Search results for: interval features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4661

Search results for: interval features

1301 Application of Bayesian Model Averaging and Geostatistical Output Perturbation to Generate Calibrated Ensemble Weather Forecast

Authors: Muhammad Luthfi, Sutikno Sutikno, Purhadi Purhadi

Abstract:

Weather forecast has necessarily been improved to provide the communities an accurate and objective prediction as well. To overcome such issue, the numerical-based weather forecast was extensively developed to reduce the subjectivity of forecast. Yet the Numerical Weather Predictions (NWPs) outputs are unfortunately issued without taking dynamical weather behavior and local terrain features into account. Thus, NWPs outputs are not able to accurately forecast the weather quantities, particularly for medium and long range forecast. The aim of this research is to aid and extend the development of ensemble forecast for Meteorology, Climatology, and Geophysics Agency of Indonesia. Ensemble method is an approach combining various deterministic forecast to produce more reliable one. However, such forecast is biased and uncalibrated due to its underdispersive or overdispersive nature. As one of the parametric methods, Bayesian Model Averaging (BMA) generates the calibrated ensemble forecast and constructs predictive PDF for specified period. Such method is able to utilize ensemble of any size but does not take spatial correlation into account. Whereas space dependencies involve the site of interest and nearby site, influenced by dynamic weather behavior. Meanwhile, Geostatistical Output Perturbation (GOP) reckons the spatial correlation to generate future weather quantities, though merely built by a single deterministic forecast, and is able to generate an ensemble of any size as well. This research conducts both BMA and GOP to generate the calibrated ensemble forecast for the daily temperature at few meteorological sites nearby Indonesia international airport.

Keywords: Bayesian Model Averaging, ensemble forecast, geostatistical output perturbation, numerical weather prediction, temperature

Procedia PDF Downloads 280
1300 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis

Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen

Abstract:

The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.

Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision

Procedia PDF Downloads 126
1299 Studying the Establishment of Knowledge Management Background Factors at Islamic Azad University, Behshahr Branch

Authors: Mohammad Reza Bagherzadeh, Mohammad Hossein Taheri

Abstract:

Knowledge management serves as one of the great breakthroughs in information and knowledge era and given its outstanding features, successful organizations tends to adopt it. Therefore, to deal with knowledge management establishment in universities is of special importance. In this regard, the present research aims to shed lights on factors background knowledge management establishment at Islamic Azad University, Behshahr Branch (Northern Iran). Considering three factors information technology system, knowledge process system and organizational culture as a fundamental of knowledge management infrastructure, foregoing factors were evaluated individually. The present research was conducted in descriptive-survey manner and participants included all staffs and faculty members, so that according to Krejcie & Morgan table a sample size proportional to the population size was considered. The measurement tools included survey questionnaire whose reliability was calculated to 0.83 according to Cronbachs alpha. To data analysis, descriptive statistics such as frequency and its percentage tables, column charts, mean, standard deviation and as for inferential statistics Kolomogrov- Smirnov test and single T-test were used. The findings show that despite the good corporate culture as one of the three factors background the establishment of the knowledge management at Islamic Azad University Behshahr Branch, other two ones, including IT systems, and knowledge processes systems are characterized with adverse status. As a result, these factors have caused no necessary conditions for the establishment of Knowledge Management in the university provided.

Keywords: knowledge management, information technology, knowledge processes, organizational culture, educational institutions

Procedia PDF Downloads 521
1298 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images

Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez

Abstract:

Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.

Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking

Procedia PDF Downloads 106
1297 A Short Study on the Effects of Public Service Advertisement on Gender Bias in Accessible and Non-Accessible Format

Authors: Amrin Moger, Sagar Bhalerao, Martin Mathew

Abstract:

Advertisements play a vital role in dissemination of information regarding products and services. Advertisements as Mass Media tool is not only a source of entertainment, but also a source of information, education and entertainment. It provides information about the outside world and exposes us to other ways of life and culture. Public service advertisements (PSA) are generally aimed at public well-being. Aim of PSA is not to make profit, but rather to change public opinion and raise awareness in the Society about a social issue.’ Start with the boys’ is one such PSA aims to create awareness about issue of ‘gender bias’ that is taught prevalent in the society. Persons with disabilities (PWDs) are also consumers of PSA in the society. The population of persons with disability in the society also faces gender bias and discrimination. It is a double discrimination. The advertisement selected for the study gives out a strong message on gender bias and therefore must be accessible to everyone including PWDs in the society. Accessibility of PSA in the digital format can be done with the help of Universal Design (UD) in digital media application. Features of UD inclusive in nature, and it focus on eliminating established barriers through initial designs. It considers the needs of diverse people, whether they are persons with or without disability. In this research two aspects of UD in digital media: captioning and Indian sign language (ISL) is used. Hence a short survey study was under taken to know the effects of a multimedia on gender bias, in accessible format on persons with and without disability. The result demonstrated a significant difference in the opinion, on the usage accessible and non-accessible format for persons with and without disability and their understanding of message in the PSA selected for the study.

Keywords: public service advertisements, gender, disability, accessibility

Procedia PDF Downloads 354
1296 AER Model: An Integrated Artificial Society Modeling Method for Cloud Manufacturing Service Economic System

Authors: Deyu Zhou, Xiao Xue, Lizhen Cui

Abstract:

With the increasing collaboration among various services and the growing complexity of user demands, there are more and more factors affecting the stable development of the cloud manufacturing service economic system (CMSE). This poses new challenges to the evolution analysis of the CMSE. Many researchers have modeled and analyzed the evolution process of CMSE from the perspectives of individual learning and internal factors influencing the system, but without considering other important characteristics of the system's individuals (such as heterogeneity, bounded rationality, etc.) and the impact of external environmental factors. Therefore, this paper proposes an integrated artificial social model for the cloud manufacturing service economic system, which considers both the characteristics of the system's individuals and the internal and external influencing factors of the system. The model consists of three parts: the Agent model, environment model, and rules model (Agent-Environment-Rules, AER): (1) the Agent model considers important features of the individuals, such as heterogeneity and bounded rationality, based on the adaptive behavior mechanisms of perception, action, and decision-making; (2) the environment model describes the activity space of the individuals (real or virtual environment); (3) the rules model, as the driving force of system evolution, describes the mechanism of the entire system's operation and evolution. Finally, this paper verifies the effectiveness of the AER model through computational and experimental results.

Keywords: cloud manufacturing service economic system (CMSE), AER model, artificial social modeling, integrated framework, computing experiment, agent-based modeling, social networks

Procedia PDF Downloads 80
1295 The Synthesis, Structure and Catalytic Activity of Iron(II) Complex with New N2O2 Donor Schiff Base Ligand

Authors: Neslihan Beyazit, Sahin Bayraktar, Cahit Demetgul

Abstract:

Transition metal ions have an important role in biochemistry and biomimetic systems and may provide the basis of models for active sites of biological targets. The presence of copper(II), iron(II) and zinc(II) is crucial in many biological processes. Tetradentate N2O2 donor Schiff base ligands are well known to form stable transition metal complexes and these complexes have also applications in clinical and analytical fields. In this study, we present salient structural features and the details of cathecholase activity of Fe(II) complex of a new Schiff Base ligand. A new asymmetrical N2O2 donor Schiff base ligand and its Fe(II) complex were synthesized by condensation of 4-nitro-1,2 phenylenediamine with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzopyran-4-one and by using an appropriate Fe(II) salt, respectively. Schiff base ligand and its metal complex were characterized by using FT-IR, 1H NMR, 13C NMR, UV-Vis, elemental analysis and magnetic susceptibility. In order to determine the kinetics parameters of catechol oxidase-like activity of Schiff base Fe(II) complex, the oxidation of the 3,5-di-tert-butylcatechol (3,5-DTBC) was measured at 25°C by monitoring the increase of the absorption band at 390-400 nm of the product 3,5-di-tert-butylcatequinone (3,5-DTBQ). The compatibility of catalytic reaction with Michaelis-Menten kinetics also investigated by the method of initial rates by monitoring the growth of the 390–400 nm band of 3,5-DTBQ as a function of time. Kinetic studies showed that Fe(II) complex of the new N2O2 donor Schiff base ligand was capable of acting as a model compound for simulating the catecholase properties of type-3 copper proteins.

Keywords: catecholase activity, Michaelis-Menten kinetics, Schiff base, transition metals

Procedia PDF Downloads 395
1294 Behavioural Studies on Multidirectional Reinforced 4-D Orthogonal Composites on Various Preform Configurations

Authors: Sriram Venkatesh, V. Murali Mohan, T. V. Karthikeyan

Abstract:

The main advantage of multi-directionally reinforced composites is the freedom to orient selected fibre types and hence derives the benefits of varying fibre volume fractions and there by accommodate the design loads of the final structure of composites. This technology provides the means to produce tailored composites with desired properties. Due to the high level of fibre integrity with through thickness reinforcement those composites are expected to exhibit superior load bearing characteristics with capability to carry load even after noticeable and apparent fracture. However a survey of published literature indicates inadequacy in the design and test data base for the complete characterization of the multidirectional composites. In this paper the research objective is focused on the development and testing of 4-D orthogonal composites with different preform configurations and resin systems. A preform is the skeleton 4D reinforced composite other than the matrix. In 4-D preforms fibre bundles are oriented in three directions at 1200 with respect to each other and they are on orthogonal plane with the fibre in 4th direction. This paper addresses the various types of 4-D composite manufacturing processes and the mechanical test methods followed for the material characterization. A composite analysis is also made, experiments on course and fine woven preforms are conducted and the findings of test results are discussed in this paper. The interpretations of the test results reveal several useful and interesting features. This should pave the way for more widespread use of the perform configurations for allied applications.

Keywords: multi-directionally reinforced composites, 4-D orthogonal preform, course weave, fine weave, fibre bundle spools, unit cell, fibre architecture, fibre volume fraction, fibre distribution

Procedia PDF Downloads 233
1293 Artificial Intelligence in Bioscience: The Next Frontier

Authors: Parthiban Srinivasan

Abstract:

With recent advances in computational power and access to enough data in biosciences, artificial intelligence methods are increasingly being used in drug discovery research. These methods are essentially a series of advanced statistics based exercises that review the past to indicate the likely future. Our goal is to develop a model that accurately predicts biological activity and toxicity parameters for novel compounds. We have compiled a robust library of over 150,000 chemical compounds with different pharmacological properties from literature and public domain databases. The compounds are stored in simplified molecular-input line-entry system (SMILES), a commonly used text encoding for organic molecules. We utilize an automated process to generate an array of numerical descriptors (features) for each molecule. Redundant and irrelevant descriptors are eliminated iteratively. Our prediction engine is based on a portfolio of machine learning algorithms. We found Random Forest algorithm to be a better choice for this analysis. We captured non-linear relationship in the data and formed a prediction model with reasonable accuracy by averaging across a large number of randomized decision trees. Our next step is to apply deep neural network (DNN) algorithm to predict the biological activity and toxicity properties. We expect the DNN algorithm to give better results and improve the accuracy of the prediction. This presentation will review all these prominent machine learning and deep learning methods, our implementation protocols and discuss these techniques for their usefulness in biomedical and health informatics.

Keywords: deep learning, drug discovery, health informatics, machine learning, toxicity prediction

Procedia PDF Downloads 357
1292 The Effect of Neurocognitive Exercise Program on ADHD Symptoms, Attention, and Dynamic Balance in Medication Naive Children with ADHD: A Pilot Study

Authors: Nurullah Buker, Ezgi Karagoz, Yesim Salik Sengul, Sevay Alsen Guney, Gokhan Yoyler, Aylin Ozbek

Abstract:

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental disorders with heterogeneous clinical features such as inattention, hyperactivity, and impulsivity. Many different types of exercise interventions were employed for children with ADHD. However, previous studies have usually examined the effects of non-specific exercise programs or short-term effects of exercise. The aim of this study is to investigate the effect of the Neurocognitive Exercise Program (NEP), which is a structured exercise program derived from Life Kinetik, and a relatively new for children with ADHD, on symptoms, attention, and dynamic balance in medication-naïve children with ADHD. Fourteen medication-naive children (7-12 years) with ADHD were included in the intervention group. NEP was performed once a week for ten weeks. The intervention group also performed a structured home exercise program for another six days, for ten weeks. The children in the intervention group were assessed at baseline, in the third month, in the sixth month, and in the twelfth month regarding ADHD-related symptoms, attention, and dynamic balance. Fifteen age-matched typically developing children were assessed once for establishing normative values. Hyperactivity-Impulsivity score and dynamic balance were found to improve after NEP in the ADHD group in the 3rd month (p<0.05). In addition, these results were similar for both groups after NEP and at the end of the 12th month (p>0.05). The NEP may provide beneficial effects on hyperactivity-impulsivity, oppositional defiant, and dynamic balance in children with ADHD, and the improvements may be maintained in the long term.

Keywords: ADHD, attention problems, dynamic balance, neurocognitive exercise

Procedia PDF Downloads 81
1291 Framework for the Assessment of National Systems of Innovation in Biotechnology

Authors: Andrea Schiffauerova, Amnah Alzeyoudi

Abstract:

This paper studies patterns of innovation within national constitutional context. Its objective is to examine national systems of innovation in biotechnology in six leading innovative countries: the US, Japan, Germany, the UK, France and Canada. The framework proposed for this purpose consists of specific factors considered critical for the development of national systems of innovation, which are industry size, innovative activities, area of specialization, industry structure, national policy, the level of government intervention, the stock of knowledge in universities and industries, knowledge transfer from universities to industry and country-specific conditions for start-ups. The paper then uses the framework to provide detailed cross-country comparisons while highlighting particular features of national institutional context which affect the creation and diffusion of scientific knowledge within the system. The study is primarily based on the extensive survey of literature and it is complemented by the quantitative analysis of the patent data extracted from the United States Patent and Trademark Office (USPTO). The empirical analysis provides numerous insights and greatly complements the data gained from the literature and other sources. The final cross-country comparative analysis identifies three patterns followed by the national innovation systems in the six countries. The proposed cross-country relative positioning analysis may help in drawing policy implications and strategies leading to the enhancement of national competitive advantage and innovation capabilities of nations.

Keywords: comparative analysis, framework, national systems of innovation, patent analysis, United States Patent and Trademark Office (USPTO)

Procedia PDF Downloads 313
1290 Magnetic Cellulase/Halloysite Nanotubes as Biocatalytic System for Converting Agro-Waste into Value-Added Product

Authors: Devendra Sillu, Shekhar Agnihotri

Abstract:

The 'nano-biocatalyst' utilizes an ordered assembling of enzyme on to nanomaterial carriers to catalyze desirable biochemical kinetics and substrate selectivity. The current study describes an inter-disciplinary approach for converting agriculture waste, sugarcane bagasse into D-glucose exploiting halloysite nanotubes (HNTs) decorated cellulase enzyme as nano-biocatalytic system. Cellulase was successfully immobilized on HNTs employing polydopamine as an eco-friendly crosslinker while iron oxide nanoparticles were attached to facilitate magnetic recovery of material. The characterization studies (UV-Vis, TEM, SEM, and XRD) displayed the characteristic features of both cellulase and magnetic HNTs in the resulting nanocomposite. Various factors (i.e., working pH, temp., crosslinker conc., enzyme conc.) which may influence the activity of biocatalytic system were investigated. The experimental design was performed using Response Surface Methodology (RSM) for process optimization. Analyses data demonstrated that the nanobiocatalysts retained 80.30% activity even at elevated temperature (55°C) and excellent storage stabilities after 10 days. The repeated usage of system revealed a remarkable consistent relative activity over several cycles. The immobilized cellulase was employed to decompose agro-waste and the maximum decomposition rate of 67.2 % was achieved. Conclusively, magnetic HNTs can serve as a potential support for enzyme immobilization with long term usage, good efficacy, reusability and easy recovery from solution.

Keywords: halloysite nanotubes, enzyme immobilization, cellulase, response surface methodology, magnetic recovery

Procedia PDF Downloads 133
1289 Applying Failure Modes and Effect Analysis Concept in a Global Software Development Process

Authors: Camilo Souza, Lidia Melo, Fernanda Terra, Francisco Caio, Marcelo Reis

Abstract:

SIDIA is a research and development (R&D) institute that belongs to Samsung’s global software development process. The SIDIA’s Model Team (MT) is a part of Samsung’s Mobile Division Area, which is responsible for the development of Android releases embedded in Samsung mobile devices. Basically, in this software development process, the kickoff occurs in some strategic countries (e.g., South Korea) where some software requirements are applied and the initial software tests are performed. When the software achieves a more mature level, a new branch is derived, and the development continues in subsidiaries from other strategic countries (e.g., SIDIA-Brazil). However, even in the newly created branches, there are several interactions between developers from different nationalities in order to fix bugs reported during test activities, apply some specific requirements from partners and develop new features as well. Despite the GSD strategy contributes to improving software development, some challenges are also introduced as well. In this paper, we share the initial results about the application of the failure modes and effect analysis (FMEA) concept in the software development process followed by the SIDIA’s model team. The main goal was to identify and mitigate the process potential failures through the application of recommended actions. The initial results show that the application of the FMEA concept allows us to identify the potential failures in our GSD process as well as to propose corrective actions to mitigate them. Finally, FMEA encouraged members of different teams to take actions that contribute to improving our GSD process.

Keywords: global software development, potential failures, FMEA, recommended actions

Procedia PDF Downloads 227
1288 Intelligent Materials and Functional Aspects of Shape Memory Alloys

Authors: Osman Adiguzel

Abstract:

Shape-memory alloys are a new class of functional materials with a peculiar property known as shape memory effect. These alloys return to a previously defined shape on heating after deformation in low temperature product phase region and take place in a class of functional materials due to this property. The origin of this phenomenon lies in the fact that the material changes its internal crystalline structure with changing temperature. Shape memory effect is based on martensitic transitions, which govern the remarkable changes in internal crystalline structure of materials. Martensitic transformation, which is a solid state phase transformation, occurs in thermal manner in material on cooling from high temperature parent phase region. This transformation is governed by changes in the crystalline structure of the material. Shape memory alloys cycle between original and deformed shapes in bulk level on heating and cooling, and can be used as a thermal actuator or temperature-sensitive elements due to this property. Martensitic transformations usually occur with the cooperative movement of atoms by means of lattice invariant shears. The ordered parent phase structures turn into twinned structures with this movement in crystallographic manner in thermal induced case. The twinned martensites turn into the twinned or oriented martensite by stressing the material at low temperature martensitic phase condition. The detwinned martensite turns into the parent phase structure on first heating, first cycle, and parent phase structures turn into the twinned and detwinned structures respectively in irreversible and reversible memory cases. On the other hand, shape memory materials are very important and useful in many interdisciplinary fields such as medicine, pharmacy, bioengineering, metallurgy and many engineering fields. The choice of material as well as actuator and sensor to combine it with the host structure is very essential to develop main materials and structures. Copper based alloys exhibit this property in metastable beta-phase region, which has bcc-based structures at high temperature parent phase field, and these structures martensitically turn into layered complex structures with lattice twinning following two ordered reactions on cooling. Martensitic transition occurs as self-accommodated martensite with inhomogeneous shears, lattice invariant shears which occur in two opposite directions, <110 > -type directions on the {110}-type plane of austenite matrix which is basal plane of martensite. This kind of shear can be called as {110}<110> -type mode and gives rise to the formation of layered structures, like 3R, 9R or 18R depending on the stacking sequences on the close-packed planes of the ordered lattice. In the present contribution, x-ray diffraction and transmission electron microscopy (TEM) studies were carried out on two copper based alloys which have the chemical compositions in weight; Cu-26.1%Zn 4%Al and Cu-11%Al-6%Mn. X-ray diffraction profiles and electron diffraction patterns reveal that both alloys exhibit super lattice reflections inherited from parent phase due to the displacive character of martensitic transformation. X-ray diffractograms taken in a long time interval show that locations and intensities of diffraction peaks change with the aging time at room temperature. In particular, some of the successive peak pairs providing a special relation between Miller indices come close each other.

Keywords: Shape memory effect, martensite, twinning, detwinning, self-accommodation, layered structures

Procedia PDF Downloads 426
1287 Evaluation of Water-Soluble Ionic Liquids Based on Quaternized Hyperbranched Polyamidoamine and Amino Acids for Chemical Enhanced Oil Recovery

Authors: Rasha Hosny, Ahmed Zahran, Mahmoud Ramzi, Fatma Mahmoud Abdelhafiz, Ammona S. Mohamed, Mahmoud Fathy Mubarak

Abstract:

Ionic liquids' ability to be tuned and stability under challenging environmental conditions are their significant features in enhanced oil recovery. In this study, two amino acid ionic liquids (AAILs) were prepared from quaternized hyperbranched polyamidoamine PAMAM (G0.5 C12) and amino acids (Cysteine and Lysine). The chemical structures of the prepared AAILs were verified by using FTIR and 1H-NMR spectra. These AAILs were tested for solubility, thermal stability, and surface activity in the presence of Egyptian medium crude oils under different PVT parameters after being diluted in several brine solutions of various salt compositions at 10% (w/w) salinity. The measurements reveal that the produced AAILs have good solubility and thermal stability. The effect of different concentrations of AAILs (0.1-5%) and salinity (20000-70000 ppm) on Interfacial tension (IFT) were studied. To test the efficacy of (AAILs) for a CEOR, numerous flooding experiments were carried out in samples of sandstone rock. Rock wettability is important for sandstone rocks, so conduct wettability alteration by contact angle (CA) of (30-55) and IFT of (7-13). The additional oil recovery was largely influenced by ionic liquid concentration, which may be changed by dilution with the formation and injected brines. This research has demonstrated that EOR techniques led to a recovery wt. (22-45%).

Keywords: amino acid ionic liquids, surface activity, critical micelle concentration, interfacial tension, contact angle, chemical enhanced oil recovery, wettability

Procedia PDF Downloads 111
1286 Resonant Auxetic Metamaterial for Automotive Applications in Vibration Isolation

Authors: Adrien Pyskir, Manuel Collet, Zoran Dimitrijevic, Claude-Henri Lamarque

Abstract:

During the last decades, great efforts have been made to reduce acoustic and vibrational disturbances in transportations, as it has become a key feature for comfort. Today, isolation and design have neutralized most of the troublesome vibrations, so that cars are quieter and more comfortable than ever. However, some problems remain unsolved, in particular concerning low-frequency isolation and the frequency-dependent stiffening of materials like rubber. To sum it up, a balance has to be found between a high static stiffness to sustain the vibration source’s mass, and low dynamic stiffness, as wideband as possible. Systems meeting these criteria are yet to be designed. We thus investigated solutions inspired by metamaterials to control efficiently low-frequency wave propagation. Structures exhibiting a negative Poisson ratio, also called auxetic structures, are known to influence the propagation of waves through beaming or damping. However, their stiffness can be quite peculiar as well, as they can present regions of zero stiffness on the stress-strain curve for compression. In addition, auxetic materials can be easily adapted in many ways, inducing great tuning potential. Using finite element software COMSOL Multiphysics, a resonant design has been tested through statics and dynamics simulations. These results are compared to experimental results. In particular, the bandgaps featured by these structures are analyzed as a function of design parameters. Great stiffness properties can be observed, including low-frequency dynamic stiffness loss and broadband transmission loss. Such features are very promising for practical isolation purpose, and we hope to adopt this kind of metamaterial into an effective industrial damper.

Keywords: auxetics, metamaterials, structural dynamics, vibration isolation

Procedia PDF Downloads 149
1285 An End-to-end Piping and Instrumentation Diagram Information Recognition System

Authors: Taekyong Lee, Joon-Young Kim, Jae-Min Cha

Abstract:

Piping and instrumentation diagram (P&ID) is an essential design drawing describing the interconnection of process equipment and the instrumentation installed to control the process. P&IDs are modified and managed throughout a whole life cycle of a process plant. For the ease of data transfer, P&IDs are generally handed over from a design company to an engineering company as portable document format (PDF) which is hard to be modified. Therefore, engineering companies have to deploy a great deal of time and human resources only for manually converting P&ID images into a computer aided design (CAD) file format. To reduce the inefficiency of the P&ID conversion, various symbols and texts in P&ID images should be automatically recognized. However, recognizing information in P&ID images is not an easy task. A P&ID image usually contains hundreds of symbol and text objects. Most objects are pretty small compared to the size of a whole image and are densely packed together. Traditional recognition methods based on geometrical features are not capable enough to recognize every elements of a P&ID image. To overcome these difficulties, state-of-the-art deep learning models, RetinaNet and connectionist text proposal network (CTPN) were used to build a system for recognizing symbols and texts in a P&ID image. Using the RetinaNet and the CTPN model carefully modified and tuned for P&ID image dataset, the developed system recognizes texts, equipment symbols, piping symbols and instrumentation symbols from an input P&ID image and save the recognition results as the pre-defined extensible markup language format. In the test using a commercial P&ID image, the P&ID information recognition system correctly recognized 97% of the symbols and 81.4% of the texts.

Keywords: object recognition system, P&ID, symbol recognition, text recognition

Procedia PDF Downloads 153
1284 Synthesis of Uio-66 Metal Organic Framework Impregnated Thin-Film Nanocomposite Membrane for the Desalination via Pressure Assisted Osmosis

Authors: Rajesha Kumar Alambi, Mansour Ahmed, Garudachari Bhadrachari, Safiyah Al-Muqahwi, Mansour Al-Rughaib, Jibu P. Thomas

Abstract:

Membrane-based pressure assisted osmosis (PAO) for seawater desalination has the potential to overcome the challenges of forward osmosis technology. PAO technology is gaining interest among the research community to ensure the sustainability of freshwater with a significant reduction in energy. The requirements of PAO membranes differ from the FO membrane; as it needs a slightly higher porous with sufficient mechanical strength to overcome the applied hydraulic pressure. The porous metal-organic framework (MOF) as a filler for the membrane synthesis has demonstrated a great potential to generate new channels for water transport, high selectivity, and reduced fouling propensity. Accordingly, this study is aimed at fabricating the UiO-66 MOF-based thin film nanocomposite membranes with specific characteristics for water desalination by PAO. A PAO test unit manufactured by Trevi System, USA, was used to determine the performance of the synthesized membranes. Further, the synthesized membranes were characterized in terms of morphological features, hydrophilicity, surface roughness, and mechanical properties. The 0.05 UiO-66 loaded membrane produced highest flux of 38L/m2h and with low reverse salt leakage of 2.1g/m²h for the DI water as feed solution and 2.0 M NaCl as draw solutions at the inlet feed pressure of 0.6 MPa. The new membranes showed a good tolerance toward the applied hydraulic pressure attributed to the fabric support used during the membrane synthesis.

Keywords: metal organic framework, composite membrane, desalination, salt rejection, flux

Procedia PDF Downloads 135
1283 Gross Anatomical and Ultra Structural Microscopic Studies on the Nose of the Dromedary Camel (Camelus Dromederius)

Authors: Mahmoud S Gewaily, Atif Hasan, Mohamed Kassab, Ali A. Mansour

Abstract:

The current study was carried out on the nose of seventeenth healthy adult camels. Specimens were collected from slaughter houses then fixed, dissected and photographed. For ultra structural studies, fresh samples were fixed in different fixatives and prepared for examination by light, scanning and electron microscopes. Grossly, nose of the camel had narrow nostrils, slit like in outline. In the nasal cavity, the nasal vestibule was narrow and has scanty dorsal and lateral cartilaginous support. The Nasal conchae (dorsal, middle and ventral) enclosed the dorsal, middle conchal sinuses and no ventral conchal sinus; instead there was recess and bull a. The ethmoidal conchae (8 in number) were noticeably fewer than in the other domestic animals like ox and horse. The olfactory mucosa was restricted to a small area covering the caudal parts of the ethmoidal conchae. The lining epithelium of the nasal cavity changes gradually from stratified squamous epithelium in the nasal vestibule to pseudo stratified columnar ciliated in the respiratory region and finally, olfactory epithelium covering the caudal parts of the ethmoidal conchae. In the dromedary camel, a special feature was the presence of dense and relatively long hair covering the nostrils and the rostral part of the nasal vestibule. In conclusion, the anatomical features of the nose of the dromedary camel, especially in its rostral parts enable this animal to breathe properly in the sandy dry weather.

Keywords: camel nose, anatomy, dromedary camel, nasal vestibule

Procedia PDF Downloads 439
1282 Measuring the Influence of Functional Proximity on Environmental Urban Performance via IMM: Four Study Cases in Milan

Authors: Massimo Tadi, M. Hadi Mohammad Zadeh, Ozge Ogut

Abstract:

Although how cities’ forms are structured is studied, more efforts are needed on systemic comprehensions and evaluations of the urban morphology through quantitative metrics that are able to describe the performance of a city in relation to its formal properties. More research is required in this direction in order to better describe the urban form characteristics and their impact on the environmental performance of cities and to increase their sustainability stewardship. With the aim of developing a better understanding of the built environment’s systemic structure, the intention of this paper is to present a holistic methodology for studying the behavior of the built environment and investigate the methods for measuring the effect of urban structure to the environmental performance. This goal will be pursued through an inquiry into the morphological components of the urban systems and the complex relationships between them. Particularly, this paper focuses on proximity, referring to the proximity of different land-uses, is a concept with which Integrated Modification Methodology (IMM) explains how land-use allocation might affect the choice of mobility in neighborhoods, and especially, encourage or discourage non-motived mobility. This paper uses proximity to demonstrate that the structure attributes can quantifiably relate to the performing behavior in the city. The target is to devise a mathematical pattern from the structural elements and correlate it directly with urban performance indicators concerned with environmental sustainability. The paper presents some results of this rigorous investigation of urban proximity and its correlation with performance indicators in four different areas in the city of Milan, each of them characterized by different morphological features.

Keywords: built environment, ecology, sustainable indicators, sustainability, urban morphology

Procedia PDF Downloads 168
1281 Cirrhosis Mortality Prediction as Classification using Frequent Subgraph Mining

Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride

Abstract:

In this work, we use machine learning and novel data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. To the best of our knowledge, this is the first work to apply modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.

Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning

Procedia PDF Downloads 134
1280 Object-Based Image Analysis for Gully-Affected Area Detection in the Hilly Loess Plateau Region of China Using Unmanned Aerial Vehicle

Authors: Hu Ding, Kai Liu, Guoan Tang

Abstract:

The Chinese Loess Plateau suffers from serious gully erosion induced by natural and human causes. Gully features detection including gully-affected area and its two dimension parameters (length, width, area et al.), is a significant task not only for researchers but also for policy-makers. This study aims at gully-affected area detection in three catchments of Chinese Loess Plateau, which were selected in Changwu, Ansai, and Suide by using unmanned aerial vehicle (UAV). The methodology includes a sequence of UAV data generation, image segmentation, feature calculation and selection, and random forest classification. Two experiments were conducted to investigate the influences of segmentation strategy and feature selection. Results showed that vertical and horizontal root-mean-square errors were below 0.5 and 0.2 m, respectively, which were ideal for the Loess Plateau region. The segmentation strategy adopted in this paper, which considers the topographic information, and optimal parameter combination can improve the segmentation results. Besides, the overall extraction accuracy in Changwu, Ansai, and Suide achieved was 84.62%, 86.46%, and 93.06%, respectively, which indicated that the proposed method for detecting gully-affected area is more objective and effective than traditional methods. This study demonstrated that UAV can bridge the gap between field measurement and satellite-based remote sensing, obtaining a balance in resolution and efficiency for catchment-scale gully erosion research.

Keywords: unmanned aerial vehicle (UAV), object-analysis image analysis, gully erosion, gully-affected area, Loess Plateau, random forest

Procedia PDF Downloads 218
1279 Therapeutic Potential of mAb KP52 in Human and Feline Cancers

Authors: Abigail Tan, Heng Liang Tan, Vanessa Ding, James Hui, Eng Hin Lee, Andre Choo

Abstract:

Introduction: Comparative oncology investigates the similarities in spontaneous carcinogenesis between humans and animals, in order to identify treatments that can benefit these patients. Companion animals (CA), like canines and felines, are of special interest when it comes to studying human cancers due to their exposure to the same environmental factors and develop tumours with similar features. The purpose of this study is to explore the cross-reactivity of monoclonal antibodies (mAbs) across cancers in humans and CA. Material and Methods: A panel of CA mAbs generated in the lab was screened on multiple human cancer cell lines through flow cytometry to identify for positive binders. Shortlisted candidates were then characterised by biochemical and functional assays e.g., antibody-drug conjugate (ADC) and western blot assays, including glycan studies. Results: Candidate mAb KP52 was generated from whole-cell immunisation using feline mammary carcinoma. KP52 showed strong positive binding to human cancer cells, such as breast cancer and ovarian cancer. Furthermore, KP52 demonstrated strong killing ( > 50%) as an ADC with Saporin as the payload. Western blot results revealed the molecular weight of the antigen targets to be approximately 45kD and 50kD under reduced conditions. Glycan studies suggest that the epitope is glycan in nature, specifically an O-linked glycan. Conclusion: Candidate mAb KP52 has a therapeutic potential as an ADC against feline mammary cancer, human ovarian cancer, human mammary cancer, human pancreatic cancer, and human gastric cancer.

Keywords: ADC, comparative oncology, mAb, therapeutic

Procedia PDF Downloads 173
1278 Pre-Cancerigene Injuries Related to Human Papillomavirus: Importance of Cervicography as a Complementary Diagnosis Method

Authors: Denise De Fátima Fernandes Barbosa, Tyane Mayara Ferreira Oliveira, Diego Jorge Maia Lima, Paula Renata Amorim Lessa, Ana Karina Bezerra Pinheiro, Cintia Gondim Pereira Calou, Glauberto Da Silva Quirino, Hellen Lívia Oliveira Catunda, Tatiana Gomes Guedes, Nicolau Da Costa

Abstract:

The aim of this study is to evaluate the use of Digital Cervicography (DC) in the diagnosis of precancerous lesions related to Human Papillomavirus (HPV). Cross-sectional study with a quantitative approach, of evaluative type, held in a health unit linked to the Pro Dean of Extension of the Federal University of Ceará, in the period of July to August 2015 with a sample of 33 women. Data collecting was conducted through interviews with enforcement tool. Franco (2005) standardized the technique used for DC. Polymerase Chain Reaction (PCR) was performed to identify high-risk HPV genotypes. DC were evaluated and classified by 3 judges. The results of DC and PCR were classified as positive, negative or inconclusive. The data of the collecting instruments were compiled and analyzed by the software Statistical Package for Social Sciences (SPSS) with descriptive statistics and cross-references. Sociodemographic, sexual and reproductive variables were analyzed through absolute frequencies (N) and their respective percentage (%). Kappa coefficient (κ) was applied to determine the existence of agreement between the DC of reports among evaluators with PCR and also among the judges about the DC results. The Pearson's chi-square test was used for analysis of sociodemographic, sexual and reproductive variables with the PCR reports. It was considered statistically significant (p<0.05). Ethical aspects of research involving human beings were respected, according to 466/2012 Resolution. Regarding the socio-demographic profile, the most prevalent ages and equally were those belonging to the groups 21-30 and 41-50 years old (24.2%). The brown color was reported in excess (84.8%) and 96.9% out of them had completed primary and secondary school or studying. 51.5% were married, 72.7% Catholic, 54.5% employed and 48.5% with income between one and two minimum wages. As for the sexual and reproductive characteristics, prevailed heterosexual (93.9%) who did not use condoms during sexual intercourse (72.7%). 51.5% had a previous history of Sexually Transmitted Infection (STI), and HPV the most prevalent STI (76.5%). 57.6% did not use contraception, 78.8% underwent examination Cancer Prevention Uterus (PCCU) with shorter time interval or equal to one year, 72.7% had no cases of Cervical Cancer in the family, 63.6% were multiparous and 97% were not vaccinated against HPV. DC identified good level of agreement between raters (κ=0.542), had a specificity of 77.8% and sensitivity of 25% when compared their results with PCR. Only the variable race showed a statistically significant association with CRP (p=0.042). DC had 100% acceptance amongst women in the sample, revealing the possibility of other experiments in using this method so that it proves as a viable technique. The DC positivity criteria were developed by nurses and these professionals also perform PCCU in Brazil, which means that DC can be an important complementary diagnostic method for the appreciation of these professional’s quality of examinations.

Keywords: gynecological examination, human papillomavirus, nursing, papillomavirus infections, uterine lasmsneop

Procedia PDF Downloads 301
1277 Fabrication of Cheap Novel 3d Porous Scaffolds Activated by Nano-Particles and Active Molecules for Bone Regeneration and Drug Delivery Applications

Authors: Mostafa Mabrouk, Basma E. Abdel-Ghany, Mona Moaness, Bothaina M. Abdel-Hady, Hanan H. Beherei

Abstract:

Tissue engineering became a promising field for bone repair and regenerative medicine in which cultured cells, scaffolds and osteogenic inductive signals are used to regenerate tissues. The annual cost of treating bone defects in Egypt has been estimated to be many billions, while enormous costs are spent on imported bone grafts for bone injuries, tumors, and other pathologies associated with defective fracture healing. The current study is aimed at developing a more strategic approach in order to speed-up recovery after bone damage. This will reduce the risk of fatal surgical complications and improve the quality of life of people affected with such fractures. 3D scaffolds loaded with cheap nano-particles that possess an osteogenic effect were prepared by nano-electrospinning. The Microstructure and morphology characterizations of the 3D scaffolds were monitored using scanning electron microscopy (SEM). The physicochemical characterization was investigated using X-ray diffractometry (XRD) and infrared spectroscopy (IR). The Physicomechanical properties of the 3D scaffold were determined by a universal testing machine. The in vitro bioactivity of the 3D scaffold was assessed in simulated body fluid (SBF). The bone-bonding ability of novel 3D scaffolds was also evaluated. The obtained nanofibrous scaffolds demonstrated promising microstructure, physicochemical and physicomechanical features appropriate for enhanced bone regeneration. Therefore, the utilized nanomaterials loaded with the drug are greatly recommended as cheap alternatives to growth factors.

Keywords: bone regeneration, cheap scaffolds, nanomaterials, active molecules

Procedia PDF Downloads 189
1276 Mapping Soils from Terrain Features: The Case of Nech SAR National Park of Ethiopia

Authors: Shetie Gatew

Abstract:

Current soil maps of Ethiopia do not represent accurately the soils of Nech Sar National Park. In the framework of studies on the ecology of the park, we prepared a soil map based on field observations and a digital terrain model derived from SRTM data with a 30-m resolution. The landscape comprises volcanic cones, lava and basalt outflows, undulating plains, horsts, alluvial plains and river deltas. SOTER-like terrain mapping units were identified. First, the DTM was classified into 128 terrain classes defined by slope gradient (4 classes), relief intensity (4 classes), potential drainage density (2 classes), and hypsometry (4 classes). A soil-landscape relation between the terrain mapping units and WRB soil units was established based on 34 soil profile pits. Based on this relation, the terrain mapping units were either merged or split to represent a comprehensive soil and terrain map. The soil map indicates that Leptosols (30 %), Cambisols (26%), Andosols (21%), Fluvisols (12 %), and Vertisols (9%) are the most widespread Reference Soil Groups of the park. In contrast, the harmonized soil map of Africa derived from the FAO soil map of the world indicates that Luvisols (70%), Vertisols (14%) and Fluvisols (16%) would be the most common Reference Soil Groups. However, these latter mapping units are not consistent with the topography, nor did we find such extensive areas occupied by Luvisols during the field survey. This case study shows that with the now freely available SRTM data, it is possible to improve current soil information layers with relatively limited resources, even in a complex terrain like Nech Sar National Park.

Keywords: andosols, cambisols, digital elevation model, leptosols, soil-landscaps relation

Procedia PDF Downloads 105
1275 Multi-Stage Classification for Lung Lesion Detection on CT Scan Images Applying Medical Image Processing Technique

Authors: Behnaz Sohani, Sahand Shahalinezhad, Amir Rahmani, Aliyu Aliyu

Abstract:

Recently, medical imaging and specifically medical image processing is becoming one of the most dynamically developing areas of medical science. It has led to the emergence of new approaches in terms of the prevention, diagnosis, and treatment of various diseases. In the process of diagnosis of lung cancer, medical professionals rely on computed tomography (CT) scans, in which failure to correctly identify masses can lead to incorrect diagnosis or sampling of lung tissue. Identification and demarcation of masses in terms of detecting cancer within lung tissue are critical challenges in diagnosis. In this work, a segmentation system in image processing techniques has been applied for detection purposes. Particularly, the use and validation of a novel lung cancer detection algorithm have been presented through simulation. This has been performed employing CT images based on multilevel thresholding. The proposed technique consists of segmentation, feature extraction, and feature selection and classification. More in detail, the features with useful information are selected after featuring extraction. Eventually, the output image of lung cancer is obtained with 96.3% accuracy and 87.25%. The purpose of feature extraction applying the proposed approach is to transform the raw data into a more usable form for subsequent statistical processing. Future steps will involve employing the current feature extraction method to achieve more accurate resulting images, including further details available to machine vision systems to recognise objects in lung CT scan images.

Keywords: lung cancer detection, image segmentation, lung computed tomography (CT) images, medical image processing

Procedia PDF Downloads 101
1274 Intrusion Detection in Cloud Computing Using Machine Learning

Authors: Faiza Babur Khan, Sohail Asghar

Abstract:

With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.

Keywords: cloud security, threats, machine learning, random forest, classification

Procedia PDF Downloads 320
1273 Evaluating the Use of Manned and Unmanned Aerial Vehicles in Strategic Offensive Tasks

Authors: Yildiray Korkmaz, Mehmet Aksoy

Abstract:

In today's operations, countries want to reach their aims in the shortest way due to economical, political and humanitarian aspects. The most effective way of achieving this goal is to be able to penetrate strategic targets. Strategic targets are generally located deep inside of the countries and are defended by modern and efficient surface to air missiles (SAM) platforms which are operated as integrated with Intelligence, Surveillance and Reconnaissance (ISR) systems. On the other hand, these high valued targets are buried deep underground and hardened with strong materials against attacks. Therefore, to penetrate these targets requires very detailed intelligence. This intelligence process should include a wide range that is from weaponry to threat assessment. Accordingly, the framework of the attack package will be determined. This mission package has to execute missions in a high threat environment. The way to minimize the risk which depends on loss of life is to use packages which are formed by UAVs. However, some limitations arising from the characteristics of UAVs restricts the performance of the mission package consisted of UAVs. So, the mission package should be formed with UAVs under the leadership of a fifth generation manned aircraft. Thus, we can minimize the limitations, easily penetrate in the deep inside of the enemy territory with minimum risk, make a decision according to ever-changing conditions and finally destroy the strategic targets. In this article, the strengthens and weakness aspects of UAVs are examined by SWOT analysis. And also, it revealed features of a mission package and presented as an example what kind of a mission package we should form in order to get marginal benefit and penetrate into strategic targets with the development of autonomous mission execution capability in the near future.

Keywords: UAV, autonomy, mission package, strategic attack, mission planning

Procedia PDF Downloads 550
1272 Earthquake Resistant Sustainable Steel Green Building

Authors: Arup Saha Chaudhuri

Abstract:

Structural steel is a very ductile material with high strength carrying capacity, thus it is very useful to make earthquake resistant buildings. It is a homogeneous material also. The member section and the structural system can be made very efficient for economical design. As the steel is recyclable and reused, it is a green material. The embodied energy for the efficiently designed steel structure is less than the RC structure. For sustainable green building steel is the best material nowadays. Moreover, pre-engineered and pre-fabricated faster construction methodologies help the development work to complete within the stipulated time. In this paper, the usefulness of Eccentric Bracing Frame (EBF) in steel structure over Moment Resisting Frame (MRF) and Concentric Bracing Frame (CBF) is shown. Stability of the steel structures against horizontal forces especially in seismic condition is efficiently possible by Eccentric bracing systems with economic connection details. The EBF is pin–ended, but the beam-column joints are designed for pin ended or for full connectivity. The EBF has several desirable features for seismic resistance. In comparison with CBF system, EBF system can be designed for appropriate stiffness and drift control. The link beam is supposed to yield in shear or flexure before initiation of yielding or buckling of the bracing member in tension or compression. The behavior of a 2-D steel frame is observed under seismic loading condition in the present paper. Ductility and brittleness of the frames are compared with respect to time period of vibration and dynamic base shear. It is observed that the EBF system is better than MRF system comparing the time period of vibration and base shear participation.

Keywords: steel building, green and sustainable, earthquake resistant, EBF system

Procedia PDF Downloads 349