the decision-maker has proper knowledge and skills. Usually, high uncertainty, risk, and stress surround household financial decision-making since it is extremely important and critical for household wealth accumulation and for the well-being of all household members. Generally, skilful people tend to have higher confidence in certain tasks they perform, and they achieve better results. Therefore, in the household context, the possession of certain skills by the ones who make financial decisions for the household is of particular importance. This paper addresses financial literacy as an important skill for household decision-making. Apart from financial literacy, the paper also considers other factors, such as employment, education, and age, as significant for household financial decision-making. The analysis is based on quantitative individual-level survey data. The data collection was conducted during January and February 2021 in Croatia through an online survey. To reach a wide variety of participants, the snowball sampling method was used. The result revealed interesting and somewhat puzzling results. Our results point to the importance of financial literacy skills for household decision-making.Keywords: skill, financial literacy, decision-making, household financijal decision making
Procedia PDF Downloads 9735058 The Forensic Analysis of Engravers' Handwriting
Authors: Olivia Rybak-Karkosz
Abstract:
The purpose of this paper is to present the result of scientific research using forensic handwriting analysis. It was conducted to verify the stability and lability of handwriting of engravers and check if gravers transfer their traits from handwriting to plates and other surfaces they rework. This research methodology consisted of completing representative samples of signatures of gravers written on a piece of paper using a ballpen and signatures engraved on other surfaces. The forensic handwriting analysis was conducted using the graphic-comparative method (graphic method), and all traits were analysed. The paper contains a concluding statement of the similarities and differences between the samples.Keywords: artist’s signatures, engraving, forensic handwriting analysis, graphic-comparative method
Procedia PDF Downloads 10235057 Tiebout and Crime: How Crime Affect the Income Tax Capacity
Authors: Nik Smits, Stijn Goeminne
Abstract:
Despite the extensive literature on the relation between crime and migration, not much is known about how crime affects the tax capacity of local communities. This paper empirically investigates whether the Flemish local income tax base yield is sensitive to changes in the local crime level. The underlying assumptions are threefold. In a Tiebout world, rational voters holding the local government accountable for the safety of its citizens, move out when the local level of security gets too much alienated from what they want it to be (first assumption). If migration is due to crime, then the more wealthy citizens are expected to move first (second assumption). Looking for a place elsewhere implies transaction costs, which the more wealthy citizens are more likely to be able to pay. As a consequence, the average income per capita and so the income distribution will be affected, which in turn, will influence the local income tax base yield (third assumption). The decreasing average income per capita, if not compensated by increasing earnings by the citizens that are staying or by the new citizens entering the locality, must result in a decreasing local income tax base yield. In the absence of a higher level governments’ compensation, decreasing local tax revenues could prove to be disastrous for a crime-ridden municipality. When communities do not succeed in forcing back the number of offences, this can be the onset of a cumulative process of urban deterioration. A spatial panel data model containing several proxies for the local level of crime in 306 Flemish municipalities covering the period 2000-2014 is used to test the relation between crime and the local income tax base yield. In addition to this direct relation, the underlying assumptions are investigated as well. Preliminary results show a modest, but positive relation between local violent crime rates and the efflux of citizens, persistent up until a 2 year lag. This positive effect is dampened by possible increasing crime rates in neighboring municipalities. The change in violent crimes -and to a lesser extent- thefts and extortions reduce the influx of citizens with a one year lag. Again this effect is diminished by external effects from neighboring municipalities, meaning that increasing crime rates in neighboring municipalities (especially violent crimes) have a positive effect on the local influx of citizens. Crime also has a depressing effect on the average income per capita within a municipality, whereas increasing crime rates in neighboring municipalities increase it. Notwithstanding the previous results, crime does not seem to significantly affect the local tax base yield. The results suggest that the depressing effect of crime on the income basis has to be compensated by a limited, but a wealthier influx of new citizens.Keywords: crime, local taxes, migration, Tiebout mobility
Procedia PDF Downloads 30835056 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine
Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour
Abstract:
Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.Keywords: decision tree, feature selection, intrusion detection system, support vector machine
Procedia PDF Downloads 26535055 Variance-Aware Routing and Authentication Scheme for Harvesting Data in Cloud-Centric Wireless Sensor Networks
Authors: Olakanmi Oladayo Olufemi, Bamifewe Olusegun James, Badmus Yaya Opeyemi, Adegoke Kayode
Abstract:
The wireless sensor network (WSN) has made a significant contribution to the emergence of various intelligent services or cloud-based applications. Most of the time, these data are stored on a cloud platform for efficient management and sharing among different services or users. However, the sensitivity of the data makes them prone to various confidentiality and performance-related attacks during and after harvesting. Various security schemes have been developed to ensure the integrity and confidentiality of the WSNs' data. However, their specificity towards particular attacks and the resource constraint and heterogeneity of WSNs make most of these schemes imperfect. In this paper, we propose a secure variance-aware routing and authentication scheme with two-tier verification to collect, share, and manage WSN data. The scheme is capable of classifying WSN into different subnets, detecting any attempt of wormhole and black hole attack during harvesting, and enforcing access control on the harvested data stored in the cloud. The results of the analysis showed that the proposed scheme has more security functionalities than other related schemes, solves most of the WSNs and cloud security issues, prevents wormhole and black hole attacks, identifies the attackers during data harvesting, and enforces access control on the harvested data stored in the cloud at low computational, storage, and communication overheads.Keywords: data block, heterogeneous IoT network, data harvesting, wormhole attack, blackhole attack access control
Procedia PDF Downloads 8435054 Management of Medical Equipment Maintenance
Authors: Gholamreza Madad
Abstract:
The role of medical equipment in modern advanced hospitals is irrefutable. Despite limited financial resources, developing countries have taken an uncontrollable manner to the purchase of complex and expensive equipment, although they have not taken good maintenance to keep these huge capitals. In our country, limited studies have indicated that the irregularities exist in the management of medical equipment maintenance. Research method: The research was done as a cross-sectional one, and in this study, a questionnaire was used to collect data in 10 hospitals. After distributing and collecting questionnaires in person, the collected data were analyzed using descriptive statistics and SPSS software. Research findings: According to the obtained results from the four dimensions of the management of medical equipment maintenance, only (maintenance planning) was in a moderate position and other components with a score of less than 50% were at a low level. There was a direct relationship between the total score of maintenance management and guidance points and coordination of medical equipment maintenance, and as well as the age of hospital managers. Discussion and conclusion: In sum, we can say that problems such as lack of skilled staff in medical engineering departments of hospitals, lack of funds and unaware of the authorities of medical engineering units to their duties have caused that the maintenance situation of medical equipment maintenance is in poor condition (near average). The low inexperience of the authorities of the unit has also contributed to this problem.Keywords: equipment, maintenance, medical equipment, hospitals
Procedia PDF Downloads 16235053 Quality of Age Reporting from Tanzania 2012 Census Results: An Assessment Using Whipple’s Index, Myer’s Blended Index, and Age-Sex Accuracy Index
Authors: A. Sathiya Susuman, Hamisi F. Hamisi
Abstract:
Background: Many socio-economic and demographic data are age-sex attributed. However, a variety of irregularities and misstatement are noted with respect to age-related data and less to sex data because of its biological differences between the genders. Noting the misstatement/misreporting of age data regardless of its significance importance in demographics and epidemiological studies, this study aims at assessing the quality of 2012 Tanzania Population and Housing Census Results. Methods: Data for the analysis are downloaded from Tanzania National Bureau of Statistics. Age heaping and digit preference were measured using summary indices viz., Whipple’s index, Myers’ blended index, and Age-Sex Accuracy index. Results: The recorded Whipple’s index for both sexes was 154.43; male has the lowest index of about 152.65 while female has the highest index of about 156.07. For Myers’ blended index, the preferences were at digits ‘0’ and ‘5’ while avoidance were at digits ‘1’ and ‘3’ for both sexes. Finally, Age-sex index stood at 59.8 where sex ratio score was 5.82 and age ratio scores were 20.89 and 21.4 for males and female respectively. Conclusion: The evaluation of the 2012 PHC data using the demographic techniques has qualified the data inaccurate as the results of systematic heaping and digit preferences/avoidances. Thus, innovative methods in data collection along with measuring and minimizing errors using statistical techniques should be used to ensure accuracy of age data.Keywords: age heaping, digit preference/avoidance, summary indices, Whipple’s index, Myer’s index, age-sex accuracy index
Procedia PDF Downloads 47635052 Informing, Enabling and Inspiring Social Innovation by Geographic Systems Mapping: A Case Study in Workforce Development
Authors: Cassandra A. Skinner, Linda R. Chamberlain
Abstract:
The nonprofit and public sectors are increasingly turning to Geographic Information Systems for data visualizations which can better inform programmatic and policy decisions. Additionally, the private and nonprofit sectors are turning to systems mapping to better understand the ecosystems within which they operate. This study explores the potential which combining these data visualization methods—a method which is called geographic systems mapping—to create an exhaustive and comprehensive understanding of a social problem’s ecosystem may have in social innovation efforts. Researchers with Grand Valley State University collaborated with Talent 2025 of West Michigan to conduct a mixed-methods research study to paint a comprehensive picture of the workforce development ecosystem in West Michigan. Using semi-structured interviewing, observation, secondary research, and quantitative analysis, data were compiled on workforce development organizations’ locations, programming, metrics for success, partnerships, funding sources, and service language. To best visualize and disseminate the data, a geographic system map was created which identifies programmatic, operational, and geographic gaps in workforce development services of West Michigan. By combining geographic and systems mapping methods, the geographic system map provides insight into the cross-sector relationships, collaboration, and competition which exists among and between workforce development organizations. These insights identify opportunities for and constraints around cross-sectoral social innovation in the West Michigan workforce development ecosystem. This paper will discuss the process utilized to prepare the geographic systems map, explain the results and outcomes, and demonstrate how geographic systems mapping illuminated the needs of the community and opportunities for social innovation. As complicated social problems like unemployment often require cross-sectoral and multi-stakeholder solutions, there is potential for geographic systems mapping to be a tool which informs, enables, and inspires these solutions.Keywords: cross-sector collaboration, data visualization, geographic systems mapping, social innovation, workforce development
Procedia PDF Downloads 29535051 Impact of Data and Model Choices to Urban Flood Risk Assessments
Authors: Abhishek Saha, Serene Tay, Gerard Pijcke
Abstract:
The availability of high-resolution topography and rainfall information in urban areas has made it necessary to revise modeling approaches used for simulating flood risk assessments. Lidar derived elevation models that have 1m or lower resolutions are becoming widely accessible. The classical approaches of 1D-2D flow models where channel flow is simulated and coupled with a coarse resolution 2D overland flow models may not fully utilize the information provided by high-resolution data. In this context, a study was undertaken to compare three different modeling approaches to simulate flooding in an urban area. The first model used is the base model used is Sobek, which uses 1D model formulation together with hydrologic boundary conditions and couples with an overland flow model in 2D. The second model uses a full 2D model for the entire area with shallow water equations at the resolution of the digital elevation model (DEM). These models are compared against another shallow water equation solver in 2D, which uses a subgrid method for grid refinement. These models are simulated for different horizontal resolutions of DEM varying between 1m to 5m. The results show a significant difference in inundation extents and water levels for different DEMs. They are also sensitive to the different numerical models with the same physical parameters, such as friction. The study shows the importance of having reliable field observations of inundation extents and levels before a choice of model and data can be made for spatial flood risk assessments.Keywords: flooding, DEM, shallow water equations, subgrid
Procedia PDF Downloads 14135050 Fuzzy Logic-Based Approach to Predict Fault in Transformer Oil Based on Health Index Using Dissolved Gas Analysis
Authors: Kharisma Utomo Mulyodinoto, Suwarno, Ahmed Abu-Siada
Abstract:
Transformer insulating oil is a key component that can be utilized to detect incipient faults within operating transformers without taking them out of service. Dissolved gas-in-oil analysis has been widely accepted as a powerful technique to detect such incipient faults. While the measurement of dissolved gases within transformer oil samples has been standardized over the past two decades, analysis of the results is not always straightforward as it depends on personnel expertise more than mathematical formulas. In analyzing such data, the generation rate of each dissolved gas is of more concern than the absolute value of the gas. As such, history of dissolved gases within a particular transformer should be archived for future comparison. Lack of such history may lead to misinterpretation of the obtained results. IEEE C57.104-2008 standards have classified the health condition of the transformer based on the absolute value of individual dissolved gases along with the total dissolved combustible gas (TDCG) within transformer oil into 4 conditions. While the technique is easy to implement, it is considered as a very conservative technique and is not widely accepted as a reliable interpretation tool. Moreover, measured gases for the same oil sample can be within various conditions limits and hence, misinterpretation of the data is expected. To overcome this limitation, this paper introduces a fuzzy logic approach to predict the health condition of the transformer oil based on IEEE C57.104-2008 standards along with Roger ratio and IEC ratio-based methods. DGA results of 31 chosen oil samples from 469 transformer oil samples of normal transformers and pre-known fault-type transformers that were collected from Indonesia Electrical Utility Company, PT. PLN (Persero), from different voltage rating: 500/150 kV, 150/20 kV, and 70/20 kV; different capacity: 500 MVA, 60 MVA, 50 MVA, 30 MVA, 20 MVA, 15 MVA, and 10 MVA; and different lifespan, are used to test and establish the fuzzy logic model. Results show that the proposed approach is of good accuracy and can be considered as a platform toward the standardization of the dissolved gas interpretation process.Keywords: dissolved gas analysis, fuzzy logic, health index, IEEE C57.104-2008, IEC ratio method, Roger ratio method
Procedia PDF Downloads 15735049 Calibration of Discrete Element Method Parameters for Modelling DRI Pellets Flow
Authors: A. Hossein Madadi-Najafabadi, Masoud Nasiri
Abstract:
The discrete element method is a powerful technique for numerical modeling the flow of granular materials such as direct reduced iron. It would enable us to study processes and equipment related to the production and handling of the material. However, the characteristics and properties of the granules have to be adjusted precisely to achieve reliable results in a DEM simulation. The main properties for DEM simulation are size distribution, density, Young's modulus, Poisson's ratio and the contact coefficients of restitution, rolling friction and sliding friction. In the present paper, the mentioned properties are determined for DEM simulation of DRI pellets. A reliable DEM simulation would contribute to optimizing the handling system of DRIs in an iron-making plant. Among the mentioned properties, Young's modulus is the most important parameter, which is usually hard to get for particulate solids. Here, an especial method is utilized to precisely determine this parameter for DRI.Keywords: discrete element method, direct reduced iron, simulation parameters, granular material
Procedia PDF Downloads 18035048 Phylogenetic Differential Separation of Environmental Samples
Authors: Amber C. W. Vandepoele, Michael A. Marciano
Abstract:
Biological analyses frequently focus on single organisms, however many times, the biological sample consists of more than the target organism; for example, human microbiome research targets bacterial DNA, yet most samples consist largely of human DNA. Therefore, there would be an advantage to removing these contaminating organisms. Conversely, some analyses focus on a single organism but would greatly benefit from the additional information regarding the other organismal components of the sample. Forensic analysis is one such example, wherein most forensic casework, human DNA is targeted; however, it typically exists in complex non-pristine sample substrates such as soil or unclean surfaces. These complex samples are commonly comprised of not just human tissue but also microbial and plant life, where these organisms may help gain more forensically relevant information about a specific location or interaction. This project aims to optimize a ‘phylogenetic’ differential extraction method that will separate mammalian, bacterial and plant cells in a mixed sample. This is accomplished through the use of size exclusion separation, whereby the different cell types are separated through multiple filtrations using 5 μm filters. The components are then lysed via differential enzymatic sensitivities among the cells and extracted with minimal contribution from the preceding component. This extraction method will then allow complex DNA samples to be more easily interpreted through non-targeting sequencing since the data will not be skewed toward the smaller and usually more numerous bacterial DNAs. This research project has demonstrated that this ‘phylogenetic’ differential extraction method successfully separated the epithelial and bacterial cells from each other with minimal cell loss. We will take this one step further, showing that when adding the plant cells into the mixture, they will be separated and extracted from the sample. Research is ongoing, and results are pending.Keywords: DNA isolation, geolocation, non-human, phylogenetic separation
Procedia PDF Downloads 11235047 Developing Digital Twins of Steel Hull Processes
Authors: V. Ložar, N. Hadžić, T. Opetuk, R. Keser
Abstract:
The development of digital twins strongly depends on efficient algorithms and their capability to mirror real-life processes. Nowadays, such efforts are required to establish factories of the future faced with new demands of custom-made production. The ship hull processes face these challenges too. Therefore, it is important to implement design and evaluation approaches based on production system engineering. In this study, the recently developed finite state method is employed to describe the stell hull process as a platform for the implementation of digital twinning technology. The application is justified by comparing the finite state method with the analytical approach. This method is employed to rebuild a model of a real shipyard ship hull process using a combination of serial and splitting lines. The key performance indicators such as the production rate, work in process, probability of starvation, and blockade are calculated and compared to the corresponding results obtained through a simulation approach using the software tool Enterprise dynamics. This study confirms that the finite state method is a suitable tool for digital twinning applications. The conclusion highlights the advantages and disadvantages of methods employed in this context.Keywords: digital twin, finite state method, production system engineering, shipyard
Procedia PDF Downloads 9935046 Use of Cobalt Graphene in Place of Platnium in Catalytic Converter
Authors: V. Srinivasan, S. M. Sriram Nandan
Abstract:
Today in the modern world the most important problem faced by the mankind is increasing the pollution in a very high rate. It affects the ecosystem of the environment and also aids to increase the greenhouse effect. The exhaust gases from the automobile is the major cause of a pollution. Automobiles have increased to a large number which has increased the pollution of our world to an alarming rate. There are two methods of controlling the pollution namely, pre-pollution control method and post-pollution control method. This paper is based on controlling the emission by post-pollution control method. The ratio of surface area of nanoparticles to the volume of the nanoparticles is inversely proportional to the radius of the nanoparticles. So decreasing the radius, this ratio is leading resulting in an increased rate of reaction and thus the concentration of the pollution is decreased. To achieve this objective, use of cobalt-graphene element is proposed. The proposed method is mainly to decrease the cost of platinum as it is expensive. This has a longer life than the platinum-based catalysts.Keywords: automobile emissions, catalytic converter, cobalt-graphene, replacement of platinum
Procedia PDF Downloads 39035045 Implementation of a Non-Poissonian Model in a Low-Seismicity Area
Authors: Ludivine Saint-Mard, Masato Nakajima, Gloria Senfaute
Abstract:
In areas with low to moderate seismicity, the probabilistic seismic hazard analysis frequently uses a Poisson approach, which assumes independence in time and space of events to determine the annual probability of earthquake occurrence. Nevertheless, in countries with high seismic rate, such as Japan, it is frequently use non-poissonian model which assumes that next earthquake occurrence depends on the date of previous one. The objective of this paper is to apply a non-poissonian models in a region of low to moderate seismicity to get a feedback on the following questions: can we overcome the lack of data to determine some key parameters?, and can we deal with uncertainties to apply largely this methodology on an industrial context?. The Brownian-Passage-Time model was applied to a fault located in France and conclude that even if the lack of data can be overcome with some calculations, the amount of uncertainties and number of scenarios leads to a numerous branches in PSHA, making this method difficult to apply on a large scale of low to moderate seismicity areas and in an industrial context.Keywords: probabilistic seismic hazard, non-poissonian model, earthquake occurrence, low seismicity
Procedia PDF Downloads 6235044 Evaluation of Gesture-Based Password: User Behavioral Features Using Machine Learning Algorithms
Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier
Abstract:
Graphical-based passwords have existed for decades. Their major advantage is that they are easier to remember than an alphanumeric password. However, their disadvantage (especially recognition-based passwords) is the smaller password space, making them more vulnerable to brute force attacks. Graphical passwords are also highly susceptible to the shoulder-surfing effect. The gesture-based password method that we developed is a grid-free, template-free method. In this study, we evaluated the gesture-based passwords for usability and vulnerability. The results of the study are significant. We developed a gesture-based password application for data collection. Two modes of data collection were used: Creation mode and Replication mode. In creation mode (Session 1), users were asked to create six different passwords and reenter each password five times. In replication mode, users saw a password image created by some other user for a fixed duration of time. Three different duration timers, such as 5 seconds (Session 2), 10 seconds (Session 3), and 15 seconds (Session 4), were used to mimic the shoulder-surfing attack. After the timer expired, the password image was removed, and users were asked to replicate the password. There were 74, 57, 50, and 44 users participated in Session 1, Session 2, Session 3, and Session 4 respectfully. In this study, the machine learning algorithms have been applied to determine whether the person is a genuine user or an imposter based on the password entered. Five different machine learning algorithms were deployed to compare the performance in user authentication: namely, Decision Trees, Linear Discriminant Analysis, Naive Bayes Classifier, Support Vector Machines (SVMs) with Gaussian Radial Basis Kernel function, and K-Nearest Neighbor. Gesture-based password features vary from one entry to the next. It is difficult to distinguish between a creator and an intruder for authentication. For each password entered by the user, four features were extracted: password score, password length, password speed, and password size. All four features were normalized before being fed to a classifier. Three different classifiers were trained using data from all four sessions. Classifiers A, B, and C were trained and tested using data from the password creation session and the password replication with a timer of 5 seconds, 10 seconds, and 15 seconds, respectively. The classification accuracies for Classifier A using five ML algorithms are 72.5%, 71.3%, 71.9%, 74.4%, and 72.9%, respectively. The classification accuracies for Classifier B using five ML algorithms are 69.7%, 67.9%, 70.2%, 73.8%, and 71.2%, respectively. The classification accuracies for Classifier C using five ML algorithms are 68.1%, 64.9%, 68.4%, 71.5%, and 69.8%, respectively. SVMs with Gaussian Radial Basis Kernel outperform other ML algorithms for gesture-based password authentication. Results confirm that the shorter the duration of the shoulder-surfing attack, the higher the authentication accuracy. In conclusion, behavioral features extracted from the gesture-based passwords lead to less vulnerable user authentication.Keywords: authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability
Procedia PDF Downloads 10735043 Banking Performance and Political Economy: Using ARDL Model
Authors: Marwen Ghouil, Jamel Eddine Mkadmi
Abstract:
Banking performance is the pillar and goal of all banking activity and its impact on economic policy. First, researchers defined the principles for assessing and modeling bank performance, and then theories and models explaining bank performance were developed. The importance of credit as a means of financing businesses in most developing countries has led to questions about the effects of financial liberalisation on increased banking competition. In Tunisia, as in many other countries, the liberalization of financial services in general and of banks' activities has not ceased to evolve. The objective of this paper is to examine the determinants of banking performance for 8 Tunisian banks and their impact on economic policy during the Arab Spring. We used cointegration analysis and the ARDL Panel model, explaining using total assets, bank credits, guarantees, and bank size as performance drivers. The correlation analysis shows that there is a positive correlation relationship between total assets, bank credits, guarantees, and bank size and bank performance. Long-term empirical results show that bank loans, guarantees, bank size, and total assets have a positive and significant impact on bank performance. This means that bank credits, guarantees, bank size, and total assets are very important determinants of bank performance in Tunisia.Keywords: bank performance, economic policy, finance, economic
Procedia PDF Downloads 13435042 Trajectory Generation Procedure for Unmanned Aerial Vehicles
Authors: Amor Jnifene, Cedric Cocaud
Abstract:
One of the most constraining problems facing the development of autonomous vehicles is the limitations of current technologies. Guidance and navigation controllers need to be faster and more robust. Communication data links need to be more reliable and secure. For an Unmanned Aerial Vehicles (UAV) to be useful, and fully autonomous, one important feature that needs to be an integral part of the navigation system is autonomous trajectory planning. The work discussed in this paper presents a method for on-line trajectory planning for UAV’s. This method takes into account various constraints of different types including specific vectors of approach close to target points, multiple objectives, and other constraints related to speed, altitude, and obstacle avoidance. The trajectory produced by the proposed method ensures a smooth transition between different segments, satisfies the minimum curvature imposed by the dynamics of the UAV, and finds the optimum velocity based on available atmospheric conditions. Given a set of objective points and waypoints a skeleton of the trajectory is constructed first by linking all waypoints with straight segments based on the order in which they are encountered in the path. Secondly, vectors of approach (VoA) are assigned to objective waypoints and their preceding transitional waypoint if any. Thirdly, the straight segments are replaced by 3D curvilinear trajectories taking into account the aircraft dynamics. In summary, this work presents a method for on-line 3D trajectory generation (TG) of Unmanned Aerial Vehicles (UAVs). The method takes as inputs a series of waypoints and an optional vector of approach for each of the waypoints. Using a dynamic model based on the performance equations of fixed wing aircrafts, the TG computes a set of 3D parametric curves establishing a course between every pair of waypoints, and assembling these sets of curves to construct a complete trajectory. The algorithm ensures geometric continuity at each connection point between two sets of curves. The geometry of the trajectory is optimized according to the dynamic characteristics of the aircraft such that the result translates into a series of dynamically feasible maneuvers. In summary, this work presents a method for on-line 3D trajectory generation (TG) of Unmanned Aerial Vehicles (UAVs). The method takes as inputs a series of waypoints and an optional vector of approach for each of the waypoints. Using a dynamic model based on the performance equations of fixed wing aircraft, the TG computes a set of 3D parametric curves establishing a course between every pair of waypoints, and assembling these sets of curves to construct a complete trajectory. The algorithm ensures geometric continuity at each connection point between two sets of curves. The geometry of the trajectory is optimized according to the dynamic characteristics of the aircraft such that the result translates into a series of dynamically feasible maneuvers.Keywords: trajectory planning, unmanned autonomous air vehicle, vector of approach, waypoints
Procedia PDF Downloads 40935041 An Effort at Improving Reliability of Laboratory Data in Titrimetric Analysis for Zinc Sulphate Tablets Using Validated Spreadsheet Calculators
Authors: M. A. Okezue, K. L. Clase, S. R. Byrn
Abstract:
The requirement for maintaining data integrity in laboratory operations is critical for regulatory compliance. Automation of procedures reduces incidence of human errors. Quality control laboratories located in low-income economies may face some barriers in attempts to automate their processes. Since data from quality control tests on pharmaceutical products are used in making regulatory decisions, it is important that laboratory reports are accurate and reliable. Zinc Sulphate (ZnSO4) tablets is used in treatment of diarrhea in pediatric population, and as an adjunct therapy for COVID-19 regimen. Unfortunately, zinc content in these formulations is determined titrimetrically; a manual analytical procedure. The assay for ZnSO4 tablets involves time-consuming steps that contain mathematical formulae prone to calculation errors. To achieve consistency, save costs, and improve data integrity, validated spreadsheets were developed to simplify the two critical steps in the analysis of ZnSO4 tablets: standardization of 0.1M Sodium Edetate (EDTA) solution, and the complexometric titration assay procedure. The assay method in the United States Pharmacopoeia was used to create a process flow for ZnSO4 tablets. For each step in the process, different formulae were input into two spreadsheets to automate calculations. Further checks were created within the automated system to ensure validity of replicate analysis in titrimetric procedures. Validations were conducted using five data sets of manually computed assay results. The acceptance criteria set for the protocol were met. Significant p-values (p < 0.05, α = 0.05, at 95% Confidence Interval) were obtained from students’ t-test evaluation of the mean values for manual-calculated and spreadsheet results at all levels of the analysis flow. Right-first-time analysis and principles of data integrity were enhanced by use of the validated spreadsheet calculators in titrimetric evaluations of ZnSO4 tablets. Human errors were minimized in calculations when procedures were automated in quality control laboratories. The assay procedure for the formulation was achieved in a time-efficient manner with greater level of accuracy. This project is expected to promote cost savings for laboratory business models.Keywords: data integrity, spreadsheets, titrimetry, validation, zinc sulphate tablets
Procedia PDF Downloads 169