Search results for: inward approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13960

Search results for: inward approach

10480 Bayesian Parameter Inference for Continuous Time Markov Chains with Intractable Likelihood

Authors: Randa Alharbi, Vladislav Vyshemirsky

Abstract:

Systems biology is an important field in science which focuses on studying behaviour of biological systems. Modelling is required to produce detailed description of the elements of a biological system, their function, and their interactions. A well-designed model requires selecting a suitable mechanism which can capture the main features of the system, define the essential components of the system and represent an appropriate law that can define the interactions between its components. Complex biological systems exhibit stochastic behaviour. Thus, using probabilistic models are suitable to describe and analyse biological systems. Continuous-Time Markov Chain (CTMC) is one of the probabilistic models that describe the system as a set of discrete states with continuous time transitions between them. The system is then characterised by a set of probability distributions that describe the transition from one state to another at a given time. The evolution of these probabilities through time can be obtained by chemical master equation which is analytically intractable but it can be simulated. Uncertain parameters of such a model can be inferred using methods of Bayesian inference. Yet, inference in such a complex system is challenging as it requires the evaluation of the likelihood which is intractable in most cases. There are different statistical methods that allow simulating from the model despite intractability of the likelihood. Approximate Bayesian computation is a common approach for tackling inference which relies on simulation of the model to approximate the intractable likelihood. Particle Markov chain Monte Carlo (PMCMC) is another approach which is based on using sequential Monte Carlo to estimate intractable likelihood. However, both methods are computationally expensive. In this paper we discuss the efficiency and possible practical issues for each method, taking into account the computational time for these methods. We demonstrate likelihood-free inference by performing analysing a model of the Repressilator using both methods. Detailed investigation is performed to quantify the difference between these methods in terms of efficiency and computational cost.

Keywords: Approximate Bayesian computation(ABC), Continuous-Time Markov Chains, Sequential Monte Carlo, Particle Markov chain Monte Carlo (PMCMC)

Procedia PDF Downloads 207
10479 Effectiveness with Respect to Time-To-Market and the Impacts of Late-Stage Design Changes in Rapid Development Life Cycles

Authors: Parth Shah

Abstract:

The author examines the recent trend where business organizations are significantly reducing their developmental cycle times to stay competitive in today’s global marketspace. The author proposes a rapid systems engineering framework to address late design changes and allow for flexibility (i.e. to react to unexpected or late changes and its impacts) during the product development cycle using a Systems Engineering approach. A System Engineering approach is crucial in today’s product development to deliver complex products into the marketplace. Design changes can occur due to shortened timelines and also based on initial consumer feedback once a product or service is in the marketplace. The ability to react to change and address customer expectations in a responsive and cost-efficient manner is crucial for any organization to succeed. Past literature, research, and methods such as concurrent development, simultaneous engineering, knowledge management, component sharing, rapid product integration, tailored systems engineering processes, and studies on reducing product development cycles all suggest a research gap exist in specifically addressing late design changes due to the shortening of life cycle environments in increasingly competitive markets. The author’s research suggests that 1) product development cycles time scales are now measured in months instead of years, 2) more and more products have interdepended systems and environments that are fast-paced and resource critical, 3) product obsolesce is higher and more organizations are releasing products and services frequently, and 4) increasingly competitive markets are leading to customization based on consumer feedback. The author will quantify effectiveness with respect to success factors such as time-to-market, return-of-investment, life cycle time and flexibility in late design changes by complexity of product or service, number of late changes and ability to react and reduce late design changes.

Keywords: product development, rapid systems engineering, scalability, systems engineering, systems integration, systems life cycle

Procedia PDF Downloads 205
10478 Fatigue Analysis and Life Estimation of the Helicopter Horizontal Tail under Cyclic Loading by Using Finite Element Method

Authors: Defne Uz

Abstract:

Horizontal Tail of helicopter is exposed to repeated oscillatory loading generated by aerodynamic and inertial loads, and bending moments depending on operating conditions and maneuvers of the helicopter. In order to ensure that maximum stress levels do not exceed certain fatigue limit of the material and to prevent damage, a numerical analysis approach can be utilized through the Finite Element Method. Therefore, in this paper, fatigue analysis of the Horizontal Tail model is studied numerically to predict high-cycle and low-cycle fatigue life related to defined loading. The analysis estimates the stress field at stress concentration regions such as around fastener holes where the maximum principal stresses are considered for each load case. Critical element identification of the main load carrying structural components of the model with rivet holes is performed as a post-process since critical regions with high-stress values are used as an input for fatigue life calculation. Once the maximum stress is obtained at the critical element and the related mean and alternating components, it is compared with the endurance limit by applying Soderberg approach. The constant life straight line provides the limit for several combinations of mean and alternating stresses. The life calculation based on S-N (Stress-Number of Cycles) curve is also applied with fully reversed loading to determine the number of cycles corresponds to the oscillatory stress with zero means. The results determine the appropriateness of the design of the model for its fatigue strength and the number of cycles that the model can withstand for the calculated stress. The effect of correctly determining the critical rivet holes is investigated by analyzing stresses at different structural parts in the model. In the case of low life prediction, alternative design solutions are developed, and flight hours can be estimated for the fatigue safe operation of the model.

Keywords: fatigue analysis, finite element method, helicopter horizontal tail, life prediction, stress concentration

Procedia PDF Downloads 148
10477 Participatory Monitoring Strategy to Address Stakeholder Engagement Impact in Co-creation of NBS Related Project: The OPERANDUM Case

Authors: Teresa Carlone, Matteo Mannocchi

Abstract:

In the last decade, a growing number of International Organizations are pushing toward green solutions for adaptation to climate change. This is particularly true in the field of Disaster Risk Reduction (DRR) and land planning, where Nature-Based Solutions (NBS) had been sponsored through funding programs and planning tools. Stakeholder engagement and co-creation of NBS is growing as a practice and research field in environmental projects, fostering the consolidation of a multidisciplinary socio-ecological approach in addressing hydro-meteorological risk. Even thou research and financial interests are constantly spread, the NBS mainstreaming process is still at an early stage as innovative concepts and practices make it difficult to be fully accepted and adopted by a multitude of different actors to produce wide scale societal change. The monitoring and impact evaluation of stakeholders’ participation in these processes represent a crucial aspect and should be seen as a continuous and integral element of the co-creation approach. However, setting up a fit for purpose-monitoring strategy for different contexts is not an easy task, and multiple challenges emerge. In this scenario, the Horizon 2020 OPERANDUM project, designed to address the major hydro-meteorological risks that negatively affect European rural and natural territories through the co-design, co-deployment, and assessment of Nature-based Solution, represents a valid case study to test a monitoring strategy from which set a broader, general and scalable monitoring framework. Applying a participative monitoring methodology, based on selected indicators list that combines quantitative and qualitative data developed within the activity of the project, the paper proposes an experimental in-depth analysis of the stakeholder engagement impact in the co-creation process of NBS. The main focus will be to spot and analyze which factors increase knowledge, social acceptance, and mainstreaming of NBS, promoting also a base-experience guideline to could be integrated with the stakeholder engagement strategy in current and future similar strongly collaborative approach-based environmental projects, such as OPERANDUM. Measurement will be carried out through survey submitted at a different timescale to the same sample (stakeholder: policy makers, business, researchers, interest groups). Changes will be recorded and analyzed through focus groups in order to highlight causal explanation and to assess the proposed list of indicators to steer the conduction of similar activities in other projects and/or contexts. The idea of the paper is to contribute to the construction of a more structured and shared corpus of indicators that can support the evaluation of the activities of involvement and participation of various levels of stakeholders in the co-production, planning, and implementation of NBS to address climate change challenges.

Keywords: co-creation and collaborative planning, monitoring, nature-based solution, participation & inclusion, stakeholder engagement

Procedia PDF Downloads 116
10476 Smart Services for Easy and Retrofittable Machine Data Collection

Authors: Till Gramberg, Erwin Gross, Christoph Birenbaum

Abstract:

This paper presents the approach of the Easy2IoT research project. Easy2IoT aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. It focuses on the development of physical hardware and software to easily capture machine activities from on a sawing machine, benefiting various stakeholders in the SME value chain, including machine operators, tool manufacturers and service providers. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements and potential solutions for smart services are derived. The focus is on providing actionable recommendations, competencies and easy integration through no-/low-code applications to facilitate implementation and connectivity within production networks. At the core of the project is a novel, non-invasive measurement and analysis system that can be easily deployed and made IIoT-ready. This system collects machine data without interfering with the machines themselves. It does this by non-invasively measuring the tension on a sawing machine. The collected data is then connected and analyzed using artificial intelligence (AI) to provide smart services through a platform-based application. Three Smart Services are being developed within Easy2IoT to provide immediate benefits to users: Wear part and product material condition monitoring and predictive maintenance for sawing processes. The non-invasive measurement system enables the monitoring of tool wear, such as saw blades, and the quality of consumables and materials. Service providers and machine operators can use this data to optimize maintenance and reduce downtime and material waste. Optimize Overall Equipment Effectiveness (OEE) by monitoring machine activity. The non-invasive system tracks machining times, setup times and downtime to identify opportunities for OEE improvement and reduce unplanned machine downtime. Estimate CO2 emissions for connected machines. CO2 emissions are calculated for the entire life of the machine and for individual production steps based on captured power consumption data. This information supports energy management and product development decisions. The key to Easy2IoT is its modular and easy-to-use design. The non-invasive measurement system is universally applicable and does not require specialized knowledge to install. The platform application allows easy integration of various smart services and provides a self-service portal for activation and management. Innovative business models will also be developed to promote the sustainable use of the collected machine activity data. The project addresses the digitalization gap between large enterprises and SME. Easy2IoT provides SME with a concrete toolkit for IIoT adoption, facilitating the digital transformation of smaller companies, e.g. through retrofitting of existing machines.

Keywords: smart services, IIoT, IIoT-platform, industrie 4.0, big data

Procedia PDF Downloads 75
10475 The Basin Management Methodology for Integrated Water Resources Management and Development

Authors: Julio Jesus Salazar, Max Jesus De Lama

Abstract:

The challenges of water management are aggravated by global change, which implies high complexity and associated uncertainty; water management is difficult because water networks cross domains (natural, societal, and political), scales (space, time, jurisdictional, institutional, knowledge, etc.) and levels (area: patches to global; knowledge: a specific case to generalized principles). In this context, we need to apply natural and non-natural measures to manage water and soil. The Basin Management Methodology considers multifunctional measures of natural water retention and erosion control and soil formation to protect water resources and address the challenges related to the recovery or conservation of the ecosystem, as well as natural characteristics of water bodies, to improve the quantitative status of water bodies and reduce vulnerability to floods and droughts. This method of water management focuses on the positive impacts of the chemical and ecological status of water bodies, restoration of the functioning of the ecosystem and its natural services; thus, contributing to both adaptation and mitigation of climate change. This methodology was applied in 7 interventions in the sub-basin of the Shullcas River in Huancayo-Junín-Peru, obtaining great benefits in the framework of the participation of alliances of actors and integrated planning scenarios. To implement the methodology in the sub-basin of the Shullcas River, a process called Climate Smart Territories (CST) was used; with which the variables were characterized in a highly complex space. The diagnosis was then worked using risk management and adaptation to climate change. Finally, it was concluded with the selection of alternatives and projects of this type. Therefore, the CST approach and process face the challenges of climate change through integrated, systematic, interdisciplinary and collective responses at different scales that fit the needs of ecosystems and their services that are vital to human well-being. This methodology is now replicated at the level of the Mantaro river basin, improving with other initiatives that lead to the model of a resilient basin.

Keywords: climate-smart territories, climate change, ecosystem services, natural measures, Climate Smart Territories (CST) approach

Procedia PDF Downloads 154
10474 A Multistep Broyden’s-Type Method for Solving Systems of Nonlinear Equations

Authors: M. Y. Waziri, M. A. Aliyu

Abstract:

The paper proposes an approach to improve the performance of Broyden’s method for solving systems of nonlinear equations. In this work, we consider the information from two preceding iterates rather than a single preceding iterate to update the Broyden’s matrix that will produce a better approximation of the Jacobian matrix in each iteration. The numerical results verify that the proposed method has clearly enhanced the numerical performance of Broyden’s Method.

Keywords: mulit-step Broyden, nonlinear systems of equations, computational efficiency, iterate

Procedia PDF Downloads 640
10473 Acquisition and Preservation of Traditional Medicinal Knowledge in Rural Areas of KwaZulu Natal, South Africa

Authors: N. Khanyile, P. Dlamini, M. Masenya

Abstract:

Background: Most of the population in Africa is still dependent on indigenous medicinal knowledge for treating and managing ailments. Indigenous traditional knowledge owners/practitioners who own this knowledge are consulted by communities, but their knowledge is not known how they get it. The question of how knowledge is acquired and preserved remains one of the biggest challenges in traditional healing and treatment with herbal medicines. It is regrettable that despite the importance and recognition of indigenous medicinal knowledge globally, the details of acquirement, storing and transmission, and preservation techniques are not known. Hence this study intends to unveil the process of acquirement and transmission, and preservation techniques of indigenous medical knowledge by its owners. Objectives: This study aims to assess the process of acquiring and preservation of traditional medicinal knowledge by traditional medicinal knowledge owners/practitioners in uMhlathuze Municipality, in the province of KwaZulu-Natal, South Africa. The study was guided by four research objectives which were to: identify the types of traditional medicinal knowledge owners who possess this knowledge, establish the approach used by indigenous medicinal knowledge owners/healers for acquiring medicinal knowledge, identify the process of preservation of medicinal knowledge by indigenous medicinal knowledge owners/healers, and determine the challenges encountered in transferring the knowledge. Method: The study adopted a qualitative research approach, and a snowball sampling technique was used to identify the study population. Data was collected through semi-structured interviews with indigenous medicinal knowledge owners. Results: The findings suggested that uMhlathuze municipality had different types of indigenous medicinal knowledge owners who possess valuable knowledge. These are diviners (Izangoma), faith healers (Abathandazi), and herbalists (Izinyanga). The study demonstrated that indigenous medicinal knowledge is acquired in many different ways, including visions, dreams, and vigorous training. The study also revealed the acquired knowledge is preserved or shared with specially chosen children and trainees. Conclusion: The study concluded that this knowledge is gotten through vigorous training, which requires the learner to be attentive and eager to learn. It was recommended that a study of this nature be conducted but at a broader level to enhance an informed conclusion and recommendations.

Keywords: preserving, indigenous medicinal knowledge, indigenous knowledge, indigenous medicinal knowledge owners/practitioners, acquiring

Procedia PDF Downloads 88
10472 The Selectivities of Pharmaceutical Spending Containment: Social Profit, Incentivization Games and State Power

Authors: Ben Main Piotr Ozieranski

Abstract:

State government spending on pharmaceuticals stands at 1 trillion USD globally, promoting criticism of the pharmaceutical industry's monetization of drug efficacy, product cost overvaluation, and health injustice. This paper elucidates the mechanisms behind a state-institutional response to this problem through the sociological lens of the strategic relational approach to state power. To do so, 30 expert interviews, legal and policy documents are drawn on to explain how state elites in New Zealand have successfully contested a 30-year “pharmaceutical spending containment policy”. Proceeding from Jessop's notion of strategic “selectivity”, encompassing analyses of the enabling features of state actors' ability to harness state structures, a theoretical explanation is advanced. First, a strategic context is described that consists of dynamics around pharmaceutical dealmaking between the state bureaucracy, pharmaceutical pricing strategies (and their effects), and the industry. Centrally, the pricing strategy of "bundling" -deals for packages of drugs that combine older and newer patented products- reflect how state managers have instigated an “incentivization game” that is played by state and industry actors, including HTA professionals, over pharmaceutical products (both current and in development). Second, a protective context is described that is comprised of successive legislative-judicial responses to the strategic context and characterized by the regulation and the societalisation of commercial law. Third, within the policy, the achievement of increased pharmaceutical coverage (pharmaceutical “mix”) alongside contained spending is conceptualized as a state defence of a "social profit". As such, in contrast to scholarly expectations that political and economic cultures of neo-liberalism drive pharmaceutical policy-making processes, New Zealand's state elites' approach is shown to be antipathetic to neo-liberals within an overall capitalist economy. The paper contributes an analysis of state pricing strategies and how they are embedded in state regulatory structures. Additionally, through an analysis of the interconnections of state power and pharmaceutical value Abrahams's neo-liberal corporate bias model for pharmaceutical policy analysis is problematised.

Keywords: pharmaceutical governance, pharmaceutical bureaucracy, pricing strategies, state power, value theory

Procedia PDF Downloads 72
10471 Towards Learning Query Expansion

Authors: Ahlem Bouziri, Chiraz Latiri, Eric Gaussier

Abstract:

The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method.

Keywords: supervised leaning, classification, query expansion, association rules

Procedia PDF Downloads 326
10470 Optimization of Waste Plastic to Fuel Oil Plants' Deployment Using Mixed Integer Programming

Authors: David Muyise

Abstract:

Mixed Integer Programming (MIP) is an approach that involves the optimization of a range of decision variables in order to minimize or maximize a particular objective function. The main objective of this study was to apply the MIP approach to optimize the deployment of waste plastic to fuel oil processing plants in Uganda. The processing plants are meant to reduce plastic pollution by pyrolyzing the waste plastic into a cleaner fuel that can be used to power diesel/paraffin engines, so as (1) to reduce the negative environmental impacts associated with plastic pollution and also (2) to curb down the energy gap by utilizing the fuel oil. A programming model was established and tested in two case study applications that are, small-scale applications in rural towns and large-scale deployment across major cities in the country. In order to design the supply chain, optimal decisions on the types of waste plastic to be processed, size, location and number of plants, and downstream fuel applications were concurrently made based on the payback period, investor requirements for capital cost and production cost of fuel and electricity. The model comprises qualitative data gathered from waste plastic pickers at landfills and potential investors, and quantitative data obtained from primary research. It was found out from the study that a distributed system is suitable for small rural towns, whereas a decentralized system is only suitable for big cities. Small towns of Kalagi, Mukono, Ishaka, and Jinja were found to be the ideal locations for the deployment of distributed processing systems, whereas Kampala, Mbarara, and Gulu cities were found to be the ideal locations initially utilize the decentralized pyrolysis technology system. We conclude that the model findings will be most important to investors, engineers, plant developers, and municipalities interested in waste plastic to fuel processing in Uganda and elsewhere in developing economy.

Keywords: mixed integer programming, fuel oil plants, optimisation of waste plastics, plastic pollution, pyrolyzing

Procedia PDF Downloads 130
10469 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data

Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.

Keywords: real-time spatial big data, quality of service, vertical partitioning, horizontal partitioning, matching algorithm, hamming distance, stream query

Procedia PDF Downloads 158
10468 A Qualitative Study Exploring Factors Influencing the Uptake of and Engagement with Health and Wellbeing Smartphone Apps

Authors: D. Szinay, O. Perski, A. Jones, T. Chadborn, J. Brown, F. Naughton

Abstract:

Background: The uptake of health and wellbeing smartphone apps is largely influenced by popularity indicators (e.g., rankings), rather than evidence-based content. Rapid disengagement is common. This study aims to explore how and why potential users 1) select and 2) engage with such apps, and 3) how increased engagement could be promoted. Methods: Semi-structured interviews and a think-aloud approach were used to allow participants to verbalise their thoughts whilst searching for a health or wellbeing app online, followed by a guided search in the UK National Health Service (NHS) 'Apps Library' and Public Health England’s (PHE) 'One You' website. Recruitment took place between June and August 2019. Adults interested in using an app for behaviour change were recruited through social media. Data were analysed using the framework approach. The analysis is both inductive and deductive, with the coding framework being informed by the Theoretical Domains Framework. The results are further mapped onto the COM-B (Capability, Opportunity, Motivation - Behaviour) model. The study protocol is registered on the Open Science Framework (https://osf.io/jrkd3/). Results: The following targets were identified as playing a key role in increasing the uptake of and engagement with health and wellbeing apps: 1) psychological capability (e.g., reduced cognitive load); 2) physical opportunity (e.g., low financial cost); 3) social opportunity (e.g., embedded social media); 4) automatic motivation (e.g., positive feedback). Participants believed that the promotion of evidence-based apps on NHS-related websites could be enhanced through active promotion on social media, adverts on the internet, and in general practitioner practices. Future Implications: These results can inform the development of interventions aiming to promote the uptake of and engagement with evidence-based health and wellbeing apps, a priority within the UK NHS Long Term Plan ('digital first'). The targets identified across the COM-B domains could help organisations that provide platforms for such apps to increase impact through better selection of apps.

Keywords: behaviour change, COM-B model, digital health, mhealth

Procedia PDF Downloads 169
10467 Electromagnetic Tuned Mass Damper Approach for Regenerative Suspension

Authors: S. Kopylov, C. Z. Bo

Abstract:

This study is aimed at exploring the possibility of energy recovery through the suppression of vibrations. The article describes design of electromagnetic dynamic damper. The magnetic part of the device performs the function of a tuned mass damper, thereby providing both energy regeneration and damping properties to the protected mass. According to the theory of tuned mass damper, equations of mathematical models were obtained. Then, under given properties of current system, amplitude frequency response was investigated. Therefore, main ideas and methods for further research were defined.

Keywords: electromagnetic damper, oscillations with two degrees of freedom, regeneration systems, tuned mass damper

Procedia PDF Downloads 210
10466 Synaesthetic Metaphors in Persian: a Cognitive Corpus Based and Comparative Perspective

Authors: A. Afrashi

Abstract:

Introduction: Synaesthesia is a term denoting the perception or description of the perception of one sense modality in terms of another. In literature, synaesthesia refers to a technique adopted by writers to present ideas, characters or places in such a manner that they appeal to more than one sense like hearing, seeing, smell etc. at a given time. In everyday language too we find many examples of synaesthesia. We commonly hear phrases like ‘loud colors’, ‘frozen silence’ and ‘warm colors’, ‘bitter cold’ etc. Empirical cognitive studies have proved that synaesthetic representations both in literature and everyday languages are constrained ie. they do not map randomly among sensory domains. From the beginning of the 20th century Synaesthesia has been a research domain both in literature and structural linguistics. However the exploration of cognitive mechanisms motivating synaesthesia, have made it an important topic in 21st century cognitive linguistics and literary studies. Synaesthetic metaphors are linguistic representations of those mental mechanisms, the study of which reveals invaluable facts about perception, cognition and conceptualization. According to the main tenets of cognitive approach to language and literature, unified and similar cognitive mechanisms are active both in everyday language and literature, and synaesthesia is one of those cognitive mechanisms. Main objective of the present research is to answer the following questions: What types of sense transfers are accessible in Persian synaesthetic metaphors. How are these types of sense transfers cognitively explained. What are the results of cross-linguistic comparative study of synaestetic metaphors based on the existing observations? Methodology: The present research employs a cognitive - corpus based method, and the theoretical framework adopted to analyze linguistic synaesthesia is the contemporary theory of metaphor, where conceptual metaphor is the result of systemic mappings across cognitive domains. Persian Language Data- base (PLDB) in the Institute for Humanities and Cultural Studies which consists mainly of Persian modern prose, is searched for synaesthetic metaphors. Then for each metaphorical structure, the source and target domains are determined. Then sense transfers are identified and the types of synaesthetic metaphors recognized. Findings: Persian synaesthetic metaphors conform to the hierarchical distribution principle, according to which transfers tend to go from touch to taste to smell to sound and to sight, not vice versa. In other words mapping from more accessible or basic concepts onto less accessible or less basic ones seems more natural. Furthermore the most frequent target domain in Persian synaesthetic metaphors is sound. Certain characteristics of Persian synaesthetic metaphors are comparable with existing related researches carried on English, French, Hungarian and Chinese synaesthetic metaphors. Conclusion: Cognitive corpus based approaches to linguistic synaesthesia, are applicable to stylistics and literary criticism and this recent research domain is an efficient approach to study cross linguistic variations to find out which of the five senses is dominant cross linguistically and cross culturally as the target domain in metaphorical mappings , and so forth receiving dominance in conceptualizations.

Keywords: cognitive semantics, conceptual metaphor, synaesthesia, corpus based approach

Procedia PDF Downloads 563
10465 Study of the Transport of ²²⁶Ra Colloidal in Mining Context Using a Multi-Disciplinary Approach

Authors: Marine Reymond, Michael Descostes, Marie Muguet, Clemence Besancon, Martine Leermakers, Catherine Beaucaire, Sophie Billon, Patricia Patrier

Abstract:

²²⁶Ra is one of the radionuclides resulting from the disintegration of ²³⁸U. Due to its half-life (1600 y) and its high specific activity (3.7 x 1010 Bq/g), ²²⁶Ra is found at the ultra-trace level in the natural environment (usually below 1 Bq/L, i.e. 10-13 mol/L). Because of its decay in ²²²Rn, a radioactive gas with a shorter half-life (3.8 days) which is difficult to control and dangerous for humans when inhaled, ²²⁶Ra is subject to a dedicated monitoring in surface waters especially in the context of uranium mining. In natural waters, radionuclides occur in dissolved, colloidal or particular forms. Due to the size of colloids, generally ranging between 1 nm and 1 µm and their high specific surface areas, the colloidal fraction could be involved in the transport of trace elements, including radionuclides in the environment. The colloidal fraction is not always easy to determine and few existing studies focus on ²²⁶Ra. In the present study, a complete multidisciplinary approach is proposed to assess the colloidal transport of ²²⁶Ra. It includes water sampling by conventional filtration (0.2µm) and the innovative Diffusive Gradient in Thin Films technique to measure the dissolved fraction (<10nm), from which the colloidal fraction could be estimated. Suspended matter in these waters were also sampled and characterized mineralogically by X-Ray Diffraction, infrared spectroscopy and scanning electron microscopy. All of these data, which were acquired on a rehabilitated former uranium mine, allowed to build a geochemical model using the geochemical calculation code PhreeqC to describe, as accurately as possible, the colloidal transport of ²²⁶Ra. Colloidal transport of ²²⁶Ra was found, for some of the sampling points, to account for up to 95% of the total ²²⁶Ra measured in water. Mineralogical characterization and associated geochemical modelling highlight the role of barite, a barium sulfate mineral well known to trap ²²⁶Ra into its structure. Barite was shown to be responsible for the colloidal ²²⁶Ra fraction despite the presence of kaolinite and ferrihydrite, which are also known to retain ²²⁶Ra by sorption.

Keywords: colloids, mining context, radium, transport

Procedia PDF Downloads 158
10464 Matrix-Based Linear Analysis of Switched Reluctance Generator with Optimum Pole Angles Determination

Authors: Walid A. M. Ghoneim, Hamdy A. Ashour, Asmaa E. Abdo

Abstract:

In this paper, linear analysis of a Switched Reluctance Generator (SRG) model is applied on the most common configurations (4/2, 6/4 and 8/6) for both conventional short-pitched and fully-pitched designs, in order to determine the optimum stator/rotor pole angles at which the maximum output voltage is generated per unit excitation current. This study is focused on SRG analysis and design as a proposed solution for renewable energy applications, such as wind energy conversion systems. The world’s potential to develop the renewable energy technologies through dedicated scientific researches was the motive behind this study due to its positive impact on economy and environment. In addition, the problem of rare earth metals (Permanent magnet) caused by mining limitations, banned export by top producers and environment restrictions leads to the unavailability of materials used for rotating machines manufacturing. This challenge gave authors the opportunity to study, analyze and determine the optimum design of the SRG that has the benefit to be free from permanent magnets, rotor windings, with flexible control system and compatible with any application that requires variable-speed operation. In addition, SRG has been proved to be very efficient and reliable in both low-speed or high-speed applications. Linear analysis was performed using MATLAB simulations based on the (Modified generalized matrix approach) of Switched Reluctance Machine (SRM). About 90 different pole angles combinations and excitation patterns were simulated through this study, and the optimum output results for each case were recorded and presented in detail. This procedure has been proved to be applicable for any SRG configuration, dimension and excitation pattern. The delivered results of this study provide evidence for using the 4-phase 8/6 fully pitched SRG as the main optimum configuration for the same machine dimensions at the same angular speed.

Keywords: generalized matrix approach, linear analysis, renewable applications, switched reluctance generator

Procedia PDF Downloads 200
10463 Improving the Uptake of Community-Based Multidrug-Resistant Tuberculosis Treatment Model in Nigeria

Authors: A. Abubakar, A. Parsa, S. Walker

Abstract:

Despite advances made in the diagnosis and management of drug-sensitive tuberculosis (TB) over the past decades, treatment of multidrug-resistant tuberculosis (MDR-TB) remains challenging and complex particularly in high burden countries including Nigeria. Treatment of MDR-TB is cost-prohibitive with success rate generally lower compared to drug-sensitive TB and if care is not taken it may become the dominant form of TB in future with many treatment uncertainties and substantial morbidity and mortality. Addressing these challenges requires collaborative efforts thorough sustained researches to evaluate the current treatment guidelines, particularly in high burden countries and prevent progression of resistance. To our best knowledge, there has been no research exploring the acceptability, effectiveness, and cost-effectiveness of community-based-MDR-TB treatment model in Nigeria, which is among the high burden countries. The previous similar qualitative study looks at the home-based management of MDR-TB in rural Uganda. This research aimed to explore patient’s views and acceptability of community-based-MDR-TB treatment model and to evaluate and compare the effectiveness and cost-effectiveness of community-based versus hospital-based MDR-TB treatment model of care from the Nigerian perspective. Knowledge of patient’s views and acceptability of community-based-MDR-TB treatment approach would help in designing future treatment recommendations and in health policymaking. Accordingly, knowledge of effectiveness and cost-effectiveness are part of the evidence needed to inform a decision about whether and how to scale up MDR-TB treatment, particularly in a poor resource setting with limited knowledge of TB. Mixed methods using qualitative and quantitative approach were employed. Qualitative data were obtained using in-depth semi-structured interviews with 21 MDR-TB patients in Nigeria to explore their views and acceptability of community-based MDR-TB treatment model. Qualitative data collection followed an iterative process which allowed adaptation of topic guides until data saturation. In-depth interviews were analyzed using thematic analysis. Quantitative data on treatment outcomes were obtained from medical records of MDR-TB patients to determine the effectiveness and direct and indirect costs were obtained from the patients using validated questionnaire and health system costs from the donor agencies to determine the cost-effectiveness difference between community and hospital-based model from the Nigerian perspective. Findings: Some themes have emerged from the patient’s perspectives indicating preference and high acceptability of community-based-MDR-TB treatment model by the patients and mixed feelings about the risk of MDR-TB transmission within the community due to poor infection control. The result of the modeling from the quantitative data is still on course. Community-based MDR-TB care was seen as the acceptable and most preferred model of care by the majority of the participants because of its convenience which in turn enhanced recovery, enables social interaction and offer more psychosocial benefits as well as averted productivity loss. However, there is a need to strengthen this model of care thorough enhanced strategies that ensure guidelines compliance and infection control in order to prevent the progression of resistance and curtail community transmission.

Keywords: acceptability, cost-effectiveness, multidrug-resistant TB treatment, community and hospital approach

Procedia PDF Downloads 124
10462 Construction of Ovarian Cancer-on-Chip Model by 3D Bioprinting and Microfluidic Techniques

Authors: Zakaria Baka, Halima Alem

Abstract:

Cancer is a major worldwide health problem that has caused around ten million deaths in 2020. In addition, efforts to develop new anti-cancer drugs still face a high failure rate. This is partly due to the lack of preclinical models that recapitulate in-vivo drug responses. Indeed conventional cell culture approach (known as 2D cell culture) is far from reproducing the complex, dynamic and three-dimensional environment of tumors. To set up more in-vivo-like cancer models, 3D bioprinting seems to be a promising technology due to its ability to achieve 3D scaffolds containing different cell types with controlled distribution and precise architecture. Moreover, the introduction of microfluidic technology makes it possible to simulate in-vivo dynamic conditions through the so-called “cancer-on-chip” platforms. Whereas several cancer types have been modeled through the cancer-on-chip approach, such as lung cancer and breast cancer, only a few works describing ovarian cancer models have been described. The aim of this work is to combine 3D bioprinting and microfluidic technics with setting up a 3D dynamic model of ovarian cancer. In the first phase, alginate-gelatin hydrogel containing SKOV3 cells was used to achieve tumor-like structures through an extrusion-based bioprinter. The desired form of the tumor-like mass was first designed on 3D CAD software. The hydrogel composition was then optimized for ensuring good and reproducible printability. Cell viability in the bioprinted structures was assessed using Live/Dead assay and WST1 assay. In the second phase, these bioprinted structures will be included in a microfluidic device that allows simultaneous testing of different drug concentrations. This microfluidic dispositive was first designed through computational fluid dynamics (CFD) simulations for fixing its precise dimensions. It was then be manufactured through a molding method based on a 3D printed template. To confirm the results of CFD simulations, doxorubicin (DOX) solutions were perfused through the dispositive and DOX concentration in each culture chamber was determined. Once completely characterized, this model will be used to assess the efficacy of anti-cancer nanoparticles developed in the Jean Lamour institute.

Keywords: 3D bioprinting, ovarian cancer, cancer-on-chip models, microfluidic techniques

Procedia PDF Downloads 198
10461 Catalytic Dehydrogenation of Formic Acid into H2/CO2 Gas: A Novel Approach

Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy

Abstract:

Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of biomass platform, comprising a potential pool of hydrogen energy that stands as a new energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need of in-situ H2 production, which plays a key role in the hydrogenation reactions of biomass into higher value components. It is reported elsewhere in literature that catalytic decomposition of FA is usually performed in poorly designed setup using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. it work suggests an approach that integrates designing a novel catalyst featuring magnetic property with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H2 gas from FA. Using ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under inert medium. Through a novel approach, FA is charged into the reactor via high-pressure positive displacement pump at steady state conditions. The produced gas (H2+CO2) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The novelty of this work lies in designing a very responsive catalyst, pumping consistent amount of FA into a sealed reactor running at steady state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at lower temperature range (35-50°C) yielded more gas while the catalyst loading and Pd doping wt.% were found to be the most significant factors with a P-values 0.026 & 0.031, respectively.

Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles

Procedia PDF Downloads 56
10460 Responsive Integrative Therapeutic Method: Paradigm for Addressing Core Deficits in Autism by Balkibekova

Authors: Balkibekova Venera Serikpaevna

Abstract:

Background: Autism Spectrum Disorder (ASD) poses significant challenges in both diagnosis and treatment. Existing therapeutic interventions often target specific symptoms, necessitating the exploration of alternative approaches. This study investigates the RITM (Rhythm Integration Tapping Music) developed by Balkibekova, aiming to create imitation, social engagement and a wide range of emotions through brain development. Methods: A randomized controlled trial was conducted with 100 participants diagnosed with ASD, aged 1 to 4 years. Participants were randomly assigned to either the RITM therapy group or a control group receiving standard care. The RITM therapy, rooted in tapping rhythm to music such as: marche on the drums, waltz on bells, lullaby on musical triangle, dancing on tambourine, polka on wooden spoons. Therapy sessions were conducted over a 3 year period, with assessments at baseline, midpoint, and post-intervention. Results: Preliminary analyses reveal promising outcomes in the RITM therapy group. Participants demonstrated significant improvements in social interactions, speech understanding, birth of speech, and adaptive behaviors compared to the control group. Careful examination of subgroup analyses provides insights into the differential effectiveness of the RITM approach across various ASD profiles. Conclusions: The findings suggest that RITM therapy, as developed by Balkibekova, holds promise as intervention for ASD. The integrative nature of the approach, addressing multiple domains simultaneously, may contribute to its efficacy. Further research is warranted to validate these preliminary results and explore the long-term impact of RITM therapy on individuals with ASD. This abstract presents a snapshot of the research, emphasizing the significance, methodology, key findings, and implications of the RITM therapy method for consideration in an autism conference.

Keywords: RITM therapy, tapping rhythm, autism, mirror neurons, bright emotions, social interactions, communications

Procedia PDF Downloads 67
10459 Innovative Design of Spherical Robot with Hydraulic Actuator

Authors: Roya Khajepour, Alireza B. Novinzadeh

Abstract:

In this paper, the spherical robot is modeled using the Band-Graph approach. This breed of robots is typically employed in expedition missions to unknown territories. Its motion mechanism is based on convection of a fluid in a set of three donut vessels, arranged orthogonally in space. This robot is a non-linear, non-holonomic system. This paper utilizes the Band-Graph technique to derive the torque generation mechanism in a spherical robot. Eventually, this paper describes the motion of a sphere due to the exerted torque components.

Keywords: spherical robot, Band-Graph, modeling, torque

Procedia PDF Downloads 353
10458 Pros and Cons of Agriculture Investment in Gambella Region, Ethiopia

Authors: Azeb Degife

Abstract:

Over the past few years, the volume of international investment in agricultural land has increased globally. In recent times, Ethiopian government uses agricultural investment as one of the most important and effective strategies for economic growth, food security and poverty reduction in rural areas. Since the mid-2000s, government has awarded millions of hectares of most fertile land to rich countries and some of the world's most wealthy people to export various kinds of crop, often in long-term leases and at bargain prices. This study focuses on the pros and cons of large-scale agriculture investment Gambella region, Ethiopia. The main results were generated both from primary and secondary data sources. Primary data are obtained through interview, direct observation and a focus group discussion (FGDs). The secondary data are obtained from published documents, reports from governmental and non-governmental institutions. The findings of the study demonstrated that agriculture investment has advantages on the socio-economic and disadvantages on socio-environmental aspects. The main benefits agriculture investments in the region are infrastructural development and generation employment for the local people. Further, the Ethiopian government also generates foreign currency from the agriculture investment opportunities. On the other hand, Gambella people are strongly tied to the land and the rivers that run through in the region. However, now large-scale agricultural investment by foreign and local investors on an industrial scale results deprives people livelihoods and natural resources of the region. Generally, the negative effects of agriculture investment include increasing food insecurity, and displacement of smallholder farmers and pastoralists. Moreover, agriculture investment has strong adverse environmental impacts on natural resources such as land, water, forests and biodiversity. Therefore, an Ethiopian government strategy needs to focus on integration approach and sustainable agricultural growth.

Keywords: agriculture investment, cons, displacement, Gambella, integration approach, pros, socio-economic, socio-environmental

Procedia PDF Downloads 346
10457 Touching Interaction: An NFC-RFID Combination

Authors: Eduardo Álvarez, Gerardo Quiroga, Jorge Orozco, Gabriel Chavira

Abstract:

AmI proposes a new way of thinking about computers, which follows the ideas of the Ubiquitous Computing vision of Mark Weiser. In these, there is what is known as a Disappearing Computer Initiative, with users immersed in intelligent environments. Hence, technologies need to be adapted so that they are capable of replacing the traditional inputs to the system by embedding these in every-day artifacts. In this work, we present an approach, which uses Radiofrequency Identification (RFID) and Near Field Communication (NFC) technologies. In the latter, a new form of interaction appears by contact. We compare both technologies by analyzing their requirements and advantages. In addition, we propose using a combination of RFID and NFC.

Keywords: touching interaction, ambient intelligence, ubiquitous computing, interaction, NFC and RFID

Procedia PDF Downloads 508
10456 A Three-modal Authentication Method for Industrial Robots

Authors: Luo Jiaoyang, Yu Hongyang

Abstract:

In this paper, we explore a method that can be used in the working scene of intelligent industrial robots to confirm the identity information of operators to ensure that the robot executes instructions in a sufficiently safe environment. This approach uses three information modalities, namely visible light, depth, and sound. We explored a variety of fusion modes for the three modalities and finally used the joint feature learning method to improve the performance of the model in the case of noise compared with the single-modal case, making the maximum noise in the experiment. It can also maintain an accuracy rate of more than 90%.

Keywords: multimodal, kinect, machine learning, distance image

Procedia PDF Downloads 81
10455 Practice Patterns of Physiotherapists for Learners with Disabilities at Special Schools: A Scoping Review

Authors: Lubisi L. V., Madumo M. B., Mudau N. P., Makhuvele L., Sibuyi M. M.

Abstract:

Background and Aims: Learners with disabilities can be integrated into mainstream schools, whereas there are those learners that are accommodated in special schools based on the support needs they require. These needs, among others, pertain to access to high-intensity therapeutic support by physiotherapists, occupational therapists, and speech therapists. However, access to physiotherapists in low- and middle-income countries is limited, and this creates a knowledge gap in identifying, to the best of our knowledge, best practice patterns aligned with physiotherapy at special schools. This gap compromises the quality of support to be rendered towards strengthening rehabilitation and optimising the participation of learners with disabilities in special schools. The aim of the scoping review was to map the evidence on practice patterns employed by physiotherapists at special schools for learners with disabilities. Methods: The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines were followed. Key terms regarding physiotherapy practice patterns for learners with disabilities at special schools were used to search the literature on the databases. Literature was sourced from Google Scholar, EBSCO, PEDro, PubMed, and Research Gate from 2013 to 2023. A total of 28 articles were initially retrieved and after a process of screening and exclusion, nine articles were included. All the researchers reviewed the articles for eligibility. Articles were initially screened based on the titles, followed by full text. Articles written in English or translated into English mentioned physical / physiotherapy interventions in special schools, both published and unpublished, were included. A qualitative data extraction template was developed and an inductive approach to thematic data analysis was used for included articles to see which themes emerged. Results: Three themes emerged after inductive thematic data analysis. 1. Collaboration with educators, parents, and therapists 2. Family Centred Approach 3. Telehealth. Conclusion: Collaboration is key in delivering therapeutic support to learners with disabilities at special schools. Physiotherapists need to be collaborators at the level of interprofessional and transprofessional. In addition, they need to explore technology to work remotely, especially when learners become absent physically from school.

Keywords: learners with disabilities, special school, physiotherapists, therapeutic support

Procedia PDF Downloads 79
10454 A New Criterion Using Pose and Shape of Objects for Collision Risk Estimation

Authors: DoHyeung Kim, DaeHee Seo, ByungDoo Kim, ByungGil Lee

Abstract:

As many recent researches being implemented in aviation and maritime aspects, strong doubts have been raised concerning the reliability of the estimation of collision risk. It is shown that using position and velocity of objects can lead to imprecise results. In this paper, therefore, a new approach to the estimation of collision risks using pose and shape of objects is proposed. Simulation results are presented validating the accuracy of the new criterion to adapt to collision risk algorithm based on fuzzy logic.

Keywords: collision risk, pose, shape, fuzzy logic

Procedia PDF Downloads 531
10453 A Semi-supervised Classification Approach for Trend Following Investment Strategy

Authors: Rodrigo Arnaldo Scarpel

Abstract:

Trend following is a widely accepted investment strategy that adopts a rule-based trading mechanism that rather than striving to predict market direction or on information gathering to decide when to buy and when to sell a stock. Thus, in trend following one must respond to market’s movements that has recently happen and what is currently happening, rather than on what will happen. Optimally, in trend following strategy, is to catch a bull market at its early stage, ride the trend, and liquidate the position at the first evidence of the subsequent bear market. For applying the trend following strategy one needs to find the trend and identify trade signals. In order to avoid false signals, i.e., identify fluctuations of short, mid and long terms and to separate noise from real changes in the trend, most academic works rely on moving averages and other technical analysis indicators, such as the moving average convergence divergence (MACD) and the relative strength index (RSI) to uncover intelligible stock trading rules following trend following strategy philosophy. Recently, some works has applied machine learning techniques for trade rules discovery. In those works, the process of rule construction is based on evolutionary learning which aims to adapt the rules to the current environment and searches for the global optimum rules in the search space. In this work, instead of focusing on the usage of machine learning techniques for creating trading rules, a time series trend classification employing a semi-supervised approach was used to early identify both the beginning and the end of upward and downward trends. Such classification model can be employed to identify trade signals and the decision-making procedure is that if an up-trend (down-trend) is identified, a buy (sell) signal is generated. Semi-supervised learning is used for model training when only part of the data is labeled and Semi-supervised classification aims to train a classifier from both the labeled and unlabeled data, such that it is better than the supervised classifier trained only on the labeled data. For illustrating the proposed approach, it was employed daily trade information, including the open, high, low and closing values and volume from January 1, 2000 to December 31, 2022, of the São Paulo Exchange Composite index (IBOVESPA). Through this time period it was visually identified consistent changes in price, upwards or downwards, for assigning labels and leaving the rest of the days (when there is not a consistent change in price) unlabeled. For training the classification model, a pseudo-label semi-supervised learning strategy was used employing different technical analysis indicators. In this learning strategy, the core is to use unlabeled data to generate a pseudo-label for supervised training. For evaluating the achieved results, it was considered the annualized return and excess return, the Sortino and the Sharpe indicators. Through the evaluated time period, the obtained results were very consistent and can be considered promising for generating the intended trading signals.

Keywords: evolutionary learning, semi-supervised classification, time series data, trading signals generation

Procedia PDF Downloads 91
10452 Regenerating Historic Buildings: Policy Gaps

Authors: Joseph Falzon, Margaret Nelson

Abstract:

Background: Policy makers at European Union (EU) and national levels address the re-use of historic buildings calling for sustainable practices and approaches. Implementation stages of policy are crucial so that EU and national strategic objectives for historic building sustainability are achieved. Governance remains one of the key objectives to ensure resource sustainability. Objective: The aim of the research was to critically examine policies for the regeneration and adaptive re-use of historic buildings in the EU and national level, and to analyse gaps between EU and national legislation and policies, taking Malta as a case study. The impact of policies on regeneration and re-use of historic buildings was also studied. Research Design: Six semi-structured interviews with stakeholders including architects, investors and community representatives informed the research. All interviews were audio recorded and transcribed in the English language. Thematic analysis utilising Atlas.ti was conducted for the semi-structured interviews. All phases of the study were governed by research ethics. Findings: Findings were grouped in main themes: resources, experiences and governance. Other key issues included identification of gaps in policies, key lessons and quality of regeneration. Abandonment of heritage buildings was discussed, for which main reasons had been attributed to governance related issues both from the policy making perspective as well as the attitudes of certain officials representing the authorities. The role of authorities, co-ordination between government entities, fairness in decision making, enforcement and management brought high criticism from stakeholders along with time factors due to the lengthy procedures taken by authorities. Policies presented an array from different perspectives of same stakeholder groups. Rather than policy, it is the interpretation of policy that presented certain gaps. Interpretations depend highly on the stakeholders putting forward certain arguments. All stakeholders acknowledged the value of heritage in regeneration. Conclusion: Active stakeholder involvement is essential in policy framework development. Research informed policies and streamlining of policies are necessary. National authorities need to shift from a segmented approach to a holistic approach.

Keywords: adaptive re-use, historic buildings, policy, sustainable

Procedia PDF Downloads 395
10451 Experience of the Formation of Professional Competence of Students of IT-Specialties

Authors: B. I. Zhumagaliyev, L. Sh. Balgabayeva, G. S. Nabiyeva, B. A. Tulegenova, P. Oralkhan, B. S. Kalenova, S. S. Akhmetov

Abstract:

The article describes an approach to build competence in research of Bachelor and Master, which is now an important feature of modern specialist in the field of engineering. Provides an example of methodical teaching methods with the research aspect, is including the formulation of the problem, the method of conducting experiments, analysis of the results. Implementation of methods allows the student to better consolidate their knowledge and skills at the same time to get research. Knowledge on the part of the media requires some training in the subject area and teaching methods.

Keywords: professional competence, model of it-specialties, teaching methods, educational technology, decision making

Procedia PDF Downloads 438