Search results for: metabolic networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3552

Search results for: metabolic networks

132 Risk and Protective Factors for the Health of Primary Care-Givers of Children with Autism Spectrum Disorders or Intellectual Disability: A Narrative Review and Discussion

Authors: Jenny Fairthorne, Yuka Mori, Helen Leonard

Abstract:

Background: Primary care-givers of children with autism spectrum disorder (ASD) or intellectual disability (ID) have poorer health and quality of life (QoL) than primary care-givers (hereafter referred to as just care-givers) of typically developing children. We aimed to review original research which described factors impacting the health of care-givers of children with ASD or ID and to discuss how these factors might influence care-giver health. Methods: We searched Web of Knowledge, Medline, Scopus and Google Scholar using selections of words from each of three groups. The first comprised terms associated with ASD and ID and included autism, pervasive development disorder, intellectual disability, mental retardation, disability, disabled, Down and Asperger. The second included terms related to health such as depression, physical, mental, psychiatric, psychological and well-being. The third was terms related to care-givers such as mother, parent and care-giver. We included an original paper in our review if it was published between 1st January 1990 and 31st December, 2016, described original research in a peer-reviewed journal and was written in English. Additional criteria were that the research used a study population of 15 persons or more; described a risk or protective factor for the health of care-givers of a child with ASD, ID or a sub-type (such as ASD with ID or Down syndrome). Using previous research, we developed a simple and objective five-level tool to assess the strength of evidence provided by the reviewed papers. Results: We retained 33 papers. Factors impacting primary care-giver health included child behaviour, level of support, socio-economic status (SES) and diagnostic issues. Challenging child behaviour, the most commonly identified risk factor for poorer care-giver health and QoL was reported in ten of the studies. A higher level of support was associated with improved care-giver health and QoL. For example, substantial evidence indicated that family support reduced care-giver burden in families with a child with ASD and that family and neighbourhood support was associated with improved care-giver mental health. Higher socio-economic status (SES) was a protective factor for care-giver health and particularly maternal health. Diagnostic uncertainty and an unclear prognosis are factors which can cause the greatest concern to care-givers of children with ASD and those for whom a cause of their child’s ID has not been identified. We explain how each of these factors might impact caregiver health and how they might act differentially in care-givers of children with different types of ASD or ID (such as Down syndrome and ASD without ID). Conclusion: Care-givers of children with ASD may be more likely to experience many risk factors and less likely to experience the protective factors we identified for poorer mental health. Interventions to reduce risk factors and increase protective factors could pave the way for improved care-giver health. For example, workshops to train care-givers to better manage challenging child behaviours and earlier diagnosis of ASD (and particularly ASD without ID) would seem likely to improve care-giver well-being. Similarly, helping to expand support networks might reduce care-giver burden and stress leading to improved health.

Keywords: autism, caregivers, health, intellectual disability, mothers, review

Procedia PDF Downloads 162
131 Multimodal Biometric Cryptography Based Authentication in Cloud Environment to Enhance Information Security

Authors: D. Pugazhenthi, B. Sree Vidya

Abstract:

Cloud computing is one of the emerging technologies that enables end users to use the services of cloud on ‘pay per usage’ strategy. This technology grows in a fast pace and so is its security threat. One among the various services provided by cloud is storage. In this service, security plays a vital factor for both authenticating legitimate users and protection of information. This paper brings in efficient ways of authenticating users as well as securing information on the cloud. Initial phase proposed in this paper deals with an authentication technique using multi-factor and multi-dimensional authentication system with multi-level security. Unique identification and slow intrusive formulates an advanced reliability on user-behaviour based biometrics than conventional means of password authentication. By biometric systems, the accounts are accessed only by a legitimate user and not by a nonentity. The biometric templates employed here do not include single trait but multiple, viz., iris and finger prints. The coordinating stage of the authentication system functions on Ensemble Support Vector Machine (SVM) and optimization by assembling weights of base SVMs for SVM ensemble after individual SVM of ensemble is trained by the Artificial Fish Swarm Algorithm (AFSA). Thus it helps in generating a user-specific secure cryptographic key of the multimodal biometric template by fusion process. Data security problem is averted and enhanced security architecture is proposed using encryption and decryption system with double key cryptography based on Fuzzy Neural Network (FNN) for data storing and retrieval in cloud computing . The proposing scheme aims to protect the records from hackers by arresting the breaking of cipher text to original text. This improves the authentication performance that the proposed double cryptographic key scheme is capable of providing better user authentication and better security which distinguish between the genuine and fake users. Thus, there are three important modules in this proposed work such as 1) Feature extraction, 2) Multimodal biometric template generation and 3) Cryptographic key generation. The extraction of the feature and texture properties from the respective fingerprint and iris images has been done initially. Finally, with the help of fuzzy neural network and symmetric cryptography algorithm, the technique of double key encryption technique has been developed. As the proposed approach is based on neural networks, it has the advantage of not being decrypted by the hacker even though the data were hacked already. The results prove that authentication process is optimal and stored information is secured.

Keywords: artificial fish swarm algorithm (AFSA), biometric authentication, decryption, encryption, fingerprint, fusion, fuzzy neural network (FNN), iris, multi-modal, support vector machine classification

Procedia PDF Downloads 260
130 Fear of Gender-Based Crime and Women Empowerment: An Empirical Study among the Urban Residents of Bangladesh

Authors: Mohammad Ashraful Alam, Biro Judit

Abstract:

Fear of gender-based crime and fear of crime victimization for women is a major concern in the urban areas of Bangladesh. Based on the recent data from various human rights organizations and international literature the study found that gender-based crime especially sexual assault and rape are increasing in Bangladesh at a significant rate in comparison to other countries. The major focus of the study was to identify the relationship between fear of gender-based crime and women empowerment. To explore the fact the study followed the mixed methodological approach comprising with quantitative and qualitative methods and used secondary information from national and international sources. Corresponding global pictures the present study found that gender, age, complexion, social position, and ethnicity were more common factors of sexual assault and victimization in Bangladesh which lead to women become more fearful about crime victimization than men. Fear of gender-based crime traumatizes women which leads to withdrawal of their non-essential everyday works and some time from the essential works based on their social position, financial status, and social honor in the society. The increasing crime rate also increases the propensity to fear of criminal victimization, traumatization, and feeling of helplessness which make them vulnerable. The patriarchal culture and practices in Bangladesh based on religious culture and established social norms women always feel defenseless therefore they withdraw themselves from various social activities and own interest. Women who have already victimized feel more fear and become traumatized, and who do not victimize yet but know the severity of victimization from the media and others’ have the feeling of fear of crime. Women who find themselves as weak bonding and low networks with their neighbors and living for a short duration have a feeling of more fear and avoid visiting a certain place in a certain time and avoid some social activities. The study found the young women have more possibilities to become victimized through the feeling of fear of crime is higher among elderly women than young. Though women feel fear of all kinds of crime but usually all aged women are more fearful of sexual assault and rape than other violent crimes. Therefore, elderly women and another person in the family does not allow younger girls to go and involve outside activities to secure their family status. On the other hand, fear of crime in public transport is more common to all aged women at a higher level and sometimes they compromise their freedom, independence, financial opportunities, the job only to avoid the perceived threat, and save their social and cultural honor. The study also explores that fear of crime does not always depend on crime rate but the crime news, the severity of the crime, delay justice, the ineffectiveness of police, bail of criminals, corruption and political favoritism, etc. Finally, the study shows that the fear of gender-based crime and violence is working as a potential barrier to ensuring women's empowerment in Bangladesh.

Keywords: compromise personal freedom, fear of crime, fear of gender-based crime, fear of violent crime victimization, rape, sexual assaults, withdrawal from regular activities, women empowerment

Procedia PDF Downloads 140
129 Innovations and Challenges: Multimodal Learning in Cybersecurity

Authors: Tarek Saadawi, Rosario Gennaro, Jonathan Akeley

Abstract:

There is rapidly growing demand for professionals to fill positions in Cybersecurity. This is recognized as a national priority both by government agencies and the private sector. Cybersecurity is a very wide technical area which encompasses all measures that can be taken in an electronic system to prevent criminal or unauthorized use of data and resources. This requires defending computers, servers, networks, and their users from any kind of malicious attacks. The need to address this challenge has been recognized globally but is particularly acute in the New York metropolitan area, home to some of the largest financial institutions in the world, which are prime targets of cyberattacks. In New York State alone, there are currently around 57,000 jobs in the Cybersecurity industry, with more than 23,000 unfilled positions. The Cybersecurity Program at City College is a collaboration between the Departments of Computer Science and Electrical Engineering. In Fall 2020, The City College of New York matriculated its first students in theCybersecurity Master of Science program. The program was designed to fill gaps in the previous offerings and evolved out ofan established partnership with Facebook on Cybersecurity Education. City College has designed a program where courses, curricula, syllabi, materials, labs, etc., are developed in cooperation and coordination with industry whenever possible, ensuring that students graduating from the program will have the necessary background to seamlessly segue into industry jobs. The Cybersecurity Program has created multiple pathways for prospective students to obtain the necessary prerequisites to apply in order to build a more diverse student population. The program can also be pursued on a part-time basis which makes it available to working professionals. Since City College’s Cybersecurity M.S. program was established to equip students with the advanced technical skills needed to thrive in a high-demand, rapidly-evolving field, it incorporates a range of pedagogical formats. From its outset, the Cybersecurity program has sought to provide both the theoretical foundations necessary for meaningful work in the field along with labs and applied learning projects aligned with skillsets required by industry. The efforts have involved collaboration with outside organizations and with visiting professors designing new courses on topics such as Adversarial AI, Data Privacy, Secure Cloud Computing, and blockchain. Although the program was initially designed with a single asynchronous course in the curriculum with the rest of the classes designed to be offered in-person, the advent of the COVID-19 pandemic necessitated a move to fullyonline learning. The shift to online learning has provided lessons for future development by providing examples of some inherent advantages to the medium in addition to its drawbacks. This talk will address the structure of the newly-implemented Cybersecurity Master’s Program and discuss the innovations, challenges, and possible future directions.

Keywords: cybersecurity, new york, city college, graduate degree, master of science

Procedia PDF Downloads 148
128 Accounting and Prudential Standards of Banks and Insurance Companies in EU: What Stakes for Long Term Investment?

Authors: Sandra Rigot, Samira Demaria, Frederic Lemaire

Abstract:

The starting point of this research is the contemporary capitalist paradox: there is a real scarcity of long term investment despite the boom of potential long term investors. This gap represents a major challenge: there are important needs for long term financing in developed and emerging countries in strategic sectors such as energy, transport infrastructure, information and communication networks. Moreover, the recent financial and sovereign debt crises, which have respectively reduced the ability of financial banking intermediaries and governments to provide long term financing, questions the identity of the actors able to provide long term financing, their methods of financing and the most appropriate forms of intermediation. The issue of long term financing is deemed to be very important by the EU Commission, as it issued a 2013 Green Paper (GP) on long-term financing of the EU economy. Among other topics, the paper discusses the impact of the recent regulatory reforms on long-term investment, both in terms of accounting (in particular fair value) and prudential standards for banks. For banks, prudential and accounting standards are also crucial. Fair value is indeed well adapted to the trading book in a short term view, but this method hardly suits for a medium and long term portfolio. Banks’ ability to finance the economy and long term projects depends on their ability to distribute credit and the way credit is valued (fair value or amortised cost) leads to different banking strategies. Furthermore, in the banking industry, accounting standards are directly connected to the prudential standards, as the regulatory requirements of Basel III use accounting figures with prudential filter to define the needs for capital and to compute regulatory ratios. The objective of these regulatory requirements is to prevent insolvency and financial instability. In the same time, they can represent regulatory constraints to long term investing. The balance between financial stability and the need to stimulate long term financing is a key question raised by the EU GP. Does fair value accounting contributes to short-termism in the investment behaviour? Should prudential rules be “appropriately calibrated” and “progressively implemented” not to prevent banks from providing long-term financing? These issues raised by the EU GP lead us to question to what extent the main regulatory requirements incite or constrain banks to finance long term projects. To that purpose, we study the 292 responses received by the EU Commission during the public consultation. We analyze these contributions focusing on particular questions related to fair value accounting and prudential norms. We conduct a two stage content analysis of the responses. First, we proceed to a qualitative coding to identify arguments of respondents and subsequently we run a quantitative coding in order to conduct statistical analyses. This paper provides a better understanding of the position that a large panel of European stakeholders have on these issues. Moreover, it adds to the debate on fair value accounting and its effects on prudential requirements for banks. This analysis allows us to identify some short term bias in banking regulation.

Keywords: basel 3, fair value, securitization, long term investment, banks, insurers

Procedia PDF Downloads 293
127 Perpetrators of Ableist Sexual Violence: Understanding Who They Are and Why They Target People with Intellectual Disabilities in Australia

Authors: Michael Rahme

Abstract:

Over the past decade, there is an overwhelming consensus spanning across academia, government commissions, and civil societies that concede that individuals with disabilities (IWDs), particularly those with intellectual differences, are a demographic most ‘vulnerable’ to experiences of sexual violence. From this global accord, numerous policies have sprouted in the protection of this ‘pregnable’ sector of society, primarily framed around liberal obligations of stewardship over the ‘defenceless.’ As such, these initiatives mainly target post-incident or victim-based factors of sexual violence, which is apparent in proposals for more inclusive sexual education and accessible contact lines for IWDs. Yet despite the necessity of these initiatives, sexual incidents among this demographic persist and, in nations such as Australia, continue to rise. Culture of Violence theory reveals that such discrepancies in theory and practice stem from societal structures that frame individuals as ‘vulnerable’, ‘impregnable’, or ‘defenceless’ because of their disability, thus propagating their own likelihood of abuse. These structures, as embodied by the Australian experience, allow these sexual violences to endure through cultural ideologies that place the IWDs ‘failures’ at fault while sidelining the institutions that permit this abuse. Such is representative of the initiatives of preventative organizations like People with Disabilities Australia, which have singularly strengthened victim protection networks, despite abuse continuing to rise dramatically among individuals with intellectual disabilities alone. Yet regardless of this rise, screenings of families and workers remain inadequate and practically untouched, a reflection of a tremendous societal warp in understanding surrounding the lived experiences of IWDs. This theory is also representative of broader literature, where the study of the perpetrators of disability rights, particularly sexual rights, is almost unapparent in a field that is already seldom studied. Therefore, placing power on the abuser via stripping that of the victims. As such, the Culture of Violence theory (CVT) sheds light on the institutions that allow these perpetrators to prosper. This paper, taking a CVT approach, aims to dissipate this discrepancy in the Australian experience by way of a qualitative analysis of all available court proceedings and tribunals between 2020-2022. Through an analysis of the perpetrator, their relation to the IWD, and the motives for their actions granted by court and tribunal transcripts and the psychological, and behavioural reports, among other material, that have been presented and consulted during these proceedings. All of which would be made available under the 1982 Freedom of Information Act. The findings from this study, through the incorporation of CVT, determine the institutions in which these abusers function and the ideologies which motivate such behaviour; while being conscious of the issue of re-traumatization and language barriers of the abusees. Henceforth, this study aims to be a potential policy guide on strengthening support institutions that provide IWDs with their basic rights. In turn, undermining sexual violence among individuals with intellectual disabilities at its roots.

Keywords: criminal profiling, intellectual disabilities, prevention, sexual violence

Procedia PDF Downloads 94
126 Distributed Energy Resources in Low-Income Communities: a Public Policy Proposal

Authors: Rodrigo Calili, Anna Carolina Sermarini, João Henrique Azevedo, Vanessa Cardoso de Albuquerque, Felipe Gonçalves, Gilberto Jannuzzi

Abstract:

The diffusion of Distributed Energy Resources (DER) has caused structural changes in the relationship between consumers and electrical systems. The Photovoltaic Distributed Generation (PVDG), in particular, is an essential strategy for achieving the 2030 Agenda goals, especially SDG 7 and SDG 13. However, it is observed that most projects involving this technology in Brazil are restricted to the wealthiest classes of society, not yet reaching the low-income population, aligned with theories of energy justice. Considering the research for energy equality, one of the policies adopted by governments is the social electricity tariff (SET), which provides discounts on energy tariffs/bills. However, just granting this benefit may not be effective, and it is possible to merge it with DER technologies, such as the PVDG. Thus, this work aims to evaluate the economic viability of the policy to replace the social electricity tariff (the current policy aimed at the low-income population in Brazil) by PVDG projects. To this end, a proprietary methodology was developed that included: mapping the stakeholders, identifying critical variables, simulating policy options, and carrying out an analysis in the Brazilian context. The simulation answered two key questions: in which municipalities low-income consumers would have lower bills with PVDG compared to SET; which consumers in a given city would have increased subsidies, which are now provided for solar energy in Brazil and for the social tariff. An economic model was created for verifying the feasibility of the proposed policy in each municipality in the country, considering geographic issues (tariff of a particular distribution utility, radiation from a specific location, etc.). To validate these results, four sensitivity analyzes were performed: variation of the simultaneity factor between generation and consumption, variation of the tariff readjustment rate, zeroing CAPEX, and exemption from state tax. The behind-the-meter modality of generation proved to be more promising than the construction of a shared plant. However, although the behind-the-meter modality presents better results than the shared plant, there is a greater complexity in adopting this modality due to issues related to the infrastructure of the most vulnerable communities (e.g., precarious electrical networks, need to reinforce roofs). Considering the shared power plant modality, many opportunities are still envisaged since the risk of investing in such a policy can be mitigated. Furthermore, this modality can be an alternative due to the mitigation of the risk of default, as it allows greater control of users and facilitates the process of operation and maintenance. Finally, it was also found, that in some regions of Brazil, the continuity of the SET presents more economic benefits than its replacement by PVDG. However, the proposed policy offers many opportunities. For future works, the model may include other parameters, such as cost with low-income populations’ engagement, and business risk. In addition, other renewable sources of distributed generation can be studied for this purpose.

Keywords: low income, subsidy policy, distributed energy resources, energy justice

Procedia PDF Downloads 115
125 Self-Healing Coatings and Electrospun Fibers

Authors: M. Grandcolas, N. Rival, H. Bu, S. Jahren, R. Schmid, H. Johnsen

Abstract:

The concept of an autonomic self-healing material, where initiation of repair is integrated to the material, is now being considered for engineering applications and is a hot topic in the literature. Among several concepts/techniques, two are most interesting: i) Capsules: Integration of microcapsules in or at the surface of coatings or fibre-like structures has recently gained much attention. Upon damage-induced cracking, the microcapsules are broken by the propagating crack fronts resulting in a release of an active chemical (healing agent) by capillary action, subsequently repairing and avoiding further crack growth. ii) Self-healing polymers: Interestingly, the introduction of dynamic covalent bonds into polymer networks has also recently been used as a powerful approach towards the design of various intrinsically self-healing polymer systems. The idea behind this is to reconnect the chemical crosslinks which are broken when a material fractures, restoring the integrity of the material and thereby prolonging its lifetime. We propose here to integrate both self-healing concepts (capsules, self-healing polymers) in electrospun fibres and coatings. Different capsule preparation approaches have been investigated in SINTEF. The most advanced method to produce capsules is based on emulsification to create a water-in-oil emulsion before polymerisation. The healing agent is a polyurethane-based dispersion that was encapsulated in shell materials consisting of urea-benzaldehyde resins. Results showed the successful preparation of microcapsules and release of the agent when capsules break. Since capsules are produced in water-in-oil systems we mainly investigated organic solvent based coatings while a major challenge resides in the incorporation of capsules into water-based coatings. We also focused on developing more robust microcapsules to prevent premature rupture of the capsules. The capsules have been characterized in terms of size, and encapsulation and release might be visualized by incorporating fluorescent dyes and examine the capsules by microscopy techniques. Alternatively, electrospinning is an innovative technique that has attracted enormous attention due to unique properties of the produced nano-to-micro fibers, ease of fabrication and functionalization, and versatility in controlling parameters. Especially roll-to-roll electrospinning is a unique method which has been used in industry to produce nanofibers continuously. Electrospun nanofibers can usually reach a diameter down to 100 nm, depending on the polymer used, which is of interest for the concept with self-healing polymer systems. In this work, we proved the feasibility of fabrication of POSS-based (POSS: polyhedral oligomeric silsesquioxanes, tradename FunzioNano™) nanofibers via electrospinning. Two different formulations based on aqueous or organic solvents have shown nanofibres with a diameter between 200 – 450nm with low defects. The addition of FunzioNano™ in the polymer blend also showed enhanced properties in term of wettability, promising for e.g. membrane technology. The self-healing polymer systems developed are here POSS-based materials synthesized to develop dynamic soft brushes.

Keywords: capsules, coatings, electrospinning, fibers

Procedia PDF Downloads 262
124 Performance Evaluation of Various Displaced Left Turn Intersection Designs

Authors: Hatem Abou-Senna, Essam Radwan

Abstract:

With increasing traffic and limited resources, accommodating left-turning traffic has been a challenge for traffic engineers as they seek balance between intersection capacity and safety; these are two conflicting goals in the operation of a signalized intersection that are mitigated through signal phasing techniques. Hence, to increase the left-turn capacity and reduce the delay at the intersections, the Florida Department of Transportation (FDOT) moves forward with a vision of optimizing intersection control using innovative intersection designs through the Transportation Systems Management & Operations (TSM&O) program. These alternative designs successfully eliminate the left-turn phase, which otherwise reduces the conventional intersection’s (CI) efficiency considerably, and divide the intersection into smaller networks that would operate in a one-way fashion. This study focused on the Crossover Displaced Left-turn intersections (XDL), also known as Continuous Flow Intersections (CFI). The XDL concept is best suited for intersections with moderate to high overall traffic volumes, especially those with very high or unbalanced left turn volumes. There is little guidance on determining whether partial XDL intersections are adequate to mitigate the overall intersection condition or full XDL is always required. The primary objective of this paper was to evaluate the overall intersection performance in the case of different partial XDL designs compared to a full XDL. The XDL alternative was investigated for 4 different scenarios; partial XDL on the east-west approaches, partial XDL on the north-south approaches, partial XDL on the north and east approaches and full XDL on all 4 approaches. Also, the impact of increasing volume on the intersection performance was considered by modeling the unbalanced volumes with 10% increment resulting in 5 different traffic scenarios. The study intersection, located in Orlando Florida, is experiencing recurring congestion in the PM peak hour and is operating near capacity with volume to a capacity ratio closer to 1.00 due to the presence of two heavy conflicting movements; southbound and westbound. The results showed that a partial EN XDL alternative proved to be effective and compared favorably to a full XDL alternative followed by the partial EW XDL alternative. The analysis also showed that Full, EW and EN XDL alternatives outperformed the NS XDL and the CI alternatives with respect to the throughput, delay and queue lengths. Significant throughput improvements were remarkable at the higher volume level with percent increase in capacity of 25%. The percent reduction in delay for the critical movements in the XDL scenarios compared to the CI scenario ranged from 30-45%. Similarly, queue lengths showed percent reduction in the XDL scenarios ranging from 25-40%. The analysis revealed how partial XDL design can improve the overall intersection performance at various demands, reduce the costs associated with full XDL and proved to outperform the conventional intersection. However, partial XDL serving low volumes or only one of the critical movements while other critical movements are operating near or above capacity do not provide significant benefits when compared to the conventional intersection.

Keywords: continuous flow intersections, crossover displaced left-turn, microscopic traffic simulation, transportation system management and operations, VISSIM simulation model

Procedia PDF Downloads 311
123 Self-Organizing Maps for Exploration of Partially Observed Data and Imputation of Missing Values in the Context of the Manufacture of Aircraft Engines

Authors: Sara Rejeb, Catherine Duveau, Tabea Rebafka

Abstract:

To monitor the production process of turbofan aircraft engines, multiple measurements of various geometrical parameters are systematically recorded on manufactured parts. Engine parts are subject to extremely high standards as they can impact the performance of the engine. Therefore, it is essential to analyze these databases to better understand the influence of the different parameters on the engine's performance. Self-organizing maps are unsupervised neural networks which achieve two tasks simultaneously: they visualize high-dimensional data by projection onto a 2-dimensional map and provide clustering of the data. This technique has become very popular for data exploration since it provides easily interpretable results and a meaningful global view of the data. As such, self-organizing maps are usually applied to aircraft engine condition monitoring. As databases in this field are huge and complex, they naturally contain multiple missing entries for various reasons. The classical Kohonen algorithm to compute self-organizing maps is conceived for complete data only. A naive approach to deal with partially observed data consists in deleting items or variables with missing entries. However, this requires a sufficient number of complete individuals to be fairly representative of the population; otherwise, deletion leads to a considerable loss of information. Moreover, deletion can also induce bias in the analysis results. Alternatively, one can first apply a common imputation method to create a complete dataset and then apply the Kohonen algorithm. However, the choice of the imputation method may have a strong impact on the resulting self-organizing map. Our approach is to address simultaneously the two problems of computing a self-organizing map and imputing missing values, as these tasks are not independent. In this work, we propose an extension of self-organizing maps for partially observed data, referred to as missSOM. First, we introduce a criterion to be optimized, that aims at defining simultaneously the best self-organizing map and the best imputations for the missing entries. As such, missSOM is also an imputation method for missing values. To minimize the criterion, we propose an iterative algorithm that alternates the learning of a self-organizing map and the imputation of missing values. Moreover, we develop an accelerated version of the algorithm by entwining the iterations of the Kohonen algorithm with the updates of the imputed values. This method is efficiently implemented in R and will soon be released on CRAN. Compared to the standard Kohonen algorithm, it does not come with any additional cost in terms of computing time. Numerical experiments illustrate that missSOM performs well in terms of both clustering and imputation compared to the state of the art. In particular, it turns out that missSOM is robust to the missingness mechanism, which is in contrast to many imputation methods that are appropriate for only a single mechanism. This is an important property of missSOM as, in practice, the missingness mechanism is often unknown. An application to measurements on one type of part is also provided and shows the practical interest of missSOM.

Keywords: imputation method of missing data, partially observed data, robustness to missingness mechanism, self-organizing maps

Procedia PDF Downloads 153
122 Coping Strategies and Characterization of Vulnerability in the Perspective of Climate Change

Authors: Muhammad Umer Mehmood, Muhammad Luqman, Muhammad Yaseen, Imtiaz Hussain

Abstract:

Climate change is an arduous fact, which could not be unheeded easily. It is a phenomenon which has brought a collection of challenges for the mankind. Scientists have found many of its negative impacts on the life of human being and the resources on which the life of humanity is dependent. There are many issues which are associated with the factor of prime importance in this study, 'climate change'. Whenever changes happen in nature, they strike the whole globe. Effects of these changes vary from region to region. Climate of every region of this globe is different from the other. Even within a state, country or the province has different climatic conditions. So it is mandatory that the response in that specific region and the coping strategy of this specific region should be according to the prevailing risk. In the present study, the objective was to assess the coping strategies and vulnerability of small landholders. So that a professional suggestion could be made to cope with the vulnerability factor of small farmers. The cross-sectional research design was used with the intervention of quantitative approach. The study was conducted in the Khanewal district, of Punjab, Pakistan. 120 small farmers were interviewed after randomized sampling from the population of respective area. All respondents were above the age of 15 years. A questionnaire was developed after keen observation of facts in the respective area. Content and face validity of the instrument was assessed with SPSS and experts in the field. Data were analyzed through SPSS using descriptive statistics. From the sample of 120, 81.67% of the respondents claimed that the environment is getting warmer and not fit for their present agricultural practices. 84.17% of the sample expressed serious concern that they are disturbed due to change in rainfall pattern and vulnerability towards the climatic effects. On the other hand, they expressed that they are not good at tackling the effects of climate change. Adaptation of coping strategies like change in cropping pattern, use of resistant varieties, varieties with minimum water requirement, intercropping and tree planting was low by more than half of the sample. From the sample 63.33% small farmers said that the coping strategies they adopt are not effective enough. The present study showed that subsistence farming, lack of marketing and overall infrastructure, lack of access to social security networks, limited access to agriculture extension services, inappropriate access to agrometeorological system, unawareness and access to scientific development and low crop yield are the prominent factors which are responsible for the vulnerability of small farmers. A comprehensive study should be conducted at national level so that a national policy could be formulated to cope with the dilemma in future with relevance to climate change. Mainstreaming and collaboration among the researchers and academicians could prove beneficiary in this regard the interest of national leaders’ does matter. Proper policies to avoid the vulnerability factors should be the top priority. The world is taking up this issue with full responsibility as should we, keeping in view the local situation.

Keywords: adaptation, coping strategies, climate change, Pakistan, small farmers, vulnerability

Procedia PDF Downloads 144
121 Predictors, Barriers, and Facilitators to Refugee Women’s Employment and Economic Inclusion: A Mixed Methods Systematic Review

Authors: Areej Al-Hamad, Yasin Yasin, Kateryna Metersky

Abstract:

This mixed-method systematic review and meta-analysis provide an encompassing understanding of the barriers, facilitators, and predictors of refugee women's employment and economic inclusion. The study sheds light on the complex interplay of sociocultural, personal, political, and environmental factors influencing these outcomes, underlining the urgent need for a multifaceted, tailored approach to devising strategies, policies, and interventions aimed at boosting refugee women's economic empowerment. Our findings suggest that sociocultural factors, including gender norms, societal attitudes, language proficiency, and social networks, profoundly shape refugee women's access to and participation in the labor market. Personal factors such as age, educational attainment, health status, skills, and previous work experience also play significant roles. Political factors like immigration policies, regulations, and rights to work, alongside environmental factors like labor market conditions, availability of employment opportunities, and access to resources and support services, further contribute to the complex dynamics influencing refugee women's economic inclusion. The significant variability observed in the impacts of these factors across different contexts underscores the necessity of adopting population and region-specific strategies. A one-size-fits-all approach may prove to be ineffective due to the diversity and unique circumstances of refugee women across different geographical, cultural, and political contexts. The study's findings have profound implications for policy-making, practice, education, and research. The insights garnered a call for coordinated efforts across these domains to bolster refugee women's economic participation. In policy-making, the findings necessitate a reassessment of current immigration and labor market policies to ensure they adequately support refugee women's employment and economic integration. In practice, they highlight the need for comprehensive, tailored employment services and interventions that address the specific barriers and leverage the facilitators identified. In education, they underline the importance of language and skills training programs that cater to the unique needs and circumstances of refugee women. Lastly, in research, they emphasize the need for ongoing investigations into the multifaceted factors influencing refugee women's employment experiences, allowing for continuous refinement of our understanding and interventions. Through this comprehensive exploration, the study contributes to ongoing efforts aimed at creating more inclusive, equitable societies. By continually refining our understanding of the complex factors influencing refugee women's employment experiences, we can pave the way toward enhanced economic empowerment for this vulnerable population.

Keywords: refugee women, employment barriers, systematic review, employment facilitators

Procedia PDF Downloads 83
120 Using Differentiated Instruction Applying Cognitive Approaches and Strategies for Teaching Diverse Learners

Authors: Jolanta Jonak, Sylvia Tolczyk

Abstract:

Educational systems are tasked with preparing students for future success in academic or work environments. Schools strive to achieve this goal, but often it is challenging as conventional teaching approaches are often ineffective in increasingly diverse educational systems. In today’s ever-increasing global society, educational systems become increasingly diverse in terms of cultural and linguistic differences, learning preferences and styles, ability and disability. Through increased understanding of disabilities and improved identification processes, students having some form of disabilities tend to be identified earlier than in the past, meaning that more students with identified disabilities are being supported in our classrooms. Also, a large majority of students with disabilities are educated in general education environments. Due to cognitive makeup and life experiences, students have varying learning styles and preferences impacting how they receive and express what they are learning. Many students come from bi or multilingual households and with varying proficiencies in the English language, further impacting their learning. All these factors need to be seriously considered when developing learning opportunities for student's. Educators try to adjust their teaching practices as they discover that conventional methods are often ineffective in reaching each student’s potential. Many teachers do not have the necessary educational background or training to know how to teach students whose learning needs are more unique and may vary from the norm. This is further complicated by the fact that many classrooms lack consistent access to interventionists/coaches that are adequately trained in evidence-based approaches to meet the needs of all students, regardless of what their academic needs may be. One evidence-based way for providing successful education for all students is by incorporating cognitive approaches and strategies that tap into affective, recognition, and strategic networks in the student's brain. This can be done through Differentiated Instruction (DI). Differentiated Instruction is increasingly recognized model that is established on the basic principles of Universal Design for Learning. This form of support ensures that regardless of the students’ learning preferences and cognitive learning profiles, they have opportunities to learn through approaches that are suitable to their needs. This approach improves the educational outcomes of students with special needs and it benefits other students as it accommodates learning styles as well as the scope of unique learning needs that are evident in the typical classroom setting. Differentiated Instruction also is recognized as an evidence-based best practice in education and is highly effective when it is implemented within the tiered system of the Response to Intervention (RTI) model. Recognition of DI becomes more common; however, there is still limited understanding of the effective implementation and use of strategies that can create unique learning environments for each student within the same setting. Through employing knowledge of a variety of instructional strategies, general and special education teachers can facilitate optimal learning for all students, with and without a disability. A desired byproduct of DI is that it can eliminate inaccurate perceptions about the students’ learning abilities, unnecessary referrals for special education evaluations, and inaccurate decisions about the presence of a disability.

Keywords: differentiated instruction, universal design for learning, special education, diversity

Procedia PDF Downloads 222
119 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting

Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey

Abstract:

Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.

Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method

Procedia PDF Downloads 81
118 Effects of an Online Positive Psychology Program on Stress, Depression, and Anxiety Symptoms of Emerging Adults

Authors: Gabriela R. Silveira, Claudia S. Rocha, Lais S. Vitti, Jeane L. Borges, Helen B. Durgante

Abstract:

Emerging adulthood occurs after adolescence in a period that maybe be marked by experimentation, identity reconfigurations, labor life demands, and insertion in the work environment, which tends to generate stress and emotional instability. Health promotion programs for the development of strengths and virtues, based on Positive Psychology, for emerging adults are sparse in Brazil. The aim of this study was to evaluate the preliminary effects of an online multi-component Positive Psychology program for the health promotion of emerging adults based on Cognitive Behavioural Therapy and Positive Psychology. The program included six online (synchronous) weekly group sessions of approximately two hours each and homework (asynchronous) activities. The themes worked were Values and self-care/Prudence, Optimism, Empathy, Gratitude, Forgiveness, and Meaning of life and work. This study presents data from a longitudinal, pre-experimental design with pre (T1) and post-test (T2) evaluation in the intervention group. 47 individuals aged between 19-30 years old participated, mean age of 24.53 years (SD=3.13), 37 females (78.7%). 42 (89.4%) self-defined as heterosexual, four (8.5%) as homosexual, and one (2.5%) as bisexual. 33 (70.2%) had incomplete higher education, four (8.5%) completed higher education, and seven (14.9%) had a graduate level of education. 27 participants worked (57.4%), out of which 25 were health workers (53.2%). 14 (29.8%) were caregivers, 27 (57.4%) had a spiritual belief, 36 (76.6%) had access to leisure, and 38 (80.9%) had perceived social support. The instruments used were a sociodemographic questionnaire, the 10-item Perceived Stress Scale, and the 12-item General Health Questionnaire. The program was advertised on social networks and interested participants filled out the Consent Form and the evaluation protocol at T1 and T2 via Google Docs form. The main research was approved (CEP n.1,899,368; 4,143,219; CAAE: 61997516.5.0000.5334) and complied with sanitary and Ethics criteria in research with human beings. Wilcoxon statistics revealed significant improvements in indicators of perceived stress between T1 (X=22.21, SD=6.79) and T2 (X=15.10, SD=5.82); (Z=-4.353; p=0.001) as well as depression and anxiety symptoms (T1:X=26.72, SD=8.84; T2: X=19.23, SD=4.68); (Z=-3.945, p=0.001) of the emerging adults after their participation in the programme. The programme has an innovative character not only for presenting an online Positive Psychology approach but also for being based on an intervention developed, evaluated, and manualized in Brazil. By focusing on emerging adults, this study contributes to advancing research on a relatively new field in developmental studies. As a limitation, this is a pre-experimental and pilot study, requiring an increase in sample size for greater statistical robustness, also qualitative data analysis is crucial for methodological complementarity. The importance of investing efforts to accompany this age group and provide advances in longitudinal research in the area of health promotion and disease prevention is highlighted.

Keywords: emerging adults, disease prevention, health promotion, online program

Procedia PDF Downloads 105
117 ExactData Smart Tool For Marketing Analysis

Authors: Aleksandra Jonas, Aleksandra Gronowska, Maciej Ścigacz, Szymon Jadczak

Abstract:

Exact Data is a smart tool which helps with meaningful marketing content creation. It helps marketers achieve this by analyzing the text of an advertisement before and after its publication on social media sites like Facebook or Instagram. In our research we focus on four areas of natural language processing (NLP): grammar correction, sentiment analysis, irony detection and advertisement interpretation. Our research has identified a considerable lack of NLP tools for the Polish language, which specifically aid online marketers. In light of this, our research team has set out to create a robust and versatile NLP tool for the Polish language. The primary objective of our research is to develop a tool that can perform a range of language processing tasks in this language, such as sentiment analysis, text classification, text correction and text interpretation. Our team has been working diligently to create a tool that is accurate, reliable, and adaptable to the specific linguistic features of Polish, and that can provide valuable insights for a wide range of marketers needs. In addition to the Polish language version, we are also developing an English version of the tool, which will enable us to expand the reach and impact of our research to a wider audience. Another area of focus in our research involves tackling the challenge of the limited availability of linguistically diverse corpora for non-English languages, which presents a significant barrier in the development of NLP applications. One approach we have been pursuing is the translation of existing English corpora, which would enable us to use the wealth of linguistic resources available in English for other languages. Furthermore, we are looking into other methods, such as gathering language samples from social media platforms. By analyzing the language used in social media posts, we can collect a wide range of data that reflects the unique linguistic characteristics of specific regions and communities, which can then be used to enhance the accuracy and performance of NLP algorithms for non-English languages. In doing so, we hope to broaden the scope and capabilities of NLP applications. Our research focuses on several key NLP techniques including sentiment analysis, text classification, text interpretation and text correction. To ensure that we can achieve the best possible performance for these techniques, we are evaluating and comparing different approaches and strategies for implementing them. We are exploring a range of different methods, including transformers and convolutional neural networks (CNNs), to determine which ones are most effective for different types of NLP tasks. By analyzing the strengths and weaknesses of each approach, we can identify the most effective techniques for specific use cases, and further enhance the performance of our tool. Our research aims to create a tool, which can provide a comprehensive analysis of advertising effectiveness, allowing marketers to identify areas for improvement and optimize their advertising strategies. The results of this study suggest that a smart tool for advertisement analysis can provide valuable insights for businesses seeking to create effective advertising campaigns.

Keywords: NLP, AI, IT, language, marketing, analysis

Procedia PDF Downloads 87
116 Estimation of State of Charge, State of Health and Power Status for the Li-Ion Battery On-Board Vehicle

Authors: S. Sabatino, V. Calderaro, V. Galdi, G. Graber, L. Ippolito

Abstract:

Climate change is a rapidly growing global threat caused mainly by increased emissions of carbon dioxide (CO₂) into the atmosphere. These emissions come from multiple sources, including industry, power generation, and the transport sector. The need to tackle climate change and reduce CO₂ emissions is indisputable. A crucial solution to achieving decarbonization in the transport sector is the adoption of electric vehicles (EVs). These vehicles use lithium (Li-Ion) batteries as an energy source, making them extremely efficient and with low direct emissions. However, Li-Ion batteries are not without problems, including the risk of overheating and performance degradation. To ensure its safety and longevity, it is essential to use a battery management system (BMS). The BMS constantly monitors battery status, adjusts temperature and cell balance, ensuring optimal performance and preventing dangerous situations. From the monitoring carried out, it is also able to optimally manage the battery to increase its life. Among the parameters monitored by the BMS, the main ones are State of Charge (SoC), State of Health (SoH), and State of Power (SoP). The evaluation of these parameters can be carried out in two ways: offline, using benchtop batteries tested in the laboratory, or online, using batteries installed in moving vehicles. Online estimation is the preferred approach, as it relies on capturing real-time data from batteries while operating in real-life situations, such as in everyday EV use. Actual battery usage conditions are highly variable. Moving vehicles are exposed to a wide range of factors, including temperature variations, different driving styles, and complex charge/discharge cycles. This variability is difficult to replicate in a controlled laboratory environment and can greatly affect performance and battery life. Online estimation captures this variety of conditions, providing a more accurate assessment of battery behavior in real-world situations. In this article, a hybrid approach based on a neural network and a statistical method for real-time estimation of SoC, SoH, and SoP parameters of interest is proposed. These parameters are estimated from the analysis of a one-day driving profile of an electric vehicle, assumed to be divided into the following four phases: (i) Partial discharge (SoC 100% - SoC 50%), (ii) Partial discharge (SoC 50% - SoC 80%), (iii) Deep Discharge (SoC 80% - SoC 30%) (iv) Full charge (SoC 30% - SoC 100%). The neural network predicts the values of ohmic resistance and incremental capacity, while the statistical method is used to estimate the parameters of interest. This reduces the complexity of the model and improves its prediction accuracy. The effectiveness of the proposed model is evaluated by analyzing its performance in terms of square mean error (RMSE) and percentage error (MAPE) and comparing it with the reference method found in the literature.

Keywords: electric vehicle, Li-Ion battery, BMS, state-of-charge, state-of-health, state-of-power, artificial neural networks

Procedia PDF Downloads 69
115 Radish Sprout Growth Dependency on LED Color in Plant Factory Experiment

Authors: Tatsuya Kasuga, Hidehisa Shimada, Kimio Oguchi

Abstract:

Recent rapid progress in ICT (Information and Communication Technology) has advanced the penetration of sensor networks (SNs) and their attractive applications. Agriculture is one of the fields well able to benefit from ICT. Plant factories control several parameters related to plant growth in closed areas such as air temperature, humidity, water, culture medium concentration, and artificial lighting by using computers and AI (Artificial Intelligence) is being researched in order to obtain stable and safe production of vegetables and medicinal plants all year anywhere, and attain self-sufficiency in food. By providing isolation from the natural environment, a plant factory can achieve higher productivity and safe products. However, the biggest issue with plant factories is the return on investment. Profits are tenuous because of the large initial investments and running costs, i.e. electric power, incurred. At present, LED (Light Emitting Diode) lights are being adopted because they are more energy-efficient and encourage photosynthesis better than the fluorescent lamps used in the past. However, further cost reduction is essential. This paper introduces experiments that reveal which color of LED lighting best enhances the growth of cultured radish sprouts. Radish sprouts were cultivated in the experimental environment formed by a hydroponics kit with three cultivation shelves (28 samples per shelf) each with an artificial lighting rack. Seven LED arrays of different color (white, blue, yellow green, green, yellow, orange, and red) were compared with a fluorescent lamp as the control. Lighting duration was set to 12 hours a day. Normal water with no fertilizer was circulated. Seven days after germination, the length, weight and area of leaf of each sample were measured. Electrical power consumption for all lighting arrangements was also measured. Results and discussions: As to average sample length, no clear difference was observed in terms of color. As regards weight, orange LED was less effective and the difference was significant (p < 0.05). As to leaf area, blue, yellow and orange LEDs were significantly less effective. However, all LEDs offered higher productivity per W consumed than the fluorescent lamp. Of the LEDs, the blue LED array attained the best results in terms of length, weight and area of leaf per W consumed. Conclusion and future works: An experiment on radish sprout cultivation under 7 different color LED arrays showed no clear difference in terms of sample size. However, if electrical power consumption is considered, LEDs offered about twice the growth rate of the fluorescent lamp. Among them, blue LEDs showed the best performance. Further cost reduction e.g. low power lighting remains a big issue for actual system deployment. An automatic plant monitoring system with sensors is another study target.

Keywords: electric power consumption, LED color, LED lighting, plant factory

Procedia PDF Downloads 190
114 Optimization of Territorial Spatial Functional Partitioning in Coal Resource-based Cities Based on Ecosystem Service Clusters - The Case of Gujiao City in Shanxi Province

Authors: Gu Sihao

Abstract:

The coordinated development of "ecology-production-life" in cities has been highly concerned by the country, and the transformation development and sustainable development of resource-based cities have become a hot research topic at present. As an important part of China's resource-based cities, coal resource-based cities have the characteristics of large number and wide distribution. However, due to the adjustment of national energy structure and the gradual exhaustion of urban coal resources, the development vitality of coal resource-based cities is gradually reduced. In many studies, the deterioration of ecological environment in coal resource-based cities has become the main problem restricting their urban transformation and sustainable development due to the "emphasis on economy and neglect of ecology". Since the 18th National Congress of the Communist Party of China (CPC), the Central Government has been deepening territorial space planning and development. On the premise of optimizing territorial space development pattern, it has completed the demarcation of ecological protection red lines, carried out ecological zoning and ecosystem evaluation, which have become an important basis and scientific guarantee for ecological modernization and ecological civilization construction. Grasp the regional multiple ecosystem services is the precondition of the ecosystem management, and the relationship between the multiple ecosystem services study, ecosystem services cluster can identify the interactions between multiple ecosystem services, and on the basis of the characteristics of the clusters on regional ecological function zoning, to better Social-Ecological system management. Based on this cognition, this study optimizes the spatial function zoning of Gujiao, a coal resource-based city, in order to provide a new theoretical basis for its sustainable development. This study is based on the detailed analysis of characteristics and utilization of Gujiao city land space, using SOFM neural networks to identify local ecosystem service clusters, according to the cluster scope and function of ecological function zoning of space partition balance and coordination between different ecosystem services strength, establish a relationship between clusters and land use, and adjust the functions of territorial space within each zone. Then, according to the characteristics of coal resources city and national spatial function zoning characteristics, as the driving factors of land change, by cellular automata simulation program, such as simulation under different restoration strategy situation of urban future development trend, and provides relevant theories and technical methods for the "third-line" demarcations of Gujiao's territorial space planning, optimizes territorial space functions, and puts forward targeted strategies for the promotion of regional ecosystem services, providing theoretical support for the improvement of human well-being and sustainable development of resource-based cities.

Keywords: coal resource-based city, territorial spatial planning, ecosystem service cluster, gmop model, geosos-FLUS model, functional zoning optimization and upgrading

Procedia PDF Downloads 63
113 Applying Napoleoni's 'Shell-State' Concept to Jihadist Organisations's Rise in Mali, Nigeria and Syria/Iraq, 2011-2015

Authors: Francesco Saverio Angiò

Abstract:

The Islamic State of Iraq and the Levant / Syria (ISIL/S), Al-Qaeda in the Islamic Maghreb (AQIM) and People Committed to the Propagation of the Prophet's Teachings and Jihad, also known as ‘Boko Haram’ (BH), have fought successfully against Syria and Iraq, Mali, Nigeria’s government, respectively. According to Napoleoni, the ‘shell-state’ concept can explain the economic dimension and the financing model of the ISIL insurgency. However, she argues that AQIM and BH did not properly plan their financial model. Consequently, her idea would not be suitable to these groups. Nevertheless, AQIM and BH’s economic performances and their (short) territorialisation suggest that their financing models respond to a well-defined strategy, which they were able to adapt to new circumstances. Therefore, Napoleoni’s idea of ‘shell-state’ can be applied to the three jihadist armed groups. In the last five years, together with other similar entities, ISIL/S, AQIM and BH have been fighting against governments with insurgent tactics and terrorism acts, conquering and ruling a quasi-state; a physical space they presented as legitimate territorial entity, thanks to a puritan version of the Islamic law. In these territories, they have exploited the traditional local economic networks. In addition, they have contributed to the development of legal and illegal transnational business activities. They have also established a justice system and created an administrative structure to supply services. Napoleoni’s ‘shell-state’ can describe the evolution of ISIL/S, AQIM and BH, which has switched from an insurgency to a proto or a quasi-state entity, enjoying a significant share of power over territories and populations. Napoleoni first developed and applied the ‘Shell-state’ concept to describe the nature of groups such as the Palestine Liberation Organisation (PLO), before using it to explain the expansion of ISIL. However, her original conceptualisation emphasises on the economic dimension of the rise of the insurgency, focusing on the ‘business’ model and the insurgents’ financing management skills, which permits them to turn into an organisation. However, the idea of groups which use, coordinate and grab some territorial economic activities (at the same time, encouraging new criminal ones), can also be applied to administrative, social, infrastructural, legal and military levels of their insurgency, since they contribute to transform the insurgency to the same extent the economic dimension does. In addition, according to Napoleoni’s view, the ‘shell-state’ prism is valid to understand the ISIL/S phenomenon, because the group has carefully planned their financial steps. Napoleoni affirmed that ISIL/S carries out activities in order to promote their conversion from a group relying on external sponsors to an entity that can penetrate and condition local economies. On the contrary, ‘shell-state’ could not be applied to AQIM or BH, which are acting more like smugglers. Nevertheless, despite its failure to control territories, as ISIL has been able to do, AQIM and BH have responded strategically to their economic circumstances and have defined specific dynamics to ensure a flow of stable funds. Therefore, Napoleoni’s theory is applicable.

Keywords: shell-state, jihadist insurgency, proto or quasi-state entity economic planning, strategic financing

Procedia PDF Downloads 353
112 Unleashing the Power of Cerebrospinal System for a Better Computer Architecture

Authors: Lakshmi N. Reddi, Akanksha Varma Sagi

Abstract:

Studies on biomimetics are largely developed, deriving inspiration from natural processes in our objective world to develop novel technologies. Recent studies are diverse in nature, making their categorization quite challenging. Based on an exhaustive survey, we developed categorizations based on either the essential elements of nature - air, water, land, fire, and space, or on form/shape, functionality, and process. Such diverse studies as aircraft wings inspired by bird wings, a self-cleaning coating inspired by a lotus petal, wetsuits inspired by beaver fur, and search algorithms inspired by arboreal ant path networks lend themselves to these categorizations. Our categorizations of biomimetic studies allowed us to define a different dimension of biomimetics. This new dimension is not restricted to inspiration from the objective world. It is based on the premise that the biological processes observed in the objective world find their reflections in our human bodies in a variety of ways. For example, the lungs provide the most efficient example for liquid-gas phase exchange, the heart exemplifies a very efficient pumping and circulatory system, and the kidneys epitomize the most effective cleaning system. The main focus of this paper is to bring out the magnificence of the cerebro-spinal system (CSS) insofar as it relates to our current computer architecture. In particular, the paper uses four key measures to analyze the differences between CSS and human- engineered computational systems. These are adaptability, sustainability, energy efficiency, and resilience. We found that the cerebrospinal system reveals some important challenges in the development and evolution of our current computer architectures. In particular, the myriad ways in which the CSS is integrated with other systems/processes (circulatory, respiration, etc) offer useful insights on how the human-engineered computational systems could be made more sustainable, energy-efficient, resilient, and adaptable. In our paper, we highlight the energy consumption differences between CSS and our current computational designs. Apart from the obvious differences in materials used between the two, the systemic nature of how CSS functions provides clues to enhance life-cycles of our current computational systems. The rapid formation and changes in the physiology of dendritic spines and their synaptic plasticity causing memory changes (ex., long-term potentiation and long-term depression) allowed us to formulate differences in the adaptability and resilience of CSS. In addition, the CSS is sustained by integrative functions of various organs, and its robustness comes from its interdependence with the circulatory system. The paper documents and analyzes quantifiable differences between the two in terms of the four measures. Our analyses point out the possibilities in the development of computational systems that are more adaptable, sustainable, energy efficient, and resilient. It concludes with the potential approaches for technological advancement through creation of more interconnected and interdependent systems to replicate the effective operation of cerebro-spinal system.

Keywords: cerebrospinal system, computer architecture, adaptability, sustainability, resilience, energy efficiency

Procedia PDF Downloads 101
111 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage

Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng

Abstract:

Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.

Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning

Procedia PDF Downloads 74
110 Smart Meters and In-Home Displays to Encourage Water Conservation through Behavioural Change

Authors: Julia Terlet, Thomas H. Beach, Yacine Rezgui

Abstract:

Urbanization, population growth, climate change and the current increase in water demand have made the adoption of innovative demand management strategies crucial to the water industry. Water conservation in urban areas has to be improved by encouraging consumers to adopt more sustainable habits and behaviours. This includes informing and educating them about their households’ water consumption and advising them about ways to achieve significant savings on a daily basis. This paper presents a study conducted in the context of the European FP7 WISDOM Project. By integrating innovative Information and Communication Technologies (ICT) frameworks, this project aims at achieving a change in water savings. More specifically, behavioural change will be attempted by implementing smart meters and in-home displays in a trial group of selected households within Cardiff (UK). Using this device, consumers will be able to receive feedback and information about their consumption but will also have the opportunity to compare their consumption to the consumption of other consumers and similar households. Following an initial survey, it appeared necessary to implement these in-home displays in a way that matches consumer's motivations to save water. The results demonstrated the importance of various factors influencing people’s daily water consumption. Both the relevant literature on the subject and the results of our survey therefore led us to include within the in-home device a variety of elements. It first appeared crucial to make consumers aware of the economic aspect of water conservation and especially of the significant financial savings that can be achieved by reducing their household’s water consumption on the long term. Likewise, reminding participants of the impact of their consumption on the environment by making them more aware of water scarcity issues around the world will help increasing their motivation to save water. Additionally, peer pressure and social comparisons with neighbours and other consumers, accentuated by the use of online social networks such as Facebook or Twitter, will likely encourage consumers to reduce their consumption. Participants will also be able to compare their current consumption to their past consumption and to observe the consequences of their efforts to save water through diverse graphs and charts. Finally, including a virtual water game within the display will help the whole household, children and adults, to achieve significant reductions by providing them with simple tips and advice to save water on a daily basis. Moreover, by setting daily and weekly goals for them to reach, the game will expectantly generate cooperation between family members. Members of each household will indeed be encouraged to work together to reduce their water consumption within different rooms of the house, such as the bathroom, the kitchen, or the toilets. Overall, this study will allow us to understand the elements that attract consumers the most and the features that are most commonly used by the participants. In this way, we intend to determine the main factors influencing water consumption in order to identify the measures that will most encourage water conservation in both the long and short term.

Keywords: behavioural change, ICT technologies, water consumption, water conservation

Procedia PDF Downloads 337
109 Hybrid Data-Driven Drilling Rate of Penetration Optimization Scheme Guided by Geological Formation and Historical Data

Authors: Ammar Alali, Mahmoud Abughaban, William Contreras Otalvora

Abstract:

Optimizing the drilling process for cost and efficiency requires the optimization of the rate of penetration (ROP). ROP is the measurement of the speed at which the wellbore is created, in units of feet per hour. It is the primary indicator of measuring drilling efficiency. Maximization of the ROP can indicate fast and cost-efficient drilling operations; however, high ROPs may induce unintended events, which may lead to nonproductive time (NPT) and higher net costs. The proposed ROP optimization solution is a hybrid, data-driven system that aims to improve the drilling process, maximize the ROP, and minimize NPT. The system consists of two phases: (1) utilizing existing geological and drilling data to train the model prior, and (2) real-time adjustments of the controllable dynamic drilling parameters [weight on bit (WOB), rotary speed (RPM), and pump flow rate (GPM)] that direct influence on the ROP. During the first phase of the system, geological and historical drilling data are aggregated. After, the top-rated wells, as a function of high instance ROP, are distinguished. Those wells are filtered based on NPT incidents, and a cross-plot is generated for the controllable dynamic drilling parameters per ROP value. Subsequently, the parameter values (WOB, GPM, RPM) are calculated as a conditioned mean based on physical distance, following Inverse Distance Weighting (IDW) interpolation methodology. The first phase is concluded by producing a model of drilling best practices from the offset wells, prioritizing the optimum ROP value. This phase is performed before the commencing of drilling. Starting with the model produced in phase one, the second phase runs an automated drill-off test, delivering live adjustments in real-time. Those adjustments are made by directing the driller to deviate two of the controllable parameters (WOB and RPM) by a small percentage (0-5%), following the Constrained Random Search (CRS) methodology. These minor incremental variations will reveal new drilling conditions, not explored before through offset wells. The data is then consolidated into a heat-map, as a function of ROP. A more optimum ROP performance is identified through the heat-map and amended in the model. The validation process involved the selection of a planned well in an onshore oil field with hundreds of offset wells. The first phase model was built by utilizing the data points from the top-performing historical wells (20 wells). The model allows drillers to enhance decision-making by leveraging existing data and blending it with live data in real-time. An empirical relationship between controllable dynamic parameters and ROP was derived using Artificial Neural Networks (ANN). The adjustments resulted in improved ROP efficiency by over 20%, translating to at least 10% saving in drilling costs. The novelty of the proposed system lays is its ability to integrate historical data, calibrate based geological formations, and run real-time global optimization through CRS. Those factors position the system to work for any newly drilled well in a developing field event.

Keywords: drilling optimization, geological formations, machine learning, rate of penetration

Procedia PDF Downloads 133
108 Fly-Ash/Borosilicate Glass Based Geopolymers: A Mechanical and Microstructural Investigation

Authors: Gianmarco Taveri, Ivo Dlouhy

Abstract:

Geopolymers are well-suited materials to abate CO2 emission coming from the Portland cement production, and then replace them, in the near future, in building and other applications. The cost of production of geopolymers may be seen the only weakness, but the use of wastes as raw materials could provide a valid solution to this problem, as demonstrated by the successful incorporation of fly-ash, a by-product of thermal power plants, and waste glasses. Recycled glass in waste-derived geopolymers was lately employed as a further silica source. In this work we present, for the first time, the introduction of recycled borosilicate glass (BSG). BSG is actually a waste glass, since it derives from dismantled pharmaceutical vials and cannot be reused in the manufacturing of the original articles. Owing to the specific chemical composition (BSG is an ‘alumino-boro-silicate’), it was conceived to provide the key components of zeolitic networks, such as amorphous silica and alumina, as well as boria (B2O3), which may replace Al2O3 and contribute to the polycondensation process. The solid–state MAS NMR spectroscopy was used to assess the extent of boron oxide incorporation in the structure of geopolymers, and to define the degree of networking. FTIR spectroscopy was utilized to define the degree of polymerization and to detect boron bond vibration into the structure. Mechanical performance was tested by means of 3 point bending (flexural strength), chevron notch test (fracture toughness), compression test (compressive strength), micro-indentation test (Vicker’s hardness). Spectroscopy (SEM and Confocal spectroscopy) was performed on the specimens conducted to failure. FTIR showed a characteristic absorption band attributed to the stretching modes of tetrahedral boron ions, whose tetrahedral configuration is compatible to the reaction product of geopolymerization. 27Al NMR and 29Si NMR spectra were instrumental in understanding the extent of the reaction. 11B NMR spectroscopies evidenced a change of the trigonal boron (BO3) inside the BSG in favor of a quasi-total tetrahedral boron configuration (BO4). Thanks to these results, it was inferred that boron is part of the geopolymeric structure, replacing the Si in the network, similarly to the aluminum, and therefore improving the quality of the microstructure, in favor of a more cross-linked network. As expected, the material gained as much as 25% in compressive strength (45 MPa) compared to the literature, whereas no improvements were detected in flexural strength (~ 5 MPa) and superficial hardness (~ 78 HV). The material also exhibited a low fracture toughness (0.35 MPa*m1/2), with a tangible brittleness. SEM micrographies corroborated this behavior, showing a ragged surface, along with several cracks, due to the high presence of porosity and impurities, acting as preferential points for crack initiation. The 3D pattern of the surface fracture, following the confocal spectroscopy, evidenced an irregular crack propagation, whose proclivity was mainly, but not always, to follow the porosity. Hence, the crack initiation and propagation are largely unpredictable.

Keywords: borosilicate glass, characterization, fly-ash, geopolymerization

Procedia PDF Downloads 211
107 A Conceptual Model of Sex Trafficking Dynamics in the Context of Pandemics and Provisioning Systems

Authors: Brian J. Biroscak

Abstract:

In the United States (US), “sex trafficking” is defined at the federal level in the Trafficking Victims Protection Act of 2000 as encompassing a number of processes such as recruitment, transportation, and provision of a person for the purpose of a commercial sex act. It involves the use of force, fraud, or coercion, or in which the person induced to perform such act has not attained 18 years of age. Accumulating evidence suggests that sex trafficking is exacerbated by social and environmental stressors (e.g., pandemics). Given that “provision” is a key part of the definition, “provisioning systems” may offer a useful lens through which to study sex trafficking dynamics. Provisioning systems are the social systems connecting individuals, small groups, entities, and embedded communities as they seek to satisfy their needs and wants for goods, services, experiences and ideas through value-based exchange in communities. This project presents a conceptual framework for understanding sex trafficking dynamics in the context of the COVID pandemic. The framework is developed as a system dynamics simulation model based on published evidence, social and behavioral science theory, and key informant interviews with stakeholders from the Protection, Prevention, Prosecution, and Partnership sectors in one US state. This “4 P Paradigm” has been described as fundamental to the US government’s anti-trafficking strategy. The present research question is: “How do sex trafficking systems (e.g., supply, demand and price) interact with other provisioning systems (e.g., networks of organizations that help sexually exploited persons) to influence trafficking over time vis-à-vis the COVID pandemic?” Semi-structured interviews with stakeholders (n = 19) were analyzed based on grounded theory and combined for computer simulation. The first step (Problem Definition) was completed by open coding video-recorded interviews, supplemented by a literature review. The model depicts provision of sex trafficking services for victims and survivors as declining in March 2020, coincidental with COVID, but eventually rebounding. The second modeling step (Dynamic Hypothesis Formulation) was completed by open- and axial coding of interview segments, as well as consulting peer-reviewed literature. Part of the hypothesized explanation for changes over time is that the sex trafficking system behaves somewhat like a commodities market, with each of the other subsystems exhibiting delayed responses but collectively keeping trafficking levels below what they would be otherwise. Next steps (Model Building & Testing) led to a ‘proof of concept’ model that can be used to conduct simulation experiments and test various action ideas, by taking model users outside the entire system and seeing it whole. If sex trafficking dynamics unfold as hypothesized, e.g., oscillated post-COVID, then one potential leverage point is to address the lack of information feedback loops between the actual occurrence and consequences of sex trafficking and those who seek to prevent its occurrence, prosecute the traffickers, protect the victims and survivors, and partner with the other anti-trafficking advocates. Implications for researchers, administrators, and other stakeholders are discussed.

Keywords: pandemics, provisioning systems, sex trafficking, system dynamics modeling

Procedia PDF Downloads 81
106 Understanding Governance of Biodiversity-Supporting and Edible Landscapes Using Network Analysis in a Fast Urbanising City of South India

Authors: M. Soubadra Devy, Savitha Swamy, Chethana V. Casiker

Abstract:

Sustainable smart cities are emerging as an important concept in response to the exponential rise in the world’s urbanizing population. While earlier, only technical, economic and governance based solutions were considered, more and more layers are being added in recent times. With the prefix of 'sustainability', solutions which help in judicious use of resources without negatively impacting the environment have become critical. We present a case study of Bangalore city which has transformed from being a garden city and pensioners' paradise to being an IT city with a huge, young population from different regions and diverse cultural backgrounds. This has had a big impact on the green spaces in the city and the biodiversity that they support, as well as on farming/gardening practices. Edible landscapes comprising farms lands, home gardens and neighbourhood parks (NPs henceforth) were examined. The land prices of areas having NPs were higher than those that did not indicate an appreciation of their aesthetic value. NPs were part of old and new residential areas largely managed by the municipality. They comprised manicured gardens which were similar in vegetation structure and composition. Results showed that NPs that occurred in higher density supported reasonable levels of biodiversity. In situations where NPs occurred in lower density, the presence of a larger green space such as a heritage park or botanical garden enhanced the biodiversity of these parks. In contrast, farm lands and home gardens which were common within the city are being lost at an unprecedented scale to developmental projects. However, there is also the emergence of a 'neo-culture' of home-gardening that promotes 'locovory' or consumption of locally grown food as a means to a sustainable living and reduced carbon footprint. This movement overcomes the space constraint by using vertical and terrace gardening techniques. Food that is grown within cities comprises of vegetables and fruits which are largely pollinator dependent. This goes hand in hand with our landscape-level study that has shown that cities support pollinator diversity. Maintaining and improving these man-made ecosystems requires analysing the functioning and characteristics of the existing structures of governance. Social network analysis tool was applied to NPs to examine relationships, between actors and ties. The management structures around NPs, gaps, and means to strengthen the networks from the current state to a near-ideal state were identified for enhanced services. Learnings from NPs were used to build a hypothetical governance structure and functioning of integrated governance of NPs and edible landscapes to enhance ecosystem services such as biodiversity support, food production, and aesthetic value. They also contribute to the sustainability axis of smart cities.

Keywords: biodiversity support, ecosystem services, edible green spaces, neighbourhood parks, sustainable smart city

Procedia PDF Downloads 139
105 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance

Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.

Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning

Procedia PDF Downloads 37
104 Informalization and Feminization of Labour Force in the Context of Globalization of Production: Case Study of Women Migrant Workers in Kinfra Apparel Park of India

Authors: Manasi Mahanty

Abstract:

In the current phase of globalization, the mobility of capital facilitates outsourcing and subcontracting of production processes to the developing economies for cheap and flexible labour force. In such process, the globalization of production networks operates at multi-locational points within the nation. Under the new quota regime in the globalization period, the Indian manufacturing exporters came under the influence of corporate buyers and large retailers from the importing countries. As part of such process, the garment manufacturing sector is expected to create huge employment opportunities and to expand the export market in the country. While following these, expectations, the apparel and garment industries mostly target to hire female migrant workers with a purpose of establishing more flexible industrial relations through the casual nature of employment contract. It leads to an increasing women’s participation in the labour market as well as the rise in precarious forms of female paid employment. In the context, the main objective of the paper is to understand the wider dynamics of globalization of production and its link with informalization, feminization of labour force and internal migration process of the country. For this purpose, the study examines the changing labour relations in the KINFRA Apparel Park at Kerala’s Special Economic Zone which operates under the scheme ‘Apparel Parks for Export’ (APE) of the Government of India. The present study was based on both quantitative and qualitative analysis. In the first, the secondary sources of data were collected from the source location (SEAM centre) and destination (KINFRA Park). The official figures and data were discussed and analyzed in order to find out the various dimensions of labour relations under globalization of production. In the second, the primary survey was conducted to make a comparative analysis of local and migrant female workers. The study is executed by taking 100 workers in total. The local workers comprised of 53% of the sample whereas the outside state workers were 47%. Even personal interviews with management staff, and workers were also made for collecting the information regarding the organisational structure, nature, and mode of recruitment, work environment, etc. The study shows the enormous presence of rural women migrant workers in KINFRA Apparel Park. A Public Private Partnership (PPP) arranged migration system is found as Skills for Employment in Apparel Manufacturing (SEAM) from where young women and girls are being sent to work in garment factories of Kerala’s KINFRA International Apparel Park under the guise of an apprenticeship based recruitment. The study concludes that such arrangements try to avoid standard employment relationships and strengthen informalization, casualization and contractualization of work. In this process, the recruitment of women migrant workers is to be considered as best option for the employers of private industries which could be more easily hired and fired.

Keywords: female migration, globalization, informalization, KINFRA apparel park

Procedia PDF Downloads 340
103 Landslide Hazard a Gigantic Problem in Indian Himalayan Region: Needs In-Depth Research to Minimize Disaster

Authors: Varun Joshi, M. S. Rawat

Abstract:

The Indian Himalayan Region (IHR) is inherently fragile and susceptible to landslide hazard due to its extremely weak geology, highly rugged topography and heavy monsoonal rainfall. One of the most common hazards in the IHR is landslide, and this event is particularly frequent in Himalayan states of India i.e. Jammu & Kashmir, Himachal Pradesh, Uttarakhand, Sikkim, Manipur and Arunachal Pradesh. Landslides are mostly triggered by extreme rainfall events but the incidence increases during monsoon months (June to September). Natural slopes which are otherwise stable but they get destabilized due to anthropogenic activities like construction of various developmental activities and deforestation. These activities are required to fulfill the developmental needs and upliftment of societal status in the region. Landslides also trigger during major earthquakes and reported most observable and damaging phenomena. Studies indicate that the landslide phenomenon has increased many folds due to developmental activities in Himalayan region. Gradually increasing and devastating consequences of landslides turned into one of the most important hydro-geological hazards in Himalayan states especially in Uttarakhand and Sikkim states of India. The recent most catastrophic rainfall in June 2013 in Uttarakhand lead to colossal loss of life and property. The societal damage due to this incident is still to be recovered even after three years. Sikkim earthquake of September 2011 is witnessed for triggering of large number of coseismic landslides. The rescue and relief team faced huge problem in helping the trapped villagers in remote locations of the state due to road side blockade by landslides. The recent past incidences of landslides in Uttarakhand, as well as Sikkim states, created a new domain of research in terms of understanding the phenomena of landslide and management of disaster in such situation. Every year at many locations landslides trigger which force dwellers to either evacuate their dwelling or lose their life and property. The communication and transportation networks are also severely affected by landslides at several locations. Many times the drinking water supply disturbed and shortage of daily need household items reported during monsoon months. To minimize the severity of landslide in IHR requires in-depth research and developmental planning. For most of the areas in the present study, landslide hazard zonation is done on 1:50,000 scale. The land use planning maps on extensive basis are not available. Therefore, there is a need of large-scale landslide hazard zonation and land use planning maps. If the scientist conduct research on desired aspects and their outcome of research is utilized by the government in developmental planning then the incidents of landslide could be minimized, subsequent impact on society, life and property would be reduced. Along with the scientific research, there is another need of awareness generation in the region for stake holders and local dwellers to combat with the landslide hazard, if triggered in their location.

Keywords: coseismic, Indian Himalayan Region, landslide hazard zonation, Sikkim, societal, Uttarakhand

Procedia PDF Downloads 252