Search results for: learning effect
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21366

Search results for: learning effect

17976 Prevention of Road Accidents by Computerized Drowsiness Detection System

Authors: Ujjal Chattaraj, P. C. Dasbebartta, S. Bhuyan

Abstract:

This paper aims to propose a method to detect the action of the driver’s eyes, using the concept of face detection. There are three major key contributing methods which can rapidly process the framework of the facial image and hence produce results which further can program the reactions of the vehicles as pre-programmed for the traffic safety. This paper compares and analyses the methods on the basis of their reaction time and their ability to deal with fluctuating images of the driver. The program used in this study is simple and efficient, built using the AdaBoost learning algorithm. Through this program, the system would be able to discard background regions and focus on the face-like regions. The results are analyzed on a common computer which makes it feasible for the end users. The application domain of this experiment is quite wide, such as detection of drowsiness or influence of alcohols in drivers or detection for the case of identification.

Keywords: AdaBoost learning algorithm, face detection, framework, traffic safety

Procedia PDF Downloads 157
17975 A Time-Varying and Non-Stationary Convolution Spectral Mixture Kernel for Gaussian Process

Authors: Kai Chen, Shuguang Cui, Feng Yin

Abstract:

Gaussian process (GP) with spectral mixture (SM) kernel demonstrates flexible non-parametric Bayesian learning ability in modeling unknown function. In this work a novel time-varying and non-stationary convolution spectral mixture (TN-CSM) kernel with a significant enhancing of interpretability by using process convolution is introduced. A way decomposing the SM component into an auto-convolution of base SM component and parameterizing it to be input dependent is outlined. Smoothly, performing a convolution between two base SM component yields a novel structure of non-stationary SM component with much better generalized expression and interpretation. The TN-CSM perfectly allows compatibility with the stationary SM kernel in terms of kernel form and spectral base ignored and confused by previous non-stationary kernels. On synthetic and real-world datatsets, experiments show the time-varying characteristics of hyper-parameters in TN-CSM and compare the learning performance of TN-CSM with popular and representative non-stationary GP.

Keywords: Gaussian process, spectral mixture, non-stationary, convolution

Procedia PDF Downloads 196
17974 Influence of Internal Heat Source on Thermal Instability in a Horizontal Porous Layer with Mass Flow and Inclined Temperature Gradient

Authors: Anjanna Matta, P. A. L. Narayana

Abstract:

An investigation has been presented to analyze the effect of internal heat source on the onset of Hadley-Prats flow in a horizontal fluid saturated porous medium. We examine a better understanding of the combined influence of the heat source and mass flow effect by using linear stability analysis. The resultant eigenvalue problem is solved by using shooting and Runga-Kutta methods for evaluate critical thermal Rayleight number with respect to various flow governing parameters. It is identified that the flow is switch from stabilizing to destabilizing as the horizontal thermal Rayleigh number is enhanced. The heat source and mass flow increases resulting a stronger destabilizing effect.

Keywords: linear stability analysis, heat source, porous medium, mass flow

Procedia PDF Downloads 721
17973 On the Determinants of Women’s Intrahousehold Decision-Making Power and the Impact of Diverging from Community Standards: A Generalised Ordered Logit Approach

Authors: Alma Sobrevilla

Abstract:

Using panel data from Mexico, this paper studies the determinants of women’s intrahousehold decision-making power using a generalised ordered logit model. Fixed effects estimations are also carried out to solve potential endogeneity coming from unobservable time-invariant factors. Finally, the paper analyses quadratic and community divergence effects of education on power. Results show heterogeneity in the effect of each of the determinants across different levels of decision-making power and suggest the presence of a significant quadratic effect of education. Having more education than the community average has a negative effect on power, supporting the notion that women tend to compensate their success outside the household with submissive attitudes at home.

Keywords: women, decision-making power, intrahousehold, Mexico

Procedia PDF Downloads 354
17972 High Sensitivity Crack Detection and Locating with Optimized Spatial Wavelet Analysis

Authors: A. Ghanbari Mardasi, N. Wu, C. Wu

Abstract:

In this study, a spatial wavelet-based crack localization technique for a thick beam is presented. Wavelet scale in spatial wavelet transformation is optimized to enhance crack detection sensitivity. A windowing function is also employed to erase the edge effect of the wavelet transformation, which enables the method to detect and localize cracks near the beam/measurement boundaries. Theoretical model and vibration analysis considering the crack effect are first proposed and performed in MATLAB based on the Timoshenko beam model. Gabor wavelet family is applied to the beam vibration mode shapes derived from the theoretical beam model to magnify the crack effect so as to locate the crack. Relative wavelet coefficient is obtained for sensitivity analysis by comparing the coefficient values at different positions of the beam with the lowest value in the intact area of the beam. Afterward, the optimal wavelet scale corresponding to the highest relative wavelet coefficient at the crack position is obtained for each vibration mode, through numerical simulations. The same procedure is performed for cracks with different sizes and positions in order to find the optimal scale range for the Gabor wavelet family. Finally, Hanning window is applied to different vibration mode shapes in order to overcome the edge effect problem of wavelet transformation and its effect on the localization of crack close to the measurement boundaries. Comparison of the wavelet coefficients distribution of windowed and initial mode shapes demonstrates that window function eases the identification of the cracks close to the boundaries.

Keywords: edge effect, scale optimization, small crack locating, spatial wavelet

Procedia PDF Downloads 357
17971 Investigate the Mechanical Effect of Different Root Analogue Models to Soil Strength

Authors: Asmaa Al Shafiee, Erdin Ibraim

Abstract:

Stabilizing slopes by using vegetation is considered as a cost-effective and eco-friendly alternative to the conventional methods. The main aim of this study is to investigate the mechanical effect of analogue root systems on the shear strength of different soil types. Three objectives were defined to achieve the main aim of this paper. Firstly, explore the effect of root architectural design to shear strength parameters. Secondly, study the effect of root area ratio (RAR) on the shear strength of two different soil types. Finally, to investigate how different kinds of soil can affect the behavior of the roots during shear failure. 3D printing tool was used to develop different analogue tap root models with different architectural designs. Direct shear tests were performed on Leighton Buzzard (LB) fraction B sand, which represents a coarse sand and Huston sand, which represent medium-coarse sand. All tests were done with the same relative density for both kinds of sand. The results of the direct shear test indicated that using plant roots will increase both friction angle and cohesion of soil. Additionally, different root designs affected differently the shear strength of the soil. Furthermore, the directly proportional relationship was found between root area ratio for the same root design and shear strength parameters of soil. Finally, the root area ratio effect should be combined with branches penetrating the shear plane to get the highest results.

Keywords: leighton buzzard sand, root area ratio, rooted soil, shear strength, slope stabilization

Procedia PDF Downloads 152
17970 Exploring Spin Reorientation Transition and Berry Curvature Driven Anomalous Hall Effect in Quasi-2D vdW Ferromagnet Fe4GeTe2

Authors: Satyabrata Bera, Mintu Mondal

Abstract:

Two-dimensional (2D) ferromagnetic materials have garnered significant attention due to their potential to host intriguing scientific phenomena such as the anomalous Hall effect, anomalous Nernst effect, and high transport spin polarization. This study focuses on the investigation of air-stable van der Waals(vdW) ferromagnets, FeGeTe₂ (FₙGT with n = 3, 4, and 5). Particular emphasis is placed on the Fe4GeTe2 (F4GT) compound, which exhibits a complex and fascinating magnetic behavior characterized by two distinct transitions: (i) paramagnetic (PM) to ferromagnetic (FM) around T C ∼ 270 K, and (ii) another spins reorientation transition (SRT) at T SRT ∼ 100 K . Scaling analysis of magnetocaloric effect confirms the second-order character of the ferromagnetic transition, while the same analysis at T SRT suggests that SRT is first-order phase transition. Moreover, the F4GT exhibits a large anomalous Hall conductivity (AHC), ∼ 490 S/cm at 2 K . The near-quadratic behavior of the anomalous Hall resistivity with the longitudinal resistivity suggests that a dominant AHC contribution arises from an intrinsic Berry curvature (BC) mechanism. Electronic structure calculations reveal a significant BC resulting from SOC-induced gapped nodal lines around the Fermi level, thereby giving rise to large AHC. Additionally, we reported exceptionally large anomalous Hall angle (≃ 10.6%) and Hall factor (≃ 0.22 V −1 ) values, the largest observed within this vdW family. The findings presented here, provide valuable insights into the fascinating magnetic and transport properties of 2D ferromagnetic materials, in particular, FₙGT family.

Keywords: 2D vdW ferromagnet, spin reorientation transition, anomalous hall effect, berry curvature

Procedia PDF Downloads 86
17969 Enhancing Learning for Research Higher Degree Students

Authors: Jenny Hall, Alison Jaquet

Abstract:

Universities’ push toward the production of high quality research is not limited to academic staff and experienced researchers. In this environment of research rich agendas, Higher Degree Research (HDR) students are increasingly expected to engage in the publishing of good quality papers in high impact journals. IFN001: Advanced Information Research Skills (AIRS) is a credit bearing mandatory coursework requirement for Queensland University of Technology (QUT) doctorates. Since its inception in 1989, this unique blended learning program has provided the foundations for new researchers to produce original and innovative research. AIRS was redeveloped in 2012, and has now been evaluated with reference to the university’s strategic research priorities. Our research is the first comprehensive evaluation of the program from the learner perspective. We measured whether the program develops essential transferrable skills and graduate capabilities to ensure best practice in the areas of publishing and data management. In particular, we explored whether AIRS prepares students to be agile researchers with the skills to adapt to different research contexts both within and outside academia. The target group for our study consisted of HDR students and supervisors at QUT. Both quantitative and qualitative research methods were used for data collection. Gathering data was by survey and focus groups with qualitative responses analyzed using NVivo. The results of the survey show that 82% of students surveyed believe that AIRS assisted their research process and helped them learn skills they need as a researcher. The 18% of respondents who expressed reservation about the benefits of AIRS were also examined to determine the key areas of concern. These included trends related to the timing of the program early in the candidature and a belief among some students that their previous research experience was sufficient for postgraduate study. New insights have been gained into how to better support HDR learners in partnership with supervisors and how to enhance learning experiences of specific cohorts, including international students and mature learners.

Keywords: data management, enhancing learning experience, publishing, research higher degree students, doctoral students

Procedia PDF Downloads 274
17968 Studies on Race Car Aerodynamics at Wing in Ground Effect

Authors: Dharni Vasudhevan Venkatesan, K. E. Shanjay, H. Sujith Kumar, N. A. Abhilash, D. Aswin Ram, V. R. Sanal Kumar

Abstract:

Numerical studies on race car aerodynamics at wing in ground effect have been carried out using a steady 3d, double precision, pressure-based, and standard k-epsilon turbulence model. Through various parametric analytical studies we have observed that at a particular speed and ground clearance of the wings a favorable negative lift was found high at a particular angle of attack for all the physical models considered in this paper. The fact is that if the ground clearance height to chord length (h/c) is too small, the developing boundary layers from either side (the ground and the lower surface of the wing) can interact, leading to an altered variation of the aerodynamic characteristics at wing in ground effect. Therefore a suitable ground clearance must be predicted throughout the racing for a better performance of the race car, which obviously depends upon the coupled effects of the topography, wing orientation with respect to the ground, the incoming flow features and/or the race car speed. We have concluded that for the design of high performance and high speed race cars the adjustable wings capable to alter the ground clearance and the angles of attack is the best design option for any race car for racing safely with variable speeds.

Keywords: external aerodynamics, external flow choking, race car aerodynamics, wing in ground effect

Procedia PDF Downloads 356
17967 Screening of Antagonistic/Synergistic Effect between Lactic Acid Bacteria (LAB) and Yeast Strains Isolated from Kefir

Authors: Mihriban Korukluoglu, Goksen Arik, Cagla Erdogan, Selen Kocakoglu

Abstract:

Kefir is a traditional fermented refreshing beverage which is known for its valuable and beneficial properties for human health. Mainly yeast species, lactic acid bacteria (LAB) strains and fewer acetic acid bacteria strains live together in a natural matrix named “kefir grain”, which is formed from various proteins and polysaccharides. Different microbial species live together in slimy kefir grain and it has been thought that synergetic effect could take place between microorganisms, which belong to different genera and species. In this research, yeast and LAB were isolated from kefir samples obtained from Uludag University Food Engineering Department. The cell morphology of isolates was screened by microscopic examination. Gram reactions of bacteria isolates were determined by Gram staining method, and as well catalase activity was examined. After observing the microscopic/morphological and physical, enzymatic properties of all isolates, they were divided into the groups as LAB and/or yeast according to their physicochemical responses to the applied examinations. As part of this research, the antagonistic/synergistic efficacy of the identified five LAB and five yeast strains to each other were determined individually by disk diffusion method. The antagonistic or synergistic effect is one of the most important properties in a co-culture system that different microorganisms are living together. The synergistic effect should be promoted, whereas the antagonistic effect is prevented to provide effective culture for fermentation of kefir. The aim of this study was to determine microbial interactions between identified yeast and LAB strains, and whether their effect is antagonistic or synergistic. Thus, if there is a strain which inhibits or retards the growth of other strains found in Kefir microflora, this circumstance shows the presence of antagonistic effect in the medium. Such negative influence should be prevented, whereas the microorganisms which have synergistic effect on each other should be promoted by combining them in kefir grain. Standardisation is the most desired property for industrial production. Each microorganism found in the microbial flora of a kefir grain should be identified individually. The members of the microbial community found in the glue-like kefir grain may be redesigned as a starter culture regarding efficacy of each microorganism to another in kefir processing. The main aim of this research was to shed light on more effective production of kefir grain and to contribute a standardisation of kefir processing in the food industry.

Keywords: antagonistic effect, kefir, lactic acid bacteria (LAB), synergistic, yeast

Procedia PDF Downloads 280
17966 The Effect of Wool Mulch on Plant Development in the Light of Soil Physical and Soil Biological Conditions

Authors: Katalin Juhos, Enikő Papdi, Flórián Kovács, Vasileios P. Vasileiadis, Andrea Veres

Abstract:

Mulching techniques can be a solution for better utilization of precipitation and irrigation water and for mitigating soil degradation and drought damages. Waste fibres as alternative biodegradable mulch materials are increasingly coming to the fore. The effect of wool mulch (WM) on water use efficiency of pepper seedlings were investigated in different soil types (sand, clay loam, peat) in a pot experiment. Two semi-field experiments were also set up to investigate the effect of WM-plant interaction on sweet pepper yield in comparison with agro-textile and straw mulches. Soil parameters (moisture, temperature, DHA, β-glucosidase enzymes, permanganate-oxidizable carbon) were measured during the growing season. The effect of WM on yield and biomass was more significant with less frequent irrigation and the greater the water capacity of soils. The microbiological activity was significantly higher in the presence of plants, because of the water retention of WM, the metabolic products of roots and the more balanced soil temperature caused by plants. On the sandy soil, the straw mulch had a significantly better effect on microbiological parameters and yields than the agro-textile and WM. WM is a sustainable practice for improving soil biological parameters and water use efficiency on soils with a higher water capacity.

Keywords: β-glucosidase, DHA enzyme activity; labile carbon, straw mulch; plastic mulch, evapotranspira-tion coefficient, soil temperature

Procedia PDF Downloads 76
17965 Learning, Teaching and Assessing Students’ ESP Skills via Exe and Hot Potatoes Software Programs

Authors: Naira Poghosyan

Abstract:

In knowledge society the content of the studies, the methods used and the requirements for an educator’s professionalism regularly undergo certain changes. It follows that in knowledge society the aim of education is not only to educate professionals for a certain field but also to help students to be aware of cultural values, form human mutual relationship, collaborate, be open, adapt to the new situation, creatively express their ideas, accept responsibility and challenge. In this viewpoint, the development of communicative language competence requires a through coordinated approach to ensure proper comprehension and memorization of subject-specific words starting from high school level. On the other hand, ESP (English for Specific Purposes) teachers and practitioners are increasingly faced with the task of developing and exploiting new ways of assessing their learners’ literacy while learning and teaching ESP. The presentation will highlight the latest achievements in this field. The author will present some practical methodological issues and principles associated with learning, teaching and assessing ESP skills of the learners, using the two software programs of EXE 2.0 and Hot Potatoes 6. On the one hand the author will display the advantages of the two programs as self-learning and self-assessment interactive tools in the course of academic study and professional development of the CLIL learners, on the other hand, she will comprehensively shed light upon some methodological aspects of working out appropriate ways of selection, introduction, consolidation of subject specific materials via EXE 2.0 and Hot Potatoes 6. Then the author will go further to distinguish ESP courses by the general nature of the learners’ specialty identifying three large categories of EST (English for Science and Technology), EBE (English for Business and Economics) and ESS (English for the Social Sciences). The cornerstone of the presentation will be the introduction of the subject titled “The methodology of teaching ESP in non-linguistic institutions”, where a unique case of teaching ESP on Architecture and Construction via EXE 2.0 and Hot Potatoes 6 will be introduced, exemplifying how the introduction, consolidation and assessment can be used as a basis for feedback to the ESP learners in a particular professional field.

Keywords: ESP competences, ESP skill assessment/ self-assessment tool, eXe 2.0 / HotPotatoes software program, ESP teaching strategies and techniques

Procedia PDF Downloads 378
17964 Peace through Environmental Stewardship

Authors: Elizabeth D. Ramos

Abstract:

Peace education supports a holistic appreciation for the value of life and the interdependence of all living systems. Peace education aims to build a culture of peace. One way of building a culture of peace is through environmental stewardship. This study sought to find out the environmental stewardship practices in selected Higher Education Institutions (HEIs) in the Philippines and how these environmental stewardship practices lead to building a culture of peace. The findings revealed that there is still room for improvement in implementing environmental stewardship in schools through academic service learning. In addition, the following manifestations are implemented very satisfactorily in schools: 1) waste reduction, reuse, and recycling, 2) community service, 3) clean and green surroundings. Administrators of schools in the study lead their staff and students in implementing environmental stewardship. It could be concluded that those involved in environmental stewardship display an acceptable culture of peace, particularly, solidarity, respect for persons, and inner peace.

Keywords: academic service learning, environmental stewardship, leadership support, peace, solidarity

Procedia PDF Downloads 508
17963 Machine Learning Techniques in Seismic Risk Assessment of Structures

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.

Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine

Procedia PDF Downloads 106
17962 Preparation of Papers - Developing a Leukemia Diagnostic System Based on Hybrid Deep Learning Architectures in Actual Clinical Environments

Authors: Skyler Kim

Abstract:

An early diagnosis of leukemia has always been a challenge to doctors and hematologists. On a worldwide basis, it was reported that there were approximately 350,000 new cases in 2012, and diagnosing leukemia was time-consuming and inefficient because of an endemic shortage of flow cytometry equipment in current clinical practice. As the number of medical diagnosis tools increased and a large volume of high-quality data was produced, there was an urgent need for more advanced data analysis methods. One of these methods was the AI approach. This approach has become a major trend in recent years, and several research groups have been working on developing these diagnostic models. However, designing and implementing a leukemia diagnostic system in real clinical environments based on a deep learning approach with larger sets remains complex. Leukemia is a major hematological malignancy that results in mortality and morbidity throughout different ages. We decided to select acute lymphocytic leukemia to develop our diagnostic system since acute lymphocytic leukemia is the most common type of leukemia, accounting for 74% of all children diagnosed with leukemia. The results from this development work can be applied to all other types of leukemia. To develop our model, the Kaggle dataset was used, which consists of 15135 total images, 8491 of these are images of abnormal cells, and 5398 images are normal. In this paper, we design and implement a leukemia diagnostic system in a real clinical environment based on deep learning approaches with larger sets. The proposed diagnostic system has the function of detecting and classifying leukemia. Different from other AI approaches, we explore hybrid architectures to improve the current performance. First, we developed two independent convolutional neural network models: VGG19 and ResNet50. Then, using both VGG19 and ResNet50, we developed a hybrid deep learning architecture employing transfer learning techniques to extract features from each input image. In our approach, fusing the features from specific abstraction layers can be deemed as auxiliary features and lead to further improvement of the classification accuracy. In this approach, features extracted from the lower levels are combined into higher dimension feature maps to help improve the discriminative capability of intermediate features and also overcome the problem of network gradient vanishing or exploding. By comparing VGG19 and ResNet50 and the proposed hybrid model, we concluded that the hybrid model had a significant advantage in accuracy. The detailed results of each model’s performance and their pros and cons will be presented in the conference.

Keywords: acute lymphoblastic leukemia, hybrid model, leukemia diagnostic system, machine learning

Procedia PDF Downloads 187
17961 Facial Emotion Recognition with Convolutional Neural Network Based Architecture

Authors: Koray U. Erbas

Abstract:

Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.

Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition

Procedia PDF Downloads 274
17960 Utilization of Cloud-Based Learning Platform for the Enhancement of IT Onboarding System

Authors: Christian Luarca

Abstract:

The study aims to define the efficiency of e-Trainings by the use of cloud platform as part of the onboarding process for IT support engineers. Traditional lecture based trainings involves human resource to guide and assist new hires as part of onboarding which takes time and effort. The use of electronic medium as a platform for training provides a two-way basic communication that can be done in a repetitive manner. The study focuses on determining the most efficient manner of learning the basic knowledge on IT support in the shortest time possible. This was determined by conducting the same set of knowledge transfer categories in two different approaches, one being the e-Training and the other using the traditional method. Performance assessment will be done by the use of Service Tracker Assessment (STA) Tool and Service Manager. Data gathered from this ongoing study will promote the utilization of e-Trainings in the IT onboarding process.

Keywords: cloud platform, e-Training, efficiency, onboarding

Procedia PDF Downloads 150
17959 Incorporating Morality Standards in eLearning Process at INU

Authors: Khader Musbah Titi

Abstract:

In this era, traditional education systems do not meet the new challenges created by emerging technologies. On the other hand, eLearning offers all the necessary tools to meet these challenges. Using the Internet has brought numerous benefits to most educational institutions; it has also stretched traditional problems of plagiarism, cheating, stealing, vandalism, and spying into the cyberspace. This research discusses these issues in an eLearning environment. It attempts to provide suggestions and possible solutions to some of these issues. The main aim of this research is to conduct a survey at Irbid National University (INU), one of the oldest and biggest universities in Jordan, to study information related to moral and ethical issues in e-learning environment that affect the construction of the students’ characters in the future. The study will focus on student’s behavior and actions through the Internet using Learning Management System (LMS). Another aim of this research is to analyze the opinions of the instructors and last year students at INU about ethical behavior and interaction through LMS. The results show that educational institutes that use LMS should focus on student character development along with field knowledge. According to disadvantages, the results of the study showed that most of students behave unethically in their online activities (cheating, plagiarism, copy/paste etc.) while studying online courses through LMS. The result showed that instructors play a major role in the character development of students. The result also showed that academic institute must have variant mechanisms and strict policy in LMS to control unethical actions of students.

Keywords: LMS, cyber ethics, e-learning, IT ethics, students’ behaviors

Procedia PDF Downloads 243
17958 Investigating the Potential of a Blended Format for the Academic Reading Module Course Redesign

Authors: Reham Niazi, Marwa Helmy, Susanne Rizzo

Abstract:

This classroom action research is designed to explore the possibility of adding effective online content to supplement and add learning value to the current reading module. The aim of this research was two-fold, first to investigate students’ acceptance of and interactivity with online components, chosen to orient students with the content, and to pave the way for more in-class activities and skill practice. Secondly, the instructor aimed to examine students’ willingness to have the course contact hours remain the same with some online components to be done at home (flipped approach) or if students were open to turn the class into a blended format with two scenarios; either to have the current contact hours and apply the blended and in this case the face to face component will be less or keep the number of face to face classes the same and add more online structured classes as part of the course hours.

Keywords: blended learning, flipped classroom, graduate students, education

Procedia PDF Downloads 185
17957 Numerical Analysis of the Coanda Effect on the Classical Interior Ejectors

Authors: Alexandru Dumitrache, Florin Frunzulica, Octavian Preotu

Abstract:

The flow mitigation detachment problem near solid surfaces, resulting in improved globally aerodynamic performance by exploiting the Coanda effect on surfaces, has been addressed extensively in the literature, since 1940. The research is carried on and further developed, using modern means of calculation and new experimental methods. In this paper, it is shown interest in the detailed behavior of a classical interior ejector assisted by the Coanda effect, used in propulsion systems. For numerical investigations, an implicit formulation of RANS equations for axisymmetric flow with a shear stress transport k- ω (SST model) turbulence model is used. The obtained numerical results emphasize the efficiency of the ejector, depending on the physical parameters of the flow and the geometric configuration. Furthermore, numerical investigations are carried out regarding the evolution of the Reynolds number when the jet is attached to the wall, considering three geometric configurations: sudden expansion, open cavity and sudden expansion with divergent at the inlet. Therefore, further insight into complexities involving issues such as the variety of flow structure and the related bifurcation and flow instabilities are provided. Thus, the conditions and the limits within which one can benefit from the advantages of Coanda-type flows are determined.

Keywords: Coanda effect, Coanda ejector, CFD, stationary bifurcation, sudden expansion

Procedia PDF Downloads 214
17956 The Model of Learning Centre on OTOP Production Process Based on Sufficiency Economic Philosophy for Sustainable Life Quality

Authors: Napasri Suwanajote

Abstract:

The purposes of this research were to analyse and evaluate successful factors in OTOP production process for the developing of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The research has been designed as a qualitative study to gather information from 30 OTOP producers in Bangkontee District, Samudsongkram Province. They were all interviewed on 3 main parts. Part 1 was about the production process including 1) production 2) product development 3) the community strength 4) marketing possibility and 5) product quality. Part 2 evaluated appropriate successful factors including 1) the analysis of the successful factors 2) evaluate the strategy based on Sufficiency Economic Philosophy and 3) the model of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The results showed that the production did not affect the environment with potential in continuing standard quality production. They used the raw materials in the country. On the aspect of product and community strength in the past 1 year, it was found that there was no appropriate packaging showing product identity according to global market standard. They needed the training on packaging especially for food and drink products. On the aspect of product quality and product specification, it was found that the products were certified by the local OTOP standard. There should be a responsible organization to help the uncertified producers pass the standard. However, there was a problem on food contamination which was hazardous to the consumers. The producers should cooperate with the government sector or educational institutes involving with food processing to reach FDA standard. The results from small group discussion showed that the community expected high education and better standard living. Some problems reported by the community included informal debt and drugs in the community. There were 8 steps in developing the model of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality.

Keywords: production process, OTOP, sufficiency economic philosophy, marketing management

Procedia PDF Downloads 234
17955 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning

Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi

Abstract:

Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.

Keywords: agriculture, computer vision, data science, geospatial technology

Procedia PDF Downloads 138
17954 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks

Authors: Lei Zhu, Nan Li

Abstract:

Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.

Keywords: springback, cold stamping, convolutional neural networks, machine learning

Procedia PDF Downloads 149
17953 Numerical Investigation the Effect of Adjustable Guide Vane for Improving the Airflow Rate in Axial Fans

Authors: Behzad Shahizare, N. Nik-Ghazali, Kannan M. Munisamy, Seyedsaeed Tabatabaeikia

Abstract:

The main objective of this study is to clarify the effect of the adjustable outlet guide vane (OGV) on the axial fan. Three-dimensional Numerical study was performed to analyze the effect of adjustable guide vane for improving the airflow rate in axial fans. Grid independence test was done between five different meshes in order to choose the reliable mesh. In flow analyses, Reynolds averaged Navier-Stokes (RANS) equations was solved using three types of turbulence models named k-ɛ, k-ω and k-ω SST. The aerodynamic performances of the fan and guide vane were evaluated. Numerical method was validated by comparing with experimental test according to AMECA 210 standard. Results showed that, by using the adjustable guide vane the airflow rate is increased around 3% to 6 %. The maximum enhancement of the airflow rate was achieved when pressure was 374pa.

Keywords: axial fan, adjustable guide vane, CFD, turbo machinery

Procedia PDF Downloads 338
17952 Cardioprotective Effect of Oleanolic Acid and Urosolic Acid against Doxorubicin-Induced Cardiotoxicity in Rats

Authors: Sameer N. Goyal, Chandragauda R. Patil

Abstract:

Oleanolic acid (3/3-hydroxy-olea-12-en-28-oic acid) and its isomer, Ursolic acid (38-hydroxy-urs-12-en-28-oic acid) are triterpenoids compounds which exist widely in plant kingdom in the free acid form or as glycosidic triterpenoids saponins. The aim of the study is to evaluate intravenously administered oleanolic acid and ursolic acid in doxorubicin induced cardiotoxicity. Cardiotoxicity was induced in albino wistar rat with single intravenous injection of doxorubicin at dose of 67.75mg/kg i.v for 48 hrs at 12 hrs interval following doxorubicin administration in the same model cardioprotective effect of amifostine (90 mg/kg i.v, single dose prior 30 min before doxorubicin administration) was evaluated as standard treatment. Induction of cardiotoxicity was confirmed by rise in cardiac markers in serum such as CK–MB, LDH and also by electrocardiographically. The doxorubicin treated group significantly increased in QT interval, serum CK-MB, serum LDH, SGOT, SGPT and antioxidant parameter. Both the treatment group showed significant protective effect on Hemodynamic, electrocardiographic, biochemical, and antioxidant parameters. The oleanolic acid showed slight protective effect in histological lesions in doxorubicin induced cardiotoxicity. Hence, the results indicate that Oleanolic acid has more cardioprotective potential than ursolic acid against doxorubicin induced cardiotoxicity in rats.

Keywords: cardioprotection, doxorubicin, oleanolic acid, ursolic acid

Procedia PDF Downloads 528
17951 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier

Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh

Abstract:

This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.

Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems

Procedia PDF Downloads 46
17950 Relationship between ISO 14001 and Market Performance of Firms in China: An Institutional and Market Learning Perspective

Authors: Hammad Riaz, Abubakr Saeed

Abstract:

Environmental Management System (EMS), i.e., ISO 14001 helps to build corporate reputation, legitimacy and can also be considered as firms’ strategic response to institutional pressure to reduce the impact of business activity on natural environment. The financial outcomes of certifying with ISO 14001 are still unclear and equivocal. Drawing on institutional and market learning theories, the impact of ISO 14001 on firms’ market performance is examined for Chinese firms. By employing rigorous event study approach, this paper compared ISO 14001 certified firms with non-certified counterpart firms based on different matching criteria that include size, return on assets and industry. The results indicate that the ISO 14001 has been negatively signed by the investors both in the short and long-run. This paper suggested implications for policy makers, managers, and other nonprofit organizations.

Keywords: ISO 14001, legitimacy, institutional forces, event study approach, emerging markets

Procedia PDF Downloads 161
17949 The Effect of Inlet Baffle Position in Improving the Efficiency of Oil and Water Gravity Separator Tanks

Authors: Haitham A. Hussein, Rozi Abdullah, Issa Saket, Md. Azlin

Abstract:

The gravitational effect has been extensively applied to separate oil from water in water and wastewater treatment systems. The maximum oil globules removal efficiency is improved by obtaining the best flow uniformity in separator tanks. This study used 2D computational fluid dynamics (CFD) to investigate the effect of different inlet baffle positions inside the separator tank. Laboratory experiment has been conducted, and the measured velocity fields which were by Nortek Acoustic Doppler Velocimeter (ADV) are used to verify the CFD model. Computational investigation results indicated that the construction of an inlet baffle in a suitable location provides the minimum recirculation zone volume, creates the best flow uniformity, and dissipates kinetic energy in the oil and water separator tank. Useful formulas were predicted to design the oil and water separator tanks geometry based on an experimental model.

Keywords: oil/water separator tanks, inlet baffles, CFD, VOF

Procedia PDF Downloads 368
17948 Downscaling Seasonal Sea Surface Temperature Forecasts over the Mediterranean Sea Using Deep Learning

Authors: Redouane Larbi Boufeniza, Jing-Jia Luo

Abstract:

This study assesses the suitability of deep learning (DL) for downscaling sea surface temperature (SST) over the Mediterranean Sea in the context of seasonal forecasting. We design a set of experiments that compare different DL configurations and deploy the best-performing architecture to downscale one-month lead forecasts of June–September (JJAS) SST from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0 (NUIST-CFS1.0) for the period of 1982–2020. We have also introduced predictors over a larger area to include information about the main large-scale circulations that drive SST over the Mediterranean Sea region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results showed that the convolutional neural network (CNN)-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme SST spatial patterns. Besides, the CNN-based downscaling yields a much more accurate forecast of extreme SST and spell indicators and reduces the significant relevant biases exhibited by the raw model predictions. Moreover, our results show that the CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of the Mediterranean Sea. The results demonstrate the potential usefulness of CNN in downscaling seasonal SST predictions over the Mediterranean Sea, particularly in providing improved forecast products.

Keywords: Mediterranean Sea, sea surface temperature, seasonal forecasting, downscaling, deep learning

Procedia PDF Downloads 76
17947 Mutagenic in vitro Activity and Genotoxic Effect of Zygophyllum Cornutun Methanolic Extract

Authors: Awatif Boumaza, Abderraouf Hilali, Hayat Talbi, Houda Sbayou

Abstract:

The methanolic extract of Zygophyllum cornutun coss, an Algerian medicinal plant, was screened to the presence of mutagenic activity and genotoxic effect using the Ames test (Salmonella/microsome) and the micronucleus assay respectively. Positive results were obtained with both tests. The Ames test showed mutagenic activity in the presence of microsomal activation, while negative result was observed without microsomal activation. In the micronucleus test, two parameters were evaluated: the frequency of the micronucleus that increased in a dose dependent way and the proliferation index that decreased according to the micronucleus frequency. Even that further studies must be carried out, the mutagenic activity and the genotoxic effect of Zygophyllum cornutum should be taken in consideration when used as therapeutic plant.

Keywords: ames test, micronucleus test, mutagenic activity, genotoxicity, Zygophyllum cornutum

Procedia PDF Downloads 510