Search results for: learning goal orientation
7351 Model Based Optimization of Workplace Ergonomics by Workpiece and Resource Positioning
Authors: Edward Hage, Pieter Lietaert, Gabriel Abedrabbo
Abstract:
Musculoskeletal disorders are an important category of work-related diseases. They are often caused by working in non-ergonomic postures and are preventable with proper workplace design, possibly including human-machine collaboration. This paper presents a methodology and a supporting software prototype to design a simple assembly cell with minimal ergonomic risk. The methodology helps to determine the optimal position and orientation of workpieces and workplace resources for specific operator assembly actions. The methodology is tested on an industrial use case: a collaborative robot (cobot) assisted assembly of a clamping device. It is shown that the automated methodology results in a workplace design with significantly reduced ergonomic risk to the operator compared to a manual design of the cell.Keywords: ergonomics optimization, design for ergonomics, workplace design, pose generation
Procedia PDF Downloads 1317350 Solution of S3 Problem of Deformation Mechanics for a Definite Condition and Resulting Modifications of Important Failure Theories
Authors: Ranajay Bhowmick
Abstract:
Analysis of stresses for an infinitesimal tetrahedron leads to a situation where we obtain a cubic equation consisting of three stress invariants. This cubic equation, when solved for a definite condition, gives the principal stresses directly without requiring any cumbersome and time-consuming trial and error methods or iterative numerical procedures. Since the failure criterion of different materials are generally expressed as functions of principal stresses, an attempt has been made in this study to incorporate the solutions of the cubic equation in the form of principal stresses, obtained for a definite condition, into some of the established failure theories to determine their modified descriptions. It has been observed that the failure theories can be represented using the quadratic stress invariant and the orientation of the principal plane.Keywords: cubic equation, stress invariant, trigonometric, explicit solution, principal stress, failure criterion
Procedia PDF Downloads 1387349 Fair Federated Learning in Wireless Communications
Authors: Shayan Mohajer Hamidi
Abstract:
Federated Learning (FL) has emerged as a promising paradigm for training machine learning models on distributed data without the need for centralized data aggregation. In the realm of wireless communications, FL has the potential to leverage the vast amounts of data generated by wireless devices to improve model performance and enable intelligent applications. However, the fairness aspect of FL in wireless communications remains largely unexplored. This abstract presents an idea for fair federated learning in wireless communications, addressing the challenges of imbalanced data distribution, privacy preservation, and resource allocation. Firstly, the proposed approach aims to tackle the issue of imbalanced data distribution in wireless networks. In typical FL scenarios, the distribution of data across wireless devices can be highly skewed, resulting in unfair model updates. To address this, we propose a weighted aggregation strategy that assigns higher importance to devices with fewer samples during the aggregation process. By incorporating fairness-aware weighting mechanisms, the proposed approach ensures that each participating device's contribution is proportional to its data distribution, thereby mitigating the impact of data imbalance on model performance. Secondly, privacy preservation is a critical concern in federated learning, especially in wireless communications where sensitive user data is involved. The proposed approach incorporates privacy-enhancing techniques, such as differential privacy, to protect user privacy during the model training process. By adding carefully calibrated noise to the gradient updates, the proposed approach ensures that the privacy of individual devices is preserved without compromising the overall model accuracy. Moreover, the approach considers the heterogeneity of devices in terms of computational capabilities and energy constraints, allowing devices to adaptively adjust the level of privacy preservation to strike a balance between privacy and utility. Thirdly, efficient resource allocation is crucial for federated learning in wireless communications, as devices operate under limited bandwidth, energy, and computational resources. The proposed approach leverages optimization techniques to allocate resources effectively among the participating devices, considering factors such as data quality, network conditions, and device capabilities. By intelligently distributing the computational load, communication bandwidth, and energy consumption, the proposed approach minimizes resource wastage and ensures a fair and efficient FL process in wireless networks. To evaluate the performance of the proposed fair federated learning approach, extensive simulations and experiments will be conducted. The experiments will involve a diverse set of wireless devices, ranging from smartphones to Internet of Things (IoT) devices, operating in various scenarios with different data distributions and network conditions. The evaluation metrics will include model accuracy, fairness measures, privacy preservation, and resource utilization. The expected outcomes of this research include improved model performance, fair allocation of resources, enhanced privacy preservation, and a better understanding of the challenges and solutions for fair federated learning in wireless communications. The proposed approach has the potential to revolutionize wireless communication systems by enabling intelligent applications while addressing fairness concerns and preserving user privacy.Keywords: federated learning, wireless communications, fairness, imbalanced data, privacy preservation, resource allocation, differential privacy, optimization
Procedia PDF Downloads 797348 Differentiation of Customer Types by Stereotypical Characteristics for Modular and Conventional Construction Methods
Authors: Peter Schnell, Phillip Haag
Abstract:
In the course of the structural transformation of the construction industry, the integration of industrialization and digitization has led to the development of construction methods with an increased degree of prefabrication, such as system or modular construction. Compared to conventional construction, these innovative construction methods are characterized by modified structural and procedural properties and expand the range of construction services. Faced with the supply side, it is possible to identify construction-specific customer types with different characteristics and certain preferences as far as the choice of construction method is concerned. The basis for this finding was qualitative expert interviews. By evaluating the stereotypical customer needs, a corresponding segmentation of the demand side can be made along with the basic orientation and decision behavior. This demarcation supports the target- and needs-oriented customer approach and contributes to cooperative and successful project management.Keywords: differentiation of customer types, modular construction methods, conventional construction methods, stereotypical customer types
Procedia PDF Downloads 1147347 The Impact of Teacher's Emotional Intelligence on Students' Motivation to Learn
Authors: Marla Wendy Spergel
Abstract:
The purpose of this qualitative study is to showcase graduated high school students’ to voice on the impact past teachers had on their motivation to learn, and if this impact has affected their post-high-school lives. Through a focus group strategy, 21 graduated high school alumni participated in three separate focus groups. Participants discussed their former teacher’s emotional intelligence skills, which influenced their motivation to learn or not. A focused review of the literature revealed that teachers are a major factor in a student’s motivation to learn. This research was guided by Bandura’s Social Cognitive Theory of Motivation and constructs related to learning and motivation from Carl Rogers’ Humanistic Views of Personality, and from Brain-Based Learning perspectives with a major focus on the area of Emotional Intelligence. Findings revealed that the majority of participants identified teachers who most motivated them to learn and demonstrated skills associated with emotional intelligence. An important and disturbing finding relates to the saliency of negative experiences. Further work is recommended to expand this line of study in Higher Education, perform a long-term study to better gain insight into long-term benefits attributable to experiencing positive teachers, study the negative impact teachers have on students’ motivation to learn, specifically focusing on student anxiety and acquired helplessness.Keywords: emotional intelligence, learning, motivation, pedagogy
Procedia PDF Downloads 1607346 Artificial Intelligence in Vietnamese Higher Education: Benefits, Challenges and Ethics
Authors: Duong Van Thanh
Abstract:
Artificial Intelligence (AI) has been recently a new trend in Higher Education systems globally as well as in the Vietnamese Higher Education. This study explores the benefits and challenges in applications of AI in 02 selected universities, ie. Vietnam National Universities in Hanoi Capital and the University of Economics in Ho Chi Minh City. Particularly, this paper focuses on how the ethics of Artificial Intelligence have been addressed among faculty members at these two universities. The AI ethical issues include the access and inclusion, privacy and security, transparency and accountability. AI-powered educational technology has the potential to improve access and inclusion for students with disabilities or other learning needs. However, there is a risk that AI-based systems may not be accessible to all students and may even exacerbate existing inequalities. AI applications can be opaque and difficult to understand, making it challenging to hold them accountable for their decisions and actions. It is important to consider the benefits that adopting AI-systems bring to the institutions, teaching, and learning. And it is equally important to recognize the drawbacks of using AI in education and to take the necessary steps to mitigate any negative impact. The results of this study present a critical concern in higher education in Vietnam, where AI systems may be used to make important decisions about students’ learning and academic progress. The authors of this study attempt to make some recommendation that the AI-system in higher education system is frequently checked by a human in charge to verify that everything is working as it should or if the system needs some retraining or adjustments.Keywords: artificial intelligence, ethics, challenges, vietnam
Procedia PDF Downloads 1357345 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning
Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan
Abstract:
We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.Keywords: daily activity recognition, healthcare, IoT sensors, transfer learning
Procedia PDF Downloads 1357344 Hybrid Artificial Bee Colony and Least Squares Method for Rule-Based Systems Learning
Authors: Ahcene Habbi, Yassine Boudouaoui
Abstract:
This paper deals with the problem of automatic rule generation for fuzzy systems design. The proposed approach is based on hybrid artificial bee colony (ABC) optimization and weighted least squares (LS) method and aims to find the structure and parameters of fuzzy systems simultaneously. More precisely, two ABC based fuzzy modeling strategies are presented and compared. The first strategy uses global optimization to learn fuzzy models, the second one hybridizes ABC and weighted least squares estimate method. The performances of the proposed ABC and ABC-LS fuzzy modeling strategies are evaluated on complex modeling problems and compared to other advanced modeling methods.Keywords: automatic design, learning, fuzzy rules, hybrid, swarm optimization
Procedia PDF Downloads 4447343 Training for Digital Manufacturing: A Multilevel Teaching Model
Authors: Luís Rocha, Adam Gąska, Enrico Savio, Michael Marxer, Christoph Battaglia
Abstract:
The changes observed in the last years in the field of manufacturing and production engineering, popularly known as "Fourth Industry Revolution", utilizes the achievements in the different areas of computer sciences, introducing new solutions at almost every stage of the production process, just to mention such concepts as mass customization, cloud computing, knowledge-based engineering, virtual reality, rapid prototyping, or virtual models of measuring systems. To effectively speed up the production process and make it more flexible, it is necessary to tighten the bonds connecting individual stages of the production process and to raise the awareness and knowledge of employees of individual sectors about the nature and specificity of work in other stages. It is important to discover and develop a suitable education method adapted to the specificities of each stage of the production process, becoming an extremely crucial issue to exploit the potential of the fourth industrial revolution properly. Because of it, the project “Train4Dim” (T4D) intends to develop complex training material for digital manufacturing, including content for design, manufacturing, and quality control, with a focus on coordinate metrology and portable measuring systems. In this paper, the authors present an approach to using an active learning methodology for digital manufacturing. T4D main objective is to develop a multi-degree (apprenticeship up to master’s degree studies) and educational approach that can be adapted to different teaching levels. It’s also described the process of creating the underneath methodology. The paper will share the steps to achieve the aims of the project (training model for digital manufacturing): 1) surveying the stakeholders, 2) Defining the learning aims, 3) producing all contents and curriculum, 4) training for tutors, and 5) Pilot courses test and improvements.Keywords: learning, Industry 4.0, active learning, digital manufacturing
Procedia PDF Downloads 1037342 Analysis and Measurement on Indoor Environment of University Dormitories
Authors: Xuechen Gui, Senmiao Li, Qi Kan
Abstract:
Dormitory is a place for college students to study and live their daily life. The indoor environment quality of the dormitory is closely related to the physical health, mood status and work efficiency of the dormitory students. In this paper, the temperature, humidity and carbon dioxide concentration of the dormitory in Zijingang campus of Zhejiang University have been tested for three days. The experimental results show that the concentration of carbon dioxide is related to the size of the window opens and the number of dormitory staff, and presents a high concentration of carbon dioxide at nighttime while a low concentration at daytime. In terms of temperature and humidity, there is no significant difference between different orientation and time and presents a small humidity at daytime while a high humidity at nighttime.Keywords: dormitory, indoor environment, temperature, relative humidity, carbon dioxide concentration
Procedia PDF Downloads 1797341 An Evaluation of English Collocation Usage Barriers Faced by College Students of Rawalpindi
Authors: Sobia Rana
Abstract:
The study intends to explain the problems of English collocational use faced by college students in Rawalpindi, Pakistan and recommends some authentic ways that will help in removing the learning barriers in light of the concerning methodological issues. It will not only help the students to improve their knowledge of the phenomena but will also enlighten the target teachers about the significance of authentic collocational use and how it naturalizes both written and spoken expressions. Data from both the students and teachers have been collected with the help of open/close-ended questionnaires to unearth the genuine cause/s and supplement them with the required solutions rooted in the actual problems. The students fail to use authentic collocations owing to multiple reasons: lack of awareness about English collocational use, improper teaching methodologies, and inexpert teachers.Keywords: English collocational use, teaching methodologies, English learning barriers, vocabulary acquisition, college students of Rawalpindi
Procedia PDF Downloads 877340 High-Fidelity Materials Screening with a Multi-Fidelity Graph Neural Network and Semi-Supervised Learning
Authors: Akeel A. Shah, Tong Zhang
Abstract:
Computational approaches to learning the properties of materials are commonplace, motivated by the need to screen or design materials for a given application, e.g., semiconductors and energy storage. Experimental approaches can be both time consuming and costly. Unfortunately, computational approaches such as ab-initio electronic structure calculations and classical or ab-initio molecular dynamics are themselves can be too slow for the rapid evaluation of materials, often involving thousands to hundreds of thousands of candidates. Machine learning assisted approaches have been developed to overcome the time limitations of purely physics-based approaches. These approaches, on the other hand, require large volumes of data for training (hundreds of thousands on many standard data sets such as QM7b). This means that they are limited by how quickly such a large data set of physics-based simulations can be established. At high fidelity, such as configuration interaction, composite methods such as G4, and coupled cluster theory, gathering such a large data set can become infeasible, which can compromise the accuracy of the predictions - many applications require high accuracy, for example band structures and energy levels in semiconductor materials and the energetics of charge transfer in energy storage materials. In order to circumvent this problem, multi-fidelity approaches can be adopted, for example the Δ-ML method, which learns a high-fidelity output from a low-fidelity result such as Hartree-Fock or density functional theory (DFT). The general strategy is to learn a map between the low and high fidelity outputs, so that the high-fidelity output is obtained a simple sum of the physics-based low-fidelity and correction, Although this requires a low-fidelity calculation, it typically requires far fewer high-fidelity results to learn the correction map, and furthermore, the low-fidelity result, such as Hartree-Fock or semi-empirical ZINDO, is typically quick to obtain, For high-fidelity outputs the result can be an order of magnitude or more in speed up. In this work, a new multi-fidelity approach is developed, based on a graph convolutional network (GCN) combined with semi-supervised learning. The GCN allows for the material or molecule to be represented as a graph, which is known to improve accuracy, for example SchNet and MEGNET. The graph incorporates information regarding the numbers of, types and properties of atoms; the types of bonds; and bond angles. They key to the accuracy in multi-fidelity methods, however, is the incorporation of low-fidelity output to learn the high-fidelity equivalent, in this case by learning their difference. Semi-supervised learning is employed to allow for different numbers of low and high-fidelity training points, by using an additional GCN-based low-fidelity map to predict high fidelity outputs. It is shown on 4 different data sets that a significant (at least one order of magnitude) increase in accuracy is obtained, using one to two orders of magnitude fewer low and high fidelity training points. One of the data sets is developed in this work, pertaining to 1000 simulations of quinone molecules (up to 24 atoms) at 5 different levels of fidelity, furnishing the energy, dipole moment and HOMO/LUMO.Keywords: .materials screening, computational materials, machine learning, multi-fidelity, graph convolutional network, semi-supervised learning
Procedia PDF Downloads 467339 Autism Disease Detection Using Transfer Learning Techniques: Performance Comparison between Central Processing Unit vs. Graphics Processing Unit Functions for Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
Neural network approaches are machine learning methods used in many domains, such as healthcare and cyber security. Neural networks are mostly known for dealing with image datasets. While training with the images, several fundamental mathematical operations are carried out in the Neural Network. The operation includes a number of algebraic and mathematical functions, including derivative, convolution, and matrix inversion and transposition. Such operations require higher processing power than is typically needed for computer usage. Central Processing Unit (CPU) is not appropriate for a large image size of the dataset as it is built with serial processing. While Graphics Processing Unit (GPU) has parallel processing capabilities and, therefore, has higher speed. This paper uses advanced Neural Network techniques such as VGG16, Resnet50, Densenet, Inceptionv3, Xception, Mobilenet, XGBOOST-VGG16, and our proposed models to compare CPU and GPU resources. A system for classifying autism disease using face images of an autistic and non-autistic child was used to compare performance during testing. We used evaluation matrices such as Accuracy, F1 score, Precision, Recall, and Execution time. It has been observed that GPU runs faster than the CPU in all tests performed. Moreover, the performance of the Neural Network models in terms of accuracy increases on GPU compared to CPU.Keywords: autism disease, neural network, CPU, GPU, transfer learning
Procedia PDF Downloads 1247338 An Improved Discrete Version of Teaching–Learning-Based Optimization for Supply Chain Network Design
Authors: Ehsan Yadegari
Abstract:
While there are several metaheuristics and exact approaches to solving the Supply Chain Network Design (SCND) problem, there still remains an unfilled gap in using the Teaching-Learning-Based Optimization (TLBO) algorithm. The algorithm has demonstrated desirable results with problems with complicated combinational optimization. The present study introduces a Discrete Self-Study TLBO (DSS-TLBO) with priority-based solution representation that can solve a supply chain network configuration model to lower the total expenses of establishing facilities and the flow of materials. The network features four layers, namely suppliers, plants, distribution centers (DCs), and customer zones. It is designed to meet the customer’s demand through transporting the material between layers of network and providing facilities in the best economic Potential locations. To have a higher quality of the solution and increase the speed of TLBO, a distinct operator was introduced that ensures self-adaptation (self-study) in the algorithm based on the four types of local search. In addition, while TLBO is used in continuous solution representation and priority-based solution representation is discrete, a few modifications were added to the algorithm to remove the solutions that are infeasible. As shown by the results of experiments, the superiority of DSS-TLBO compared to pure TLBO, genetic algorithm (GA) and firefly Algorithm (FA) was established.Keywords: supply chain network design, teaching–learning-based optimization, improved metaheuristics, discrete solution representation
Procedia PDF Downloads 577337 Overcoming Usability Challenges of Educational Math Apps: Designing and Testing a Mobile Graphing Calculator
Authors: M. Tomaschko
Abstract:
The integration of technology in educational settings has gained a lot of interest. Especially the use of mobile devices and accompanying mobile applications can offer great potentials to complement traditional education with new technologies and enrich students’ learning in various ways. Nevertheless, the usability of the deployed mathematics application is an indicative factor to exploit the full potential of technology enhanced learning because directing cognitive load toward using an application will likely inhibit effective learning. For this reason, the purpose of this research study is the identification of possible usability issues of the mobile GeoGebra Graphing Calculator application. Therefore, eye tracking in combination with task scenarios, think aloud method, and a SUS questionnaire were used. Based on the revealed usability issues, the mobile application was iteratively redesigned and assessed in order to verify the success of the usability improvements. In this paper, the identified usability issues are presented, and recommendations on how to overcome these concerns are provided. The main findings relate to the conception of a mathematics keyboard and the interaction design in relation to an equation editor, as well as the representation of geometrical construction tools. In total, 12 recommendations were formed to improve the usability of a mobile graphing calculator application. The benefit to be gained from this research study is not only the improvement of the usability of the existing GeoGebra Graphing Calculator application but also to provide helpful hints that could be considered from designers and developers of mobile math applications.Keywords: GeoGebra, graphing calculator, math education, smartphone, usability
Procedia PDF Downloads 1377336 Effective Teaching Pyramid and Its Impact on Enhancing the Participation of Students in Swimming Classes
Authors: Salam M. H. Kareem
Abstract:
Instructional or teaching procedures and their proper sequence are essential for high-quality learning outcomes. These actions are the path that the teacher takes during the learning process after setting the learning objectives. Teachers and specialists in the education field should include teaching procedures with putting in place an effective mechanism for the procedure’s implementation to achieve a logical sequence with the desired output of overall education process. Determining the sequence of these actions may be a strategic process outlined by a strategic educational plan or drawn by teachers with a high level of experience, enabling them to determine those logical procedures. While specific actions may be necessary for a specific form, many Physical Education (PE) teachers can work out on various sports disciplines. This study was conducted to investigate the impact of using the teaching sequence of the teaching pyramid in raising the level of enjoyment in swimming classes. Four months later of teaching swimming skills to the control and experimental groups of the study, we figured that using the tools shown in the teaching pyramid with the experimental group led to statistically significant differences in the positive tendencies of students to participate in the swimming classes by using the traditional procedures of teaching and using of successive procedures in the teaching pyramid, and in favor of the teaching pyramid, The students are influenced by enhancing their tendency to participate in swimming classes when the teaching procedures followed are sensitive to individual differences and are based on the element of pleasure in learning, and less positive levels of the tendency of students when using traditional teaching procedures, by getting the level of skills' requirements higher and more difficult to perform. The level of positive tendencies of students when using successive procedures in the teaching pyramid was increased, by getting the level of skills' requirements higher and more difficult to perform, because of the high level of motivation and the desire to challenge the self-provided by the teaching pyramid.Keywords: physical education, swimming classes, teaching process, teaching pyramid
Procedia PDF Downloads 1497335 Learning Activities in Teaching Nihon-Go in the Philippines: Basis for a Proposed Action Plan
Authors: Esperanza C. Santos
Abstract:
Japanese Language was traditionally considered as a means of imparting culture and training aesthetic experience in students and therefore as something beyond the practical aims of language teaching and learning. Due to the complexity of foreign languages, lots of language learners and teachers shared deep reservations about the potentials of foreign language in enhancing the communication skills of the students. In spite of the arguments against the use of Foreign Language (Nihon-go) in the classroom, the researcher strongly support the use of Nihon-go in teaching communication skills as the researcher believes that Nihon-go is a valuable resource to be exploited in the classroom in order to help the students explore the language in an interesting and challenging way. The focus of this research is to find out the relationship between the preferences, opinions, and perceptions with the communication skills. This study also identifies the significance of the relationship between preferences, opinions and perceptions and communications skills in the activities employed in Foreign language (Nihon-go) among the junior and senior students in Foreign Language 2 at the Imus Institute, Imus Cavite during the academic year 2013-2014. The results of the study are expected to encourage further studies that particularly focused on the communication skills as brought about by the identified factors namely: preferences, opinions, and perceptions on the benefits factor namely the language acquisition; access to Japanese culture and students' interpretative ability. Therefore, this research is in its quest for the issues and concerns on how to effectively teach different learning activities in a Nihon-go class.Keywords: preferences, opinions, perceptions, language acquisition
Procedia PDF Downloads 3127334 A Non-Destructive Estimation Method for Internal Time in Perilla Leaf Using Hyperspectral Data
Authors: Shogo Nagano, Yusuke Tanigaki, Hirokazu Fukuda
Abstract:
Vegetables harvested early in the morning or late in the afternoon are valued in plant production, and so the time of harvest is important. The biological functions known as circadian clocks have a significant effect on this harvest timing. The purpose of this study was to non-destructively estimate the circadian clock and so construct a method for determining a suitable harvest time. We took eight samples of green busil (Perilla frutescens var. crispa) every 4 hours, six times for 1 day and analyzed all samples at the same time. A hyperspectral camera was used to collect spectrum intensities at 141 different wavelengths (350–1050 nm). Calculation of correlations between spectrum intensity of each wavelength and harvest time suggested the suitability of the hyperspectral camera for non-destructive estimation. However, even the highest correlated wavelength had a weak correlation, so we used machine learning to raise the accuracy of estimation and constructed a machine learning model to estimate the internal time of the circadian clock. Artificial neural networks (ANN) were used for machine learning because this is an effective analysis method for large amounts of data. Using the estimation model resulted in an error between estimated and real times of 3 min. The estimations were made in less than 2 hours. Thus, we successfully demonstrated this method of non-destructively estimating internal time.Keywords: artificial neural network (ANN), circadian clock, green busil, hyperspectral camera, non-destructive evaluation
Procedia PDF Downloads 3027333 Determinants of Profitability in Indian Pharmaceutical Firms in the New Intellectual Property Rights Regime
Authors: Shilpi Tyagi, D. K. Nauriyal
Abstract:
This study investigates the firm level determinants of profitability of Indian drug and pharmaceutical industry. The study uses inflation adjusted panel data for a period 2000-2013 and applies OLS regression model with Driscoll-Kraay standard errors. It has been found that export intensity, A&M intensity, firm’s market power and stronger patent regime dummy have exercised positive influence on profitability. The negative and statistically significant influence of R&D intensity and raw material import intensity points to the need for firms to adopt suitable investment strategies. The study suggests that firms are required to pay far more attention to optimize their operating expenditures, advertisement and marketing expenditures and improve their export orientation, as part of the long term strategy.Keywords: Indian pharmaceutical industry, profits, TRIPS, performance
Procedia PDF Downloads 4427332 Determination of the Gain in Learning the Free-Fall Motion of Bodies by Applying the Resource of Previous Concepts
Authors: Ricardo Merlo
Abstract:
In this paper, we analyzed the different didactic proposals for teaching about the free fall motion of bodies available online. An important aspect was the interpretation of the direction and sense of the acceleration of gravity and of the falling velocity of a body, which is why we found different applications of the Cartesian reference system used and also different graphical presentations of the velocity as a function of time and of the distance traveled vertically by the body in the period of time that it was dropped from a height h0. In this framework, a survey of previous concepts was applied to a voluntary group of first-year university students of an Engineering degree before and after the development of the class of the subject in question. Then, Hake's index (0.52) was determined, which resulted in an average learning gain from the meaningful use of the reference system and the respective graphs of v=ƒ (t) and h=ƒ (t).Keywords: didactic gain, free–fall, physics teaching, previous knowledge
Procedia PDF Downloads 1667331 A Case Study on the Development and Application of Media Literacy Education Program Based on Circular Learning
Authors: Kim Hyekyoung, Au Yunkyung
Abstract:
As media plays an increasingly important role in our lives, the age at which media usage begins is getting younger worldwide. Particularly, young children are exposed to media at an early age, making early childhood media literacy education an essential task. However, most existing early childhood media literacy education programs focus solely on teaching children how to use media, and practical implementation and application are challenging. Therefore, this study aims to develop a play-based early childhood media literacy education program utilizing topic-based media content and explore the potential application and impact of this program on young children's media literacy learning. Based on theoretical and literature review on media literacy education, analysis of existing educational programs, and a survey on the current status and teacher perceptions of media literacy education for preschool children, this study developed a media literacy education program for preschool children, considering the components of media literacy (understanding media characteristics, self-regulation, self-expression, critical understanding, ethical norms, and social communication). To verify the effectiveness of the program, 20 preschool children aged 5 from C City M Kindergarten were chosen as participants, and the program was implemented from March 28th to July 4th, 2022, once a week for a total of 7 sessions. The program was developed based on Gallenstain's (2003) iterative learning model (participation-exploration-explanation-extension-evaluation). To explore the quantitative changes before and after the program, a repeated measures analysis of variance was conducted, and qualitative analysis was employed to examine the observed process changes. It was found that after the application of the education program, media literacy levels such as understanding media characteristics, self-regulation, self-expression, critical understanding, ethical norms, and social communication significantly improved. The recursive learning-based early childhood media literacy education program developed in this study can be effectively applied to young children's media literacy education and help enhance their media literacy levels. In terms of observed process changes, it was confirmed that children learned about various topics, expressed their thoughts, and improved their ability to communicate with others using media content. These findings emphasize the importance of developing and implementing media literacy education programs and can contribute to empowering young children to safely and effectively utilize media in their media environment. The results of this study, exploring the potential application and impact of the recursive learning-based early childhood media literacy education program on young children's media literacy learning, demonstrated positive changes in young children's media literacy levels. These results go beyond teaching children how to use media and can help foster their ability to safely and effectively utilize media in their media environment. Additionally, to enhance young children's media literacy levels and create a safe media environment, diverse content and methodologies are needed, and the continuous development and evaluation of education programs should be conducted.Keywords: young children, media literacy, recursive learning, education program
Procedia PDF Downloads 817330 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker
Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation
Procedia PDF Downloads 317329 Teachers’ Stress as a Moderator of the Impact of POMPedaSens on Preschool Children’s Social-Emotional Learning
Authors: Maryam Zarra-Nezhad, Ali Moazami-Goodarzi, Joona Muotka, Nina Sajaniemi
Abstract:
This study examines the extent to which the impact of a universal intervention program, i.e., POMPedaSens, on children’s early social-emotional learning (SEL) is different depending on early childhood education (ECE) teaches stress at work. The POMPedaSens program aims to promote children’s (5–6-year-olds) SEL by supporting ECE teachers’ engagement and emotional availability. The intervention effectiveness has been monitored using an 8-month randomized controlled trial design with an intervention (IG; 26 teachers and 195 children) and a waiting control group (CG; 36 teachers and 198 children) that provided the data before and after the program implementation. The ECE teachers in the IG are trained to implement the intervention program in their early childhood education and care groups. Latent change score analysis suggests that the program increases children’s prosocial behavior in the IG when teachers show a low level of stress. No significant results were found for the IG regarding a change in antisocial behavior. However, when teachers showed a high level of stress, an increase in prosocial behavior and a decrease in antisocial behavior were only found for children in the CG. The results suggest a promising application of the POMPedaSens program for promoting prosocial behavior in early childhood when teachers have low stress. The intervention will likely need a longer time to display the moderating effect of ECE teachers’ well-being on children’s antisocial behavior change.Keywords: early childhood, social-emotional learning, universal intervention program, professional development, teachers' stress
Procedia PDF Downloads 927328 Machine Learning for Exoplanetary Habitability Assessment
Authors: King Kumire, Amos Kubeka
Abstract:
The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.Keywords: machine-learning, habitability, exoplanets, supercomputing
Procedia PDF Downloads 937327 Machine Learning for Exoplanetary Habitability Assessment
Authors: King Kumire, Amos Kubeka
Abstract:
The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far, has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.Keywords: exoplanets, habitability, machine-learning, supercomputing
Procedia PDF Downloads 1207326 Transgressing Boundaries for Encouraging Critical Thinking: Reflections on the Integration of Active Pedagogy and Transnational Exchange into Social Work Education
Authors: Rosemary R. Carlton, Roxane Caron
Abstract:
Almost three decades ago, bell hooks (1994) identified the classroom as “the most radical space of possibility in the academy”. A feminist scholar, educator, and activist, hooks urged educators to transgress the boundaries of what might be customary or considered acceptable in teaching, thus encouraging the pursuit of new ways of knowing and different strategies for sharing knowledge. This paper reflects upon a particular response to hooks’ still relevant call for transgression in teaching. Specifically, this paper reports on the design, implementation, and preliminary analysis of a social work course integrating active pedagogy and transnational exchange to encourage students’ critical thinking and autonomous learning in their development as social workers in a global context. The bachelor’s level course, Pratiques spécifiques: Projet international, was developed collaboratively across three francophone institutions of higher learning in Belgium, Canada, and France: the Haute École de Namur-Liège-Luxembourg (Hénallux); the Université de Montréal; and, the Institut d’enseignement supérieur et professionnel, l’IRTS Paris Île-de-France. The driving aims of the course are to promote autonomous learning and critical thinking through a lens of transnational understandings of social problems -competencies indispensable to students’ development as social workers. The course is offered to two paired cohorts, one addressing the subject of “migrations” (Canada/France) and the other the subject of “sexual exploitation” (Canada/Belgium). Through the adaptation of a critical pedagogy of problem-based learning, students are called upon to actively engage in acquiring and applying knowledge to respond to “real life” social issues relating to migration or sexual exploitation. At the conclusion of the course, each cohort of students is brought together for a week-long intensive period of transnational exchange either at the Université de Montréal in Canada or at Hénallux in Belgium. Extending the bounds of the classroom across international borders allows students novel opportunities to deepen and expand their understandings of issues relating to predefined social issues and to critically examine associated social work practices. The paper opens with a presentation of the social work course. Specifically, the authors will outline their adaptation of a pedagogy of problem-based learning integrating transnational exchange in the design and implementation of the course. Returning to hooks’ notion of transgression in teaching, the paper offers a preliminary analysis of how and with what effect the course provides opportunities to transgress hierarchical student-teacher relationships; transgress conventional modes of learning to explore diverse sources of knowledge and transgress the walls of the university to engage with and learn from local and global partners. The paper concludes with a consideration of the potential influence of such transgressions in teaching for students’ development of critical thinking in their practice of social work in global context.Keywords: active learning, critical pedagogy, social work intervention, transnational learning
Procedia PDF Downloads 1697325 The Impact of an Interactive E-Book on Mathematics Reading and Spatial Ability in Middle School Students
Authors: Abebayehu Yohannes, Hsiu-Ling Chen, Chiu-Chen Chang
Abstract:
Mathematics reading and spatial ability are important learning components in mathematics education. However, many students struggle to understand real-world problems and lack the spatial ability to form internal imagery. To cope with this problem, in this study, an interactive e-book was developed. The result indicated that both groups had a significant increase in the mathematics reading ability test, and a significant difference was observed in the overall mathematics reading score in favor of the experimental group. In addition, the interactive e-book learning mode had significant impacts on students’ spatial ability. It was also found that the richness of content with visual and interactive elements provided in the interactive e-book enhanced students’ satisfaction with the teaching material.Keywords: interactive e-books, spatial ability, mathematics reading, satisfaction, three view
Procedia PDF Downloads 1967324 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales
Authors: Philipp Sommer, Amgad Agoub
Abstract:
The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning
Procedia PDF Downloads 627323 Family Income and Parental Behavior: Maternal Personality as a Moderator
Authors: Robert H. Bradley, Robert F. Corwyn
Abstract:
There is abundant research showing that socio-economic status is implicated in parenting. However, additional factors such as family context, parent personality, parenting history and child behavior also help determine how parents enact the role of caregiver. Each of these factors not only helps determine how a parent will act in a given situation, but each can serve to moderate the influence of the other factors. Personality has long been studied as a factor that influences parental behavior, but it has almost never been considered as a moderator of family contextual factors. For this study, relations between three maternal personality characteristics (agreeableness, extraversion, neuroticism) and four aspects of parenting (harshness, sensitivity, stimulation, learning materials) were examined when children were 6 months, 36 months, and 54 months old and again at 5th grade. Relations between these three aspects of personality and the overall home environment were also examined. A key concern was whether maternal personality characteristics moderated relations between household income and the four aspects of parenting and between household income and the overall home environment. The data for this study were taken from the NICHD Study of Early Child Care and Youth Development (NICHD SECCYD). The total sample consisted of 1364 families living in ten different sites in the United States. However, the samples analyzed included only those with complete data on all four parenting outcomes (i.e., sensitivity, harshness, stimulation, and provision of learning materials), income, maternal education and all three measures of personality (i.e., agreeableness, neuroticism, extraversion) at each age examined. Results from hierarchical regression analysis showed that mothers high in agreeableness were more likely to demonstrate sensitivity and stimulation as well as provide more learning materials to their children but were less likely to manifest harshness. Maternal agreeableness also consistently moderated the effects of low income on parental behavior. Mothers high in extraversion were more likely to provide stimulation and learning materials, with extraversion serving as a moderator of low income on both. By contrast, mothers high in neuroticism were less likely to demonstrate positive aspects of parenting and more likely to manifest negative aspects (e.g., harshness). Neuroticism also served to moderate the influence of low income on parenting, especially for stimulation and learning materials. The most consistent effects of parent personality were on the overall home environment, with significant main and interaction effects observed in 11 of the 12 models tested. These findings suggest that it may behoove professional who work with parents living in adverse circumstances to consider parental personality in helping to better target prevention or intervention efforts aimed at supporting parental efforts to act in ways that benefit children.Keywords: home environment, household income, learning materials, personality, sensitivity, stimulation
Procedia PDF Downloads 2137322 A Study of Variables Affecting on a Quality Assessment of Mathematics Subject in Thailand by Using Value Added Analysis on TIMSS 2011
Authors: Ruangdech Sirikit
Abstract:
The purposes of this research were to study the variables affecting the quality assessment of mathematics subject in Thailand by using value-added analysis on TIMSS 2011. The data used in this research is the secondary data from the 2011 Trends in International Mathematics and Science Study (TIMSS), collected from 6,124 students in 172 schools from Thailand, studying only mathematics subjects. The data were based on 14 assessment tests of knowledge in mathematics. There were 3 steps of data analysis: 1) To analyze descriptive statistics 2) To estimate competency of students from the assessment of their mathematics proficiency by using MULTILOG program; 3) analyze value added in the model of quality assessment using Value-Added Model with Hierarchical Linear Modeling (HLM) and 2 levels of analysis. The research results were as follows: 1. Student level variables that had significant effects on the competency of students at .01 levels were Parental care, Resources at home, Enjoyment of learning mathematics and Extrinsic motivation in learning mathematics. Variable that had significant effects on the competency of students at .05 levels were Education of parents and self-confident in learning mathematics. 2. School level variable that had significant effects on competency of students at .01 levels was Extra large school. Variable that had significant effects on competency of students at .05 levels was medium school.Keywords: quality assessment, value-added model, TIMSS, mathematics, Thailand
Procedia PDF Downloads 286