Search results for: GSM signal strength
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5204

Search results for: GSM signal strength

1694 The Effect of Extremely Low Frequency Magnetic Field on Rats Brain

Authors: Omar Abdalla, Abdelfatah Ahmed, Ahmed Mustafa, Abdelazem Eldouma

Abstract:

The purpose of this study is evaluating the effect of extremely low frequency magnetic field on Waster rats brain. The number of rats used in this study were 25, which were divided into five groups, each group containing five rats as follows: Group 1: The control group which was not exposed to energized field; Group 2: Rats were exposed to a magnetic field with an intensity of 0.6 mT (2 hours/day); Group 3: Rats were exposed to a magnetic field of 1.2 mT (2 hours/day); Group4: Rats were exposed to a magnetic field of 1.8 mT (2 hours/day); Group 5: Rats were exposed to a magnetic field of 2.4 mT (2 hours/day) and all groups were exposed for seven days, by designing a maze and calculating the time average for arriving to the decoy at special conditions. We found the time average before exposure for the all groups was G2=330 s, G3=172 s, G4=500 s and G5=174 s, respectively. We exposed all groups to ELF-MF and measured the time and we found: G2=465 s, G3=388 s, G4=501 s, and G5=442 s. It was observed that the time average increased directly with field strength. Histological samples of frontal lop of brain for all groups were taken and we found lesion, atrophy, empty vacuoles and disorder choroid plexus at frontal lope of brain. And finally we observed the disorder of choroid plexus in histological results and Alzheimer's symptoms increase when the magnetic field increases.

Keywords: nonionizing radiation, biophysics, magnetic field, shrinkage

Procedia PDF Downloads 521
1693 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection

Authors: Hussin K. Ragb, Vijayan K. Asari

Abstract:

In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.

Keywords: pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor

Procedia PDF Downloads 462
1692 Mechanical Response of Aluminum Foam Under Biaxial Combined Quasi-Static Compression-Torsional Loads

Authors: Solomon Huluka, Akrum Abdul-Latif, Rachid Baleh

Abstract:

Metal foams have been developed intensively as a new class of materials for the last two decades due to their unique structural and multifunctional properties. The aim of this experimental work was to characterize the effect of biaxial loading complexity (combined compression-torsion) on the plastic response of highly uniform architecture open-cell aluminum foams of spherical porous with a density of 80%. For foam manufacturing, the Kelvin cells model was used to generate the generally spherical shape with a cell diameter of 11 mm. A patented rig called ACTP (Absorption par Compression-Torsion Plastique), was used to investigate the foam response under quasi-static complex loading paths having different torsional components (i.e. 0°, 45° and 60°). The key mechanical responses to be examined are yield stress, stress plateau, and energy absorption capacity. The collapse mode was also investigated. It was concluded that the higher the loading complexity, the greater the yield strength and the greater energy absorption capacity of the foam. Experimentally, it was also noticed that there were large softening effects that occurred after the first pick stress for both biaxial-45° and biaxial-60° loading.

Keywords: aluminum foam, loading complexity, characterization, biaxial loading

Procedia PDF Downloads 115
1691 Offset Dependent Uniform Delay Mathematical Optimization Model for Signalized Traffic Network Using Differential Evolution Algorithm

Authors: Tahseen Saad, Halim Ceylan, Jonathan Weaver, Osman Nuri Çelik, Onur Gungor Sahin

Abstract:

A new concept of uniform delay offset dependent mathematical optimization problem is derived as the main objective for this study using a differential evolution algorithm. To control the coordination problem, which depends on offset selection and to estimate uniform delay based on the offset choice in a traffic signal network. The assumption is the periodic sinusoidal function for arrival and departure patterns. The cycle time is optimized at the entry links and the optimized value is used in the non-entry links as a common cycle time. The offset optimization algorithm is used to calculate the uniform delay at each link. The results are illustrated by using a case study and are compared with the canonical uniform delay model derived by Webster and the highway capacity manual’s model. The findings show new model minimizes the total uniform delay to almost half compared to conventional models. The mathematical objective function is robust. The algorithm convergence time is fast.

Keywords: area traffic control, traffic flow, differential evolution, sinusoidal periodic function, uniform delay, offset variable

Procedia PDF Downloads 256
1690 Green Natural Rubber Composites Reinforced with Synthetic Graphite: Effects of Reinforcing Agent on Film’s Mechanical Properties and Electrical Conductivity

Authors: Veerapat Kitsawat, Muenduen Phisalaphong

Abstract:

Green natural rubber (NR) composites reinforced with synthetic graphite, using alginate as thickening and dispersing agent, were developed to improve mechanical properties and electrical conductivity. The film fabrication was performed using a latex aqueous microdispersion process. The research found that up to 60 parts per hundred rubbers (phr) of graphite could be successfully integrated into the NR matrix without causing agglomeration and phase separation. Accordingly, the mechanical properties, in terms of tensile strength and Young’s modulus of the composite films, were significantly increased, while the elongation at break decreased with higher graphite loading. The reinforcement strongly improved the hydrophilicity of the composite films, resulting in a higher water absorption rate compared to the neat NR film. Moreover, the incorporation of synthetic graphite significantly improved the chemical resistance of the composite films when exposed to toluene. It is demonstrated that the electrical conductivity of the composite films was considerably enhanced with graphite loading. According to the obtained properties, the developed composites offer potential for further development as conductive substrate for electronic applications.

Keywords: alginate, composite, graphite, natural rubber

Procedia PDF Downloads 61
1689 Bond-Slip Response of Reinforcing Bars Embedded in High Performance Fiber Reinforced Cement Composites

Authors: Lee Siong Wee, Tan Kang Hai, Yang En-Hua

Abstract:

This paper presents the results of an experimental study undertaken to evaluate the local bond stress-slip response of short embedment of reinforcing bars in normal concrete (NC) and high performance fiber reinforced cement composites (HPFRCC) blocks. Long embedment was investigated as well to gain insights on the distribution of strain, slip, bar stress and bond stress along the bar especially in post-yield range. A total of 12 specimens were tested, by means of pull-out of the reinforcing bars from concrete blocks. It was found that the enhancement of local bond strength can be reached up to 50% and ductility of the bond behavior was improved significantly if HPFRCC is used. Also, under a constant strain at loaded end, HPFRCC has delayed yielding of bars at other location from the loaded end. Hence, the reduction of bond stress was slower for HPFRCC in comparison with NC. Due to the same reason, the total slips at loaded end for HPFRCC was smaller than NC as expected. Test results indicated that HPFRCC has better bond slip behavior which makes it a suitable material to be employed in anchorage zone such as beam-column joints.

Keywords: bond stress, high performance fiber reinforced cement composites, slip, strain

Procedia PDF Downloads 475
1688 Cellulose Acetate/Polyacrylic Acid Filled with Nano-Hydroxapatite Composites: Spectroscopic Studies and Search for Biomedical Applications

Authors: E. M. AbdelRazek, G. S. ElBahy, M. A. Allam, A. M. Abdelghany, A. M. Hezma

Abstract:

Polymeric biocomposite of hydroxyapatite/polyacrylic acid were prepared and their thermal and mechanical properties were improved by addition of cellulose acetate. FTIR spectroscopy technique and X-ray diffraction analysis were employed to examine the physical and chemical characteristics of the biocomposites. Scanning electron microscopy shows a uniform distribution of HAp nano-particles through the polymeric matrix of two organic/inorganic composites weight ratios (60/40 and 70/30), at which the material crystallinity reaches a considerable value appropriate for the needed applications were studied and revealed that the HAp nano-particles are uniformly distributed in the polymeric matrix. Kinetic parameters were determined from the weight loss data using non isothermal thermogravimetric analysis (TGA). Also, the main degradation steps were described and discussed. The mechanical properties of composites were evaluated by measuring tensile strength and elastic modulus. The data indicate that the addition of cellulose acetate can make homogeneous composites scaffold significantly resistant to higher stress. Elastic modulus of the composites was also improved by the addition of cellulose acetate, making them more appropriate for bioapplications.

Keywords: biocomposite, chemical synthesis, infrared spectroscopy, mechanical properties

Procedia PDF Downloads 438
1687 Sporting Events among the Disabled between Excellence and Ideal in Motor Performance: Analytical Descriptive Study in Some Paralympic Sports

Authors: Guebli Abdelkader, Reguieg Madani, Belkadi Adel, Sbaa Bouabdellah

Abstract:

The identification of mechanical variables in the motor performance trajectory has a prominent role in improving skill performance, error-exceeding, it contributes seriously to solving some problems of learning and training. The study aims to highlight the indicators of motor performance for Paralympic athletes during the practicing sports between modelling and between excellence in motor performance, this by taking into account the distinction of athlete practicing with special behavioral skills for the Paralympic athletes. In the study, we relied on the analysis of some previous research of biomechanical performance indicators during some of the events sports (shooting activities in the Paralympic athletics, shooting skill in the wheelchair basketball). The results of the study highlight the distinction of disabled practitioners of sporting events identified in motor performance during practice, by overcoming some physics indicators in human movement, as a lower center of body weight, increase in offset distance, such resistance which requires them to redouble their efforts. However, the results of the study highlighted the strength of the correlation between biomechanical variables of motor performance and the digital level achievement similar to the other practitioners normal.

Keywords: sports, the disabled, motor performance, Paralympic

Procedia PDF Downloads 258
1686 Juniperus thurefera Multiplication Tests by Cauttigs in Aures, Algeria

Authors: N. Khater, S. A. Menina, H. Benbouza

Abstract:

Juniperus thurefera is an endemic cupressacée constitutes a forest cover in the mountains of Aures (Algeria). It is a heritage and important ecological richness but continues to decline, highly endangered species in danger of extinction, these populations show significant originality due to climatic conditions of the environment, because of its strength and extraordinary vitality, made a powerful but fragile and unique ecosystem in which natural regeneration by seed is almost absent in Algeria. Because of the quality of seeds that are either dormant or affected at the tree and the ground level by a large number of pests and parasites, which will lead to the total disappearance of this species and consequently leading to the biodiversity. View the ecological and socio- economic interest presented by this case, it deserves to be preserved and produced in large quantities in this respect. The present work aims to try to regenerate the Juniperus thurefera via vegetative propagation. We studied the potential of cuttings to form adventitious roots and buds. Cuttings were taken from young subjects from 5 to 20 years treated with indole butyric acid (AIB) and planted out-inside perlite under atomizer whose temperature and light are controlled. Results indicated that the percentage of developing buds on cuttings is better than the rooting ones.

Keywords: Juniperus thurefera, indole butyric acid, cutting, buds, rooting

Procedia PDF Downloads 254
1685 Fluorescence in situ Hybridization (FISH) Detection of Bacteria and Archaea in Fecal Samples

Authors: Maria Nejjari, Michel Cloutier, Guylaine Talbot, Martin Lanthier

Abstract:

The fluorescence in situ hybridization (FISH) is a staining technique that allows the identification, detection and quantification of microorganisms without prior cultivation by means of epifluorescence and confocal laser scanning microscopy (CLSM). Oligonucleotide probes have been used to detect bacteria and archaea that colonize the cattle and swine digestive systems. These bacterial strains have been obtained from fecal samples issued from cattle manure and swine slurry. The collection of these samples has been done at 3 different pit’s levels A, B and C with same height. Two collection depth levels have been taken in consideration, one collection level just under the pit’s surface and the second one at the bottom of the pit. Cells were fixed and FISH was performed using oligonucleotides of 15 to 25 nucleotides of length associated with a fluorescent molecule Cy3 or Cy5. The double hybridization using Cy3 probe targeting bacteria (Cy3-EUB338-I) along with a Cy5 probe targeting Archaea (Gy5-ARCH915) gave a better signal. The CLSM images show that there are more bacteria than archaea in swine slurry. However, the choice of fluorescent probes is critical for getting the double hybridization and a unique signature for each microorganism. FISH technique is an easy way to detect pathogens like E. coli O157, Listeria, Salmonella that easily contaminate water streams, agricultural soils and, consequently, food products and endanger human health.

Keywords: archaea, bacteria, detection, FISH, fluorescence

Procedia PDF Downloads 370
1684 Investigations of Flame Retardant Properties of Beneficiated Huntite and Hydromagnesite Mineral Reinforced Polymer Composites

Authors: H. Yilmaz Atay

Abstract:

Huntite and hydromagnesite minerals have been used as additive materials to achieve incombustible material due to their inflammability property. Those fire retardants materials can help to extinguish in the early stages of fire. Thus dispersion of the flame can be prevented even if the fire started. Huntite and hydromagnesite minerals are known to impart fire-proofing of the polymer composites. However, the additives used in the applications led to deterioration in the mechanical properties due to the usage of high amount of the powders in the composites. In this study, by enriching huntite and hydromagnesite, it was aimed to use purer minerals to reinforce the polymer composites. Thus, predictably, using purer mineral will lead to use lower amount of mineral powders. By this manner, the minerals free from impurities by various processes were added to the polymer matrix with different loading level and grades. Different types of samples were manufactured, and subsequently characterized by XRD, SEM-EDS, XRF and flame-retardant tests. Tensile strength and elongation at break values were determined according to loading levels and grades. Besides, a comparison on the properties of the polymer composites produced by using of minerals with and without impurities was performed. As a result of the work, it was concluded that it is required to use beneficiated minerals to provide better fire-proofing behaviors in the polymer composites.

Keywords: flame retardant, huntite and hydromagnesite, mechanical property, polymer composites

Procedia PDF Downloads 216
1683 Experimental Investigation on Residual Stresses in Welded Medium-Walled I-shaped Sections Fabricated from Q460GJ Structural Steel Plates

Authors: Qian Zhu, Shidong Nie, Bo Yang, Gang Xiong, Guoxin Dai

Abstract:

GJ steel is a new type of high-performance structural steel which has been increasingly adopted in practical engineering. Q460GJ structural steel has a nominal yield strength of 460 MPa, which does not decrease significantly with the increase of steel plate thickness like normal structural steel. Thus, Q460GJ structural steel is normally used in medium-walled welded sections. However, research works on the residual stress in GJ steel members are few though it is one of the vital factors that can affect the member and structural behavior. This article aims to investigate the residual stresses in welded I-shaped sections fabricated from Q460GJ structural steel plates by experimental tests. A total of four full scale welded medium-walled I-shaped sections were tested by sectioning method. Both circular curve correction method and straightening measurement method were adopted in this study to obtain the final magnitude and distribution of the longitudinal residual stresses. In addition, this paper also explores the interaction between flanges and webs. And based on the statistical evaluation of the experimental data, a multilayer residual stress model is proposed.

Keywords: Q460GJ structural steel, residual stresses, sectioning method, welded medium-walled I-shaped sections

Procedia PDF Downloads 294
1682 Behavior Factors Evaluation for Reinforced Concrete Structures

Authors: Muhammad Rizwan, Naveed Ahmad, Akhtar Naeem Khan

Abstract:

Seismic behavior factors are evaluated for the performance assessment of low rise reinforced concrete RC frame structures based on experimental study of unidirectional dynamic shake table testing of two 1/3rd reduced scaled two storey frames, with a code confirming special moment resisting frame (SMRF) model and a noncompliant model of similar characteristics but built in low strength concrete .The models were subjected to a scaled accelerogram record of 1994 Northridge earthquake to deformed the test models to final collapse stage in order to obtain the structural response parameters. The fully compliant model was observed with more stable beam-sway response, experiencing beam flexure yielding and ground-storey column base yielding upon subjecting to 100% of the record. The response modification factor - R factor obtained for the code complaint and deficient prototype structures were 7.5 and 4.5 respectively, which is about 10% and 40% less than the UBC-97 specified value for special moment resisting reinforced concrete frame structures.

Keywords: Northridge 1994 earthquake, reinforced concrete frame, response modification factor, shake table testing

Procedia PDF Downloads 154
1681 Purification and Pre-Crystallization of Recombinant PhoR Cytoplasmic Domain Protein from Mycobacterium Tuberculosis H37Rv

Authors: Oktira Roka Aji, Maelita R. Moeis, Ihsanawati, Ernawati A. Giri-Rachman

Abstract:

Globally, tuberculosis (TB) remains a leading cause of death. The emergence of multidrug-resistant strains and extensively drug-resistant strains have become a major public concern. One of the potential candidates for drug target is the cytoplasmic domain of PhoR Histidine Kinase, a part of the Two Component System (TCS) PhoR-PhoP in Mycobacterium tuberculosis (Mtb). TCS PhoR-PhoP relay extracellular signal to control the expression of 114 virulent associated genes in Mtb. The 3D structure of PhoR cytoplasmic domain is needed to screen novel drugs using structure based drug discovery. The PhoR cytoplasmic domain from Mtb H37Rv was overexpressed in E. coli BL21(DE3), then purified using IMAC Ni-NTA Agarose his-tag affinity column and DEAE-ion exchange column chromatography. The molecular weight of the purified protein was estimated to be 37 kDa after SDS-PAGE analysis. This sample was used for pre-crystallization screening by applying sitting drop vapor diffusion method using Natrix (HR2-116) 48 solutions crystal screen kit at 25ºC. Needle-like crystals were observed after the seventh day of incubation in test solution No.47 (0.1 M KCl, 0.01 M MgCl2.6H2O, 0.05 M Tris-Cl pH 8.5, 30% v/v PEG 4000). Further testing is required for confirming the crystal.

Keywords: tuberculosis, two component system, histidine kinase, needle-like crystals

Procedia PDF Downloads 416
1680 An Automatic Speech Recognition of Conversational Telephone Speech in Malay Language

Authors: M. Draman, S. Z. Muhamad Yassin, M. S. Alias, Z. Lambak, M. I. Zulkifli, S. N. Padhi, K. N. Baharim, F. Maskuriy, A. I. A. Rahim

Abstract:

The performance of Malay automatic speech recognition (ASR) system for the call centre environment is presented. The system utilizes Kaldi toolkit as the platform to the entire library and algorithm used in performing the ASR task. The acoustic model implemented in this system uses a deep neural network (DNN) method to model the acoustic signal and the standard (n-gram) model for language modelling. With 80 hours of training data from the call centre recordings, the ASR system can achieve 72% of accuracy that corresponds to 28% of word error rate (WER). The testing was done using 20 hours of audio data. Despite the implementation of DNN, the system shows a low accuracy owing to the varieties of noises, accent and dialect that typically occurs in Malaysian call centre environment. This significant variation of speakers is reflected by the large standard deviation of the average word error rate (WERav) (i.e., ~ 10%). It is observed that the lowest WER (13.8%) was obtained from recording sample with a standard Malay dialect (central Malaysia) of native speaker as compared to 49% of the sample with the highest WER that contains conversation of the speaker that uses non-standard Malay dialect.

Keywords: conversational speech recognition, deep neural network, Malay language, speech recognition

Procedia PDF Downloads 305
1679 Failure Analysis of Laminated Veneer Bamboo Dowel Connections

Authors: Niloufar Khoshbakht, Peggi L. Clouston, Sanjay R. Arwade, Alexander C. Schreyer

Abstract:

Laminated veneer bamboo (LVB) is a structural engineered composite made from glued layers of bamboo. A relatively new building product, LVB is currently employed in similar sizes and applications as dimensional lumber. This study describes the results of a 3D elastic Finite Element model for halfhole specimens when loaded in compression parallel-to-grain per ASTM 5764. The model simulates LVB fracture initiation due to shear stresses in the dowel joint and predicts displacement at failure validated through comparison with experimental results. The material fails at 1mm displacement due to in-plane shear stresses. The paper clarifies the complex interactive state of in-plane shear, tension perpendicular-to-grain, and compression parallel-to-grain stresses that form different distributions in the critical zone beneath the bolt hole for half-hole specimens. These findings are instrumental in understanding key factors and fundamental failure mechanisms that occur in LVB dowel connections to help devise safe standards and further LVB product adoption and design.

Keywords: composite, dowel connection, embedment strength, failure behavior, finite element analysis, Moso bamboo

Procedia PDF Downloads 248
1678 Simulation of Particle Damping in Boring Tool Using Combined Particles

Authors: S. Chockalingam, U. Natarajan, D. M. Santhoshsarang

Abstract:

Particle damping is a promising vibration attenuating technique in boring tool than other type of damping with minimal effect on the strength, rigidity and stiffness ratio of the machine tool structure. Due to the cantilever nature of boring tool holder in operations, it suffers chatter when the slenderness ratio of the tool gets increased. In this study, Copper-Stainless steel (SS) particles were packed inside the boring tool which acts as a damper. Damper suppresses chatter generated during machining and also improves the machining efficiency of the tool with better slenderness ratio. In the first approach of particle damping, combined Cu-SS particles were packed inside the vibrating tool, whereas Copper and Stainless steel particles were selected separately and packed inside another tool and their effectiveness was analysed in this simulation. This study reveals that the efficiency of finite element simulation of the boring tools when equipped with particles such as copper, stainless steel and a combination of both. In this study, the newly modified boring tool holder with particle damping was simulated using ANSYS12.0 with and without particles. The aim of this study is to enhance the structural rigidity through particle damping thus avoiding the occurrence of resonance in the boring tool during machining.

Keywords: boring bar, copper-stainless steel, chatter, particle damping

Procedia PDF Downloads 446
1677 Auditory Function in MP3 Users and Association with Hidden Hearing Loss

Authors: Nana Saralidze, Nino Sharashenidze, Zurab Kevanishvili

Abstract:

Hidden hearing loss may occur in humans exposed to prolonged high-level sound. It is the loss of ability to hear high-level background noise while having normal hearing in quiet. We compared the hearing of people who regularly listen 3 hours and more to personal music players and those who do not. Forty participants aged 18-30 years were divided into two groups: regular users of music players and people who had never used them. And the third group – elders aged 50-55 years, had 15 participants. Pure-tone audiometry (125-16000 Hz), auditory brainstem response (ABR) (70dB SPL), and ability to identify speech in noise (4-talker babble with a 65-dB signal-to-noise ratio at 80 dB) were measured in all participants. All participants had normal pure-tone audiometry (all thresholds < 25 dB HL). A significant difference between groups was observed in that regular users of personal audio systems correctly identified 53% of words, whereas the non-users identified 74% and the elder group – 63%. This contributes evidence supporting the presence of a hidden hearing loss in humans and demonstrates that speech-in-noise audiometry is an effective method and can be considered as the GOLD standard for detecting hidden hearing loss.

Keywords: mp3 player, hidden hearing loss, speech audiometry, pure tone audiometry

Procedia PDF Downloads 49
1676 Preparation and Characterization of the TiO₂ Photocatalytic Membrane for the Degradation of Reactive Orange 16 Dye

Authors: Shruti Sakarkar, Jega Jegatheesan, Srinivasan Madapusi

Abstract:

Photocatalytic membranes have shown great potential for the removal of an organic and inorganic pollutant from wastewater as it combines the degradation and antibacterial properties from photocatalysis and physical separation by the membrane in a single unit. Incorporation of the semiconductor in membrane structure results in enhancing the performance and the properties of the membrane. In this study porous ultrafiltration polyvinylidene fluoride (PVDF) membranes with entrapped TiO₂ nanoparticle were prepared by phase inversion method and further used for the degradation of reactive orange 16 (RO16). Prepared photocatalytic membranes were characterized by the scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), contact angle, and atomic force microscope (AFM). The addition of TiO₂ nanopartparticles improves the strength and thermal stability of the membrane. In particular hydrophilicity and permeability increases with the increase of TiO₂ nanoparticles into the membrane. The photocatalytic membrane achieves 80-85% degrdation of RO16. The impact of different parameters such as pH, concentration of photocatalyst, dye concentration and effect of H₂O₂ were analysed. The best conditions for dye degradation were an initial dye concentration of 50 mg/L, with a membrane containing TiO₂ loading of 2wt%. It was observed that in the presence of H₂O₂, degradation increases with increasing H₂O₂ concentration and reached up to 95-98%. The high quality permeates obtained from the photocatalytic membrane can be reused.

Keywords: photocatalytic membrane, TiO₂, PVDF, nanoparticles

Procedia PDF Downloads 141
1675 Properties and Antimicrobial Activity of Fish Protein Isolate/Fish Skin Gelatin Film Containing Basil Leaf Essential Oil and Zinc Oxide Nanoparticles

Authors: Yasir Ali Arfat

Abstract:

Composite films based on fish protein isolate (FPI) and fish skin gelatin (FSG) blend incorporated with 50 and 100% (w/w, protein) basil leaf essential oil (BEO) in the absence and presence of 3% (w/w, protein) ZnO nanoparticles (ZnONP) were prepared and characterised. Tensile strength (TS) decreased, whilst elongation at break (EAB) increased as BEO level increased (p < 0.05). However, ZnONP addition resulted in higher TS but lower EAB (p < 0.05). The lowest water vapour permeability (WVP) was observed for the film incorporated with 100% BEO and 3% ZnONP (p < 0.05). BEO and ZnONP incorporation decreased transparency of FPI/FSG films (p < 0.05). FTIR spectra indicated that films added with BEO exhibited higher hydrophobicity. Both BEO and ZnONP had a marked impact on thermal stability of the films. Microstructural study revealed that presence of ZnONP prevented bilayer formation of film containing 100% BEO. FPI/FSG films incorporated with 100% BEO, especially in combination with ZnONP, exhibited strong antibacterial activity against food pathogenic and spoilage bacteria and thus could be used as an active food packaging material to ensure safety and to extend the shelf-life of packaged foods.

Keywords: bionanocomposite, fish protein isolate, fish skin gelatin, basil essential oil, ZnO nanoparticles, antimicrobial packaging

Procedia PDF Downloads 449
1674 Optimization of Cutting Parameters on Delamination Using Taguchi Method during Drilling of GFRP Composites

Authors: Vimanyu Chadha, Ranganath M. Singari

Abstract:

Drilling composite materials is a frequently practiced machining process during assembling in various industries such as automotive and aerospace. However, drilling of glass fiber reinforced plastic (GFRP) composites is significantly affected by damage tendency of these materials under cutting forces such as thrust force and torque. The aim of this paper is to investigate the influence of the various cutting parameters such as cutting speed and feed rate; subsequently also to study the influence of number of layers on delamination produced while drilling a GFRP composite. A plan of experiments, based on Taguchi techniques, was instituted considering drilling with prefixed cutting parameters in a hand lay-up GFRP material. The damage induced associated with drilling GFRP composites were measured. Moreover, Analysis of Variance (ANOVA) was performed to obtain minimization of delamination influenced by drilling parameters and number layers. The optimum drilling factor combination was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that feed rate was the most influential factor on the delamination. The best results of the delamination were obtained with composites with a greater number of layers at lower cutting speeds and feed rates.

Keywords: analysis of variance, delamination, design optimization, drilling, glass fiber reinforced plastic composites, Taguchi method

Procedia PDF Downloads 236
1673 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model

Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin

Abstract:

Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.

Keywords: anomaly detection, autoencoder, data centers, deep learning

Procedia PDF Downloads 167
1672 Investigation of Mechanical Properties on natural fiber Reinforced Epoxy Composites

Authors: Gopi Kerekere Rangaraju, Madhu Puttegowda

Abstract:

Natural fibres composites include coir, jute, bagasse, cotton, bamboo, and hemp. Natural fibers come from plants. These fibers contain lingo cellulose in nature. Natural fibers are eco-friendly; lightweight, strong, renewable, cheap, and biodegradable. The natural fibers can be used to reinforce both thermosetting and thermoplastic matrices. Thermosetting resins such as epoxy, polyester, polyurethane, and phenolic are commonly used composites requiring higher performance applications. They provide sufficient mechanical properties, in particular, stiffness and strength at acceptably low-price levels. Recent advances in natural fibers development are genetic engineering. The composites science offers significant opportunities for improved materials from renewable resources with enhanced support for global sustainability. Natural fibers composites are attractive to industry because of their low density and ecological advantages over conventional composites. These composites are gaining importance due to their non-carcinogenic and bio-degradable nature. Natural fibers composites are a very costeffective material, especially in building and construction, packaging, automobile and railway coach interiors, and storage devices. These composites are potential candidates for the replacement of high- cost glass fibers for low load bearing applications. Natural fibers have the advantages of low density, low cost, and biodegradability

Keywords: PMC, basalt, coir, carbon fibers

Procedia PDF Downloads 114
1671 Effect of Bored Pile Diameter in Sand on Friction Resistance

Authors: Ashraf Mohammed M. Eid, Hossam El Badry

Abstract:

The bored pile friction resistance may be affected by many factors such as the method of construction, pile length and diameter, the soil properties, as well as the depth below ground level. These factors can be represented analytically to study the influence of diameter on the unit skin friction. In this research, the Egyptian Code of soil mechanics is used to assess the skin friction capacity for either the ordinary pile diameter as well as for the large pile diameter. The later is presented in the code and through the work of some researchers based on the results of investigations adopted for a sufficient number of field tests. The comparative results of these researchers with respect to the Egyptian Code are used to check the adequacy of both methods. Based on the results of this study, the traditional static formula adopted for piles of diameter less than 60 cm may be continually used for larger piles by correlating the analyzed formulae. Accordingly, the corresponding modified angle of internal friction is concluded demonstrating a reduction of shear strength due to soil disturbance along the pile shaft. Based on this research the difference between driven piles and bored piles constructed in same soil can be assessed and a better understanding can be evaluated for the effect of different factors on pile skin friction capacity.

Keywords: large piles, static formula, friction piles, sandy soils

Procedia PDF Downloads 474
1670 The Effect of Polypropylene Fiber in the Stabilization of Expansive Soils

Authors: Ali Sinan Soğancı

Abstract:

Expansive soils are often encountered in many parts of the world, especially in arid and semi-arid fields. Such kind of soils, generally including active clay minerals in low water content, enlarge in volume by absorbing the water through the surface and cause a great harm to the light structures such as channel coating, roads and airports. The expansive soils were encountered on the path of Apa-Hotamış conveyance channel belonging to the State Hydraulic Works in the region of Konya. In the research done in this area, it is predicted that the soil has a swollen nature and the soil should be filled with proper granular equipment by digging the ground to 50-60 cm. In this study, for purpose of helping the other research to be done in the same area, it is thought that instead of replacing swollen soil with the granular soil, by stabilizing it with polypropylene fiber and using it its original place decreases effect of swelling percent, in this way the cost will be decreased. Therefore, a laboratory tests were conducted to study the effects of polypropylene fiber on swelling characteristics of expansive soil. Test results indicated that inclusion of fiber reduced swell percent of expansive soil. As the fiber content increased, the unconfined compressive strength was increased. Finally, it can be say that stabilization of expansive soils with polypropylene fiber is an effective method.

Keywords: expansive soils, polypropylene fiber, stabilization, swelling percent

Procedia PDF Downloads 498
1669 Design Guidelines for URM Infills and Effect of Construction Sequence on Seismic Performance of Code Compliant RC Frame Buildings

Authors: Putul Haldar, Yogendra Singh, D. K. Paul

Abstract:

Un-Reinforced Masonry (URM) infilled RC framed buildings are the most common construction practice for modern multi-storey buildings in India like many other parts of the world. Although the behavior and failure pattern of the global structure changes significantly due to infill-frame interaction, the general design practice is to treat them as non-structural elements and their stiffness, strength and interaction with frame is often ignored, as it is difficult to simulate. Indian Standard, like many other major national codes, does not provide any explicit guideline for modeling of infills. This paper takes a stock of controlling design provisions in some of the major national seismic design codes (BIS 2002; CEN 2004; NZS-4230 2004; ASCE-41 2007) to ensure the desired seismic performance of infilled frame. Most of the national codes on seismic design of buildings still lack in adequate guidelines on modeling and design of URM infilled frames results in variable assumption in analysis and design. This paper, using nonlinear pushover analysis, also presents the effect of one of such assumptions of conventional ‘simultaneous’ analysis procedure of infilled frame on the seismic performance of URM infilled RC frame buildings.

Keywords: URM infills, RC frame, seismic design codes, construction sequence of infilled frame

Procedia PDF Downloads 368
1668 Simultaneous Improvement of Wear Performance and Toughness of Ledeburitic Tool Steels by Sub-Zero Treatment

Authors: Peter Jurči, Jana Ptačinová, Mária Hudáková, Mária Dománková, Martin Kusý, Martin Sahul

Abstract:

The strength, hardness, and toughness (ductility) are in strong conflict for the metallic materials. The only possibility how to make their simultaneous improvement is to provide the microstructural refinement, by cold deformation, and subsequent recrystallization. However, application of this kind of treatment is impossible for high-carbon high-alloyed ledeburitic tool steels. Alternatively, it has been demonstrated over the last few years that sub-zero treatment induces some microstructural changes in these materials, which might favourably influence their complex of mechanical properties. Commercially available PM ledeburitic steel Vanadis 6 has been used for the current investigations. The paper demonstrates that sub-zero treatment induces clear refinement of the martensite, reduces the amount of retained austenite, enhances the population density of fine carbides, and makes alterations in microstructural development that take place during tempering. As a consequence, the steel manifests improved wear resistance at higher toughness and fracture toughness. Based on the obtained results, the key question “can the wear performance be improved by sub-zero treatment simultaneously with toughness” can be answered by “definitely yes”.

Keywords: ledeburitic tool steels, microstructure, sub-zero treatment, mechanical properties

Procedia PDF Downloads 289
1667 Feminist Revolution and the Quest for Women Emancipation in Public Life in Nigeria: The African Dimension

Authors: Adekunle Saheed Ajisebiyawo, Christie Omoduwa Achime

Abstract:

In Nigerian society, women have very little or no involvement in the decision-making process and this is large because women are objectified as effective means of reproduction and provision of emotional support to the society. Despite the movements and awareness by international, national and local bodies to promote and encourage women's empowerment, there are still many factors daunting to the efforts of women in society. This paper examined the critical role of feminism in the quest for women's emancipation in public life. Guided by African feminism theory, this paper utilizes both historical and descriptive methods to examine these factors. The paper argues that gender bias in Nigeria's public life is often traced to the onset of colonialism in Nigeria. Thus the Western cultural notion of colonialism woven around male superiority is reflected in their relations with Nigerians. The study outlines how women have strategized pathways through patriarchal structures by deploying their femininity. The paper concludes that women are strong, courageous, natural leaders and indeed have a major strategic role to play in public life; thus, women's movements and groups remain an important and necessary means of social cohesion and strength, especially in a country such as Nigeria.

Keywords: African feminism, democratic governance, feminism, patriarchy, women emancipation.

Procedia PDF Downloads 80
1666 Experimental and Theoretical Study on Hygrothermal Aging Effect on Mechanical Behavior of Fiber Reinforced Plastic Laminates

Authors: S. Larbi, R. Bensaada, S. Djebali, A. Bilek

Abstract:

The manufacture of composite parts is a major issue in many industrial domains. Polymer composite materials are ideal for structural applications where high strength-to-weight and stiffness-to-weight ratios are required. However, exposition to extreme environment conditions (temperature, humidity) affects mechanical properties of organic composite materials and lead to an undesirable degradation. Aging mechanisms in organic matrix are very diverse and vary according to the polymer and the aging conditions such as temperature, humidity etc. This paper studies the hygrothermal aging effect on the mechanical properties of fiber reinforced plastics laminates at 40 °C in different environment exposure. Two composite materials are used to conduct the study (carbon fiber/epoxy and glass fiber/vinyl ester with two stratifications for both the materials [904/04] and [454/04]). The experimental procedure includes a mechanical characterization of the materials in a virgin state and exposition of specimens to two environments (seawater and demineralized water). Absorption kinetics for the two materials and both the stratifications are determined. Three-point bending test is performed on the aged materials in order to determine the hygrothermal effect on the mechanical properties of the materials.

Keywords: FRP laminates, hygrothermal aging, mechanical properties, theory of laminates

Procedia PDF Downloads 260
1665 Experimental Device for Fluorescence Measurement by Optical Fiber Combined with Dielectrophoretic Sorting in Microfluidic Chips

Authors: Jan Jezek, Zdenek Pilat, Filip Smatlo, Pavel Zemanek

Abstract:

We present a device that combines fluorescence spectroscopy with fiber optics and dielectrophoretic micromanipulation in PDMS (poly-(dimethylsiloxane)) microfluidic chips. The device allows high speed detection (in the order of kHz) of the fluorescence signal, which is coming from the sample by an inserted optical fiber, e.g. from a micro-droplet flow in a microfluidic chip, or even from the liquid flowing in the transparent capillary, etc. The device uses a laser diode at a wavelength suitable for excitation of fluorescence, excitation and emission filters, optics for focusing the laser radiation into the optical fiber, and a highly sensitive fast photodiode for detection of fluorescence. The device is combined with dielectrophoretic sorting on a chip for sorting of micro-droplets according to their fluorescence intensity. The electrodes are created by lift-off technology on a glass substrate, or by using channels filled with a soft metal alloy or an electrolyte. This device found its use in screening of enzymatic reactions and sorting of individual fluorescently labelled microorganisms. The authors acknowledge the support from the Grant Agency of the Czech Republic (GA16-07965S) and Ministry of Education, Youth and Sports of the Czech Republic (LO1212) together with the European Commission (ALISI No. CZ.1.05/2.1.00/01.0017).

Keywords: dielectrophoretic sorting, fiber optics, laser, microfluidic chips, microdroplets, spectroscopy

Procedia PDF Downloads 695