Search results for: recurrent artificial neural network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6950

Search results for: recurrent artificial neural network

3650 Participation in the Decision Making and Job Satisfaction in Greek Fish Farms

Authors: S. Anastasiou, C. Nathanailides

Abstract:

There is considerable evidence to suggest that employees participation in the decision-making process of an organisation, has a positive effect on job satisfaction and work performance of the employees. The purpose of the present work was to examine the HRM practices, demographics and the level of job satisfaction of employees in Greek Aquaculture fish farms. A survey of employees (n=86) in 6 Greek Aquaculture Firms was carried out. The results indicate that HRM practices such as recruitment of the personnel and communication between the departments did not vary between different firms. The most frequent method of recruitment was through the professional network or the personal network of the managers. The preferred method of HRM communication was through the line managers and through group meeting. The level of job satisfaction increased with work experience participation and participation in the decision making process. A high percentage of the employees (81,3%±8.39) felt that they frequently participated in the decision making process. The Aquaculture employees exhibited high level of job satisfaction (88,1±6.95). The level of job satisfaction was related with participation in the decision making process (-0.633, P<0.05) but was not related with as age or gender. In terms of the working conditions, employees were mostly satisfied with their work itself, their colleagues and mostly dissatisfied with working hours, salary issues and low prospects of pay rises.

Keywords: aquaculture, human resources, job satisfaction

Procedia PDF Downloads 472
3649 Cerebrovascular Modeling: A Vessel Network Approach for Fluid Distribution

Authors: Karla E. Sanchez-Cazares, Kim H. Parker, Jennifer H. Tweedy

Abstract:

The purpose of this work is to develop a simple compartmental model of cerebral fluid balance including blood and cerebrospinal-fluid (CSF). At the first level the cerebral arteries and veins are modelled as bifurcating trees with constant scaling factors between generations which are connected through a homogeneous microcirculation. The arteries and veins are assumed to be non-rigid and the cross-sectional area, resistance and mean pressure in each generation are determined as a function of blood volume flow rate. From the mean pressure and further assumptions about the variation of wall permeability, the transmural fluid flux can be calculated. The results suggest the next level of modelling where the cerebral vasculature is divided into three compartments; the large arteries, the small arteries, the capillaries and the veins with effective compliances and permeabilities derived from the detailed vascular model. These vascular compartments are then linked to other compartments describing the different CSF spaces, the cerebral ventricles and the subarachnoid space. This compartmental model is used to calculate the distribution of fluid in the cranium. Known volumes and flows for normal conditions are used to determine reasonable parameters for the model, which can then be used to help understand pathological behaviour and suggest clinical interventions.

Keywords: cerebrovascular, compartmental model, CSF model, vascular network

Procedia PDF Downloads 277
3648 Modeling of Power Network by ATP-Draw for Lightning Stroke Studies

Authors: John Morales, Armando Guzman

Abstract:

Protection relay algorithms play a crucial role in Electric Power System stability, where, it is clear that lightning strokes produce the mayor percentage of faults and outages of Transmission Lines (TLs) and Distribution Feeders (DFs). In this context, it is imperative to develop novel protection relay algorithms. However, in order to get this aim, Electric Power Systems (EPS) network have to be simulated as real as possible, especially the lightning phenomena, and EPS elements that affect their behavior like direct and indirect lightning, insulator string, overhead line, soil ionization and other. However, researchers have proposed new protection relay algorithms considering common faults, which are not produced by lightning strokes, omitting these imperative phenomena for the transmission line protection relays behavior. Based on the above said, this paper presents the possibilities of using the Alternative Transient Program ATP-Draw for the modeling and simulation of some models to make lightning stroke studies, especially for protection relays, which are developed through Transient Analysis of Control Systems (TACS) and MODELS language corresponding to the ATP-Draw.

Keywords: back-flashover, faults, flashover, lightning stroke, modeling of lightning, outages, protection relays

Procedia PDF Downloads 317
3647 AS-Geo: Arbitrary-Sized Image Geolocalization with Learnable Geometric Enhancement Resizer

Authors: Huayuan Lu, Chunfang Yang, Ma Zhu, Baojun Qi, Yaqiong Qiao, Jiangqian Xu

Abstract:

Image geolocalization has great application prospects in fields such as autonomous driving and virtual/augmented reality. In practical application scenarios, the size of the image to be located is not fixed; it is impractical to train different networks for all possible sizes. When its size does not match the size of the input of the descriptor extraction model, existing image geolocalization methods usually directly scale or crop the image in some common ways. This will result in the loss of some information important to the geolocalization task, thus affecting the performance of the image geolocalization method. For example, excessive down-sampling can lead to blurred building contour, and inappropriate cropping can lead to the loss of key semantic elements, resulting in incorrect geolocation results. To address this problem, this paper designs a learnable image resizer and proposes an arbitrary-sized image geolocation method. (1) The designed learnable image resizer employs the self-attention mechanism to enhance the geometric features of the resized image. Firstly, it applies bilinear interpolation to the input image and its feature maps to obtain the initial resized image and the resized feature maps. Then, SKNet (selective kernel net) is used to approximate the best receptive field, thus keeping the geometric shapes as the original image. And SENet (squeeze and extraction net) is used to automatically select the feature maps with strong contour information, enhancing the geometric features. Finally, the enhanced geometric features are fused with the initial resized image, to obtain the final resized images. (2) The proposed image geolocalization method embeds the above image resizer as a fronting layer of the descriptor extraction network. It not only enables the network to be compatible with arbitrary-sized input images but also enhances the geometric features that are crucial to the image geolocalization task. Moreover, the triplet attention mechanism is added after the first convolutional layer of the backbone network to optimize the utilization of geometric elements extracted by the first convolutional layer. Finally, the local features extracted by the backbone network are aggregated to form image descriptors for image geolocalization. The proposed method was evaluated on several mainstream datasets, such as Pittsburgh30K, Tokyo24/7, and Places365. The results show that the proposed method has excellent size compatibility and compares favorably to recently mainstream geolocalization methods.

Keywords: image geolocalization, self-attention mechanism, image resizer, geometric feature

Procedia PDF Downloads 217
3646 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker

Abstract:

Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine

Procedia PDF Downloads 127
3645 Proposing an Algorithm to Cluster Ad Hoc Networks, Modulating Two Levels of Learning Automaton and Nodes Additive Weighting

Authors: Mohammad Rostami, Mohammad Reza Forghani, Elahe Neshat, Fatemeh Yaghoobi

Abstract:

An Ad Hoc network consists of wireless mobile equipment which connects to each other without any infrastructure, using connection equipment. The best way to form a hierarchical structure is clustering. Various methods of clustering can form more stable clusters according to nodes' mobility. In this research we propose an algorithm, which allocates some weight to nodes based on factors, i.e. link stability and power reduction rate. According to the allocated weight in the previous phase, the cellular learning automaton picks out in the second phase nodes which are candidates for being cluster head. In the third phase, learning automaton selects cluster head nodes, member nodes and forms the cluster. Thus, this automaton does the learning from the setting and can form optimized clusters in terms of power consumption and link stability. To simulate the proposed algorithm we have used omnet++4.2.2. Simulation results indicate that newly formed clusters have a longer lifetime than previous algorithms and decrease strongly network overload by reducing update rate.

Keywords: mobile Ad Hoc networks, clustering, learning automaton, cellular automaton, battery power

Procedia PDF Downloads 414
3644 Exploring Causes of Homelessness and Shelter Entry: A Case Study Analysis of Shelter Data in New York

Authors: Lindsay Fink, Sarha Smith-Moyo, Leanne W. Charlesworth

Abstract:

In recent years, the number of individuals experiencing homelessness has increased in the United States. This paper analyzes 2019 data from 16 different emergency shelters in Monroe County, located in Upstate New York. The data were collected through the County’s Homeless Management Information System (HMIS), and individuals were de-identified and de-duplicated for analysis. The purpose of this study is to explore the basic characteristics of the homeless population in Monroe County, and the dynamics of shelter use. The results of this study showed gender as a significant factor when analyzing the relationship between demographic variables and recorded reasons for shelter entry. Results also indicated that age and ethnicity did not significantly influence odds of re-entering a shelter, but did significantly influence reasons for shelter entry. Overall, the most common recorded cause of shelter entry in 2019 in the examined county was eviction by primary tenant. Recommendations to better address recurrent shelter entry and potential chronic homelessness include more consideration for the diversity existing within the homeless population, and the dynamics leading to shelter stays, including enhanced funding and training for shelter staff, as well as expanded access to permanent supportive housing programs.

Keywords: chronic homelessness, homeless shelter stays, permanent supportive housing, shelter population dynamics

Procedia PDF Downloads 160
3643 Strengthening Farmer-to-farmer Knowledge Sharing Network: A Pathway to Improved Extension Service Delivery

Authors: Farouk Shehu Abdulwahab

Abstract:

The concept of farmer-farmer knowledge sharing was introduced to bridge the extension worker-farmer ratio gap in developing countries. However, the idea was poorly accepted, especially in typical agrarian communities. Therefore, the study explores the concept of a farmer-to-farmer knowledge-sharing network to enhance extension service delivery. The study collected data from 80 farmers randomly selected through a series of multiple stages. The Data was analysed using a 5-point Likert scale and descriptive statistics. The Likert scale results revealed that 62.5% of the farmers are satisfied with farmer-to-farmer knowledge-sharing networks. Moreover, descriptive statistics show that lack of capacity building and low level of education are the most significant problems affecting farmer-farmer sharing networks. The major implication of these findings is that the concept of farmer-farmer knowledge-sharing networks can work better for farmers in developing countries as it was perceived by them as a reliable alternative for information sharing. Therefore, the study recommends introducing incentives into the concept of farmer-farmer knowledge-sharing networks and enhancing the capabilities of farmers who are opinion leaders in the farmer-farmer concept of knowledge-sharing to make it more sustainable.

Keywords: agricultural productivity, extension, farmer-to-farmer, livelihood, technology transfer

Procedia PDF Downloads 69
3642 Surgical Outcome of Heavy Silicone Oil in Rhegmatogenous Retinal Detachment

Authors: Pheeraphat Ussadamongkol, Suthasinee Sinawat

Abstract:

Objective: The purpose of this study is to evaluate the anatomical and visual outcomes associated with the use of heavy silicone oil (HSO) during pars plana vitrectomy (PPV) in patients with rhegmatogenous retinal detachment (RRD). Materials and methods: A Total of 66 eyes of 66 patients with RRD patients who underwent PPV with HSO from 2018-2023 were included in this retrospective study. Risk factors of surgical outcomes were also investigated. Results: The mean age of the recruited patients was 55.26 ± 13.05 years. The most common diagnosis was recurrent RRD, with 43 patients (65.15%), and the majority of these patients (81.39%) had a history of multiple vitreoretinal surgeries. Inferior breaks and PVR grade ≧ C were present in 65.15% and 42.42% of cases, respectively. The mean duration of HSO tamponade was 7.77+5.19 months. The retinal attachment rate after surgery was 71.21%, with a final attachment rate of 87.88%. The mean final VA was 1.62 ± 1.11 logMAR. 54.54% of patients could achieve a final visual acuity (VA)  6/60. Multivariate analysis revealed that proliferative vitreoretinopathy (PVR) and multiple breaks were significantly associated with retinal redetachment, while initial good VA (  6/60) was associated with good visual outcome ( 6/60). The most common complications were glaucoma (30.3%) and epimacular membrane (7.58%). Conclusion: The use of heavy silicone oil in pars plana vitrectomy for rhegmatogenous retinal detachment yields favorable anatomical and visual outcomes. Factors associated with retinal redetachment are proliferative vitreoretinopathy and multiple breaks. Good initial VA can predict good visual outcomes.

Keywords: rhegmatogenous retinal detachment, heavy silicone oil, surgical outcome, visual outcome, risk factors

Procedia PDF Downloads 13
3641 Intelligent Rainwater Reuse System for Irrigation

Authors: Maria M. S. Pires, Andre F. X. Gloria, Pedro J. A. Sebastiao

Abstract:

The technological advances in the area of Internet of Things have been creating more and more solutions in the area of agriculture. These solutions are quite important for life, as they lead to the saving of the most precious resource, water, being this need to save water a concern worldwide. The paper proposes the creation of an Internet of Things system based on a network of sensors and interconnected actuators that automatically monitors the quality of the rainwater that is stored inside a tank in order to be used for irrigation. The main objective is to promote sustainability by reusing rainwater for irrigation systems instead of water that is usually available for other functions, such as other productions or even domestic tasks. A mobile application was developed for Android so that the user can control and monitor his system in real time. In the application, it is possible to visualize the data that translate the quality of the water inserted in the tank, as well as perform some actions on the implemented actuators, such as start/stop the irrigation system and pour the water in case of poor water quality. The implemented system translates a simple solution with a high level of efficiency and tests and results obtained within the possible environment.

Keywords: internet of things, irrigation system, wireless sensor and actuator network, ESP32, sustainability, water reuse, water efficiency

Procedia PDF Downloads 152
3640 Financial and Economic Crisis as a Challenge for Non-Derogatibility of Human Rights

Authors: Mirjana Dokmanovic

Abstract:

The paper will introduce main findings of the research of the responses of the Central European and South Eastern European (CEE/SEE) countries to the global economic and financial crisis in 2008 from human rights and gender perspectives. The research methodology included desk research and qualitative analysis of the available data, studies, statistics, and reports produced by the governments, the UN agencies, international financial institutions (IFIs) and international network of civil society organizations. The main conclusion of the study is that the governments in the region missed to assess the impacts of their anti-crisis policies both ex ante and ex post from the standpoint of human rights and gender equality. Majority of the countries have focused their efforts solely on prompting up the banking and financial sectors, and construction business sectors. The tremendous debt which the states have accumulated for the rescue of banks and industries lead to further cuts in social expenses and reduction of public services. Decreasing state support to health care and social protection and declining family incomes made social services unaffordable for many families. Thus, the economic and financial crisis stirred up the care crisis that was absorbed by women’s intensifying unpaid work within a family and household to manage household survival strategy. On the other hand, increased burden of the care work weakened the position of women in the labour market and their opportunities to find a job. The study indicates that the artificial separation of the real economy and the sphere of social reproduction still persist. This has created additional burden of unpaid work of women within a family. The aim of this paper is to introduce the lessons learnt for future: (a) human rights may not be derogated in the times of crisis; (b) the obligation of states to mitigate negative impacts of economic policies to population, particularly to vulnerable groups, must be prioritized; (c) IFIs and business sector must be liable as duty bearers with respect to human rights commitments.

Keywords: CEE/SEE region, global financial and economic crisis, international financial institutions, human rights commitments, principle of non-derogability of human rights

Procedia PDF Downloads 205
3639 Deciphering Orangutan Drawing Behavior Using Artificial Intelligence

Authors: Benjamin Beltzung, Marie Pelé, Julien P. Renoult, Cédric Sueur

Abstract:

To this day, it is not known if drawing is specifically human behavior or if this behavior finds its origins in ancestor species. An interesting window to enlighten this question is to analyze the drawing behavior in genetically close to human species, such as non-human primate species. A good candidate for this approach is the orangutan, who shares 97% of our genes and exhibits multiple human-like behaviors. Focusing on figurative aspects may not be suitable for orangutans’ drawings, which may appear as scribbles but may have meaning. A manual feature selection would lead to an anthropocentric bias, as the features selected by humans may not match with those relevant for orangutans. In the present study, we used deep learning to analyze the drawings of a female orangutan named Molly († in 2011), who has produced 1,299 drawings in her last five years as part of a behavioral enrichment program at the Tama Zoo in Japan. We investigate multiple ways to decipher Molly’s drawings. First, we demonstrate the existence of differences between seasons by training a deep learning model to classify Molly’s drawings according to the seasons. Then, to understand and interpret these seasonal differences, we analyze how the information spreads within the network, from shallow to deep layers, where early layers encode simple local features and deep layers encode more complex and global information. More precisely, we investigate the impact of feature complexity on classification accuracy through features extraction fed to a Support Vector Machine. Last, we leverage style transfer to dissociate features associated with drawing style from those describing the representational content and analyze the relative importance of these two types of features in explaining seasonal variation. Content features were relevant for the classification, showing the presence of meaning in these non-figurative drawings and the ability of deep learning to decipher these differences. The style of the drawings was also relevant, as style features encoded enough information to have a classification better than random. The accuracy of style features was higher for deeper layers, demonstrating and highlighting the variation of style between seasons in Molly’s drawings. Through this study, we demonstrate how deep learning can help at finding meanings in non-figurative drawings and interpret these differences.

Keywords: cognition, deep learning, drawing behavior, interpretability

Procedia PDF Downloads 169
3638 Resting-State Functional Connectivity Analysis Using an Independent Component Approach

Authors: Eric Jacob Bacon, Chaoyang Jin, Dianning He, Shuaishuai Hu, Lanbo Wang, Han Li, Shouliang Qi

Abstract:

Objective: Refractory epilepsy is a complicated type of epilepsy that can be difficult to diagnose. Recent technological advancements have made resting-state functional magnetic resonance (rsfMRI) a vital technique for studying brain activity. However, there is still much to learn about rsfMRI. Investigating rsfMRI connectivity may aid in the detection of abnormal activities. In this paper, we propose studying the functional connectivity of rsfMRI candidates to diagnose epilepsy. Methods: 45 rsfMRI candidates, comprising 26 with refractory epilepsy and 19 healthy controls, were enrolled in this study. A data-driven approach known as independent component analysis (ICA) was used to achieve our goal. First, rsfMRI data from both patients and healthy controls were analyzed using group ICA. The components that were obtained were then spatially sorted to find and select meaningful ones. A two-sample t-test was also used to identify abnormal networks in patients and healthy controls. Finally, based on the fractional amplitude of low-frequency fluctuations (fALFF), a chi-square statistic test was used to distinguish the network properties of the patient and healthy control groups. Results: The two-sample t-test analysis yielded abnormal in the default mode network, including the left superior temporal lobe and the left supramarginal. The right precuneus was found to be abnormal in the dorsal attention network. In addition, the frontal cortex showed an abnormal cluster in the medial temporal gyrus. In contrast, the temporal cortex showed an abnormal cluster in the right middle temporal gyrus and the right fronto-operculum gyrus. Finally, the chi-square statistic test was significant, producing a p-value of 0.001 for the analysis. Conclusion: This study offers evidence that investigating rsfMRI connectivity provides an excellent diagnosis option for refractory epilepsy.

Keywords: ICA, RSN, refractory epilepsy, rsfMRI

Procedia PDF Downloads 80
3637 Advanced Simulation and Enhancement for Distributed and Energy Efficient Scheduling for IEEE802.11s Wireless Enhanced Distributed Channel Access Networks

Authors: Fisayo G. Ojo, Shamala K. Subramaniam, Zuriati Ahmad Zukarnain

Abstract:

As technology is advancing and wireless applications are becoming dependable sources, while the physical layer of the applications are been embedded into tiny layer, so the more the problem on energy efficiency and consumption. This paper reviews works done in recent years in wireless applications and distributed computing, we discovered that applications are becoming dependable, and resource allocation sharing with other applications in distributed computing. Applications embedded in distributed system are suffering from power stability and efficiency. In the reviews, we also prove that discrete event simulation has been left behind untouched and not been adapted into distributed system as a simulation technique in scheduling of each event that took place in the development of distributed computing applications. We shed more lights on some researcher proposed techniques and results in our reviews to prove the unsatisfactory results, and to show that more work still have to be done on issues of energy efficiency in wireless applications, and congestion in distributed computing.

Keywords: discrete event simulation (DES), distributed computing, energy efficiency (EE), internet of things (IOT), quality of service (QOS), user equipment (UE), wireless mesh network (WMN), wireless sensor network (wsn), worldwide interoperability for microwave access x (WiMAX)

Procedia PDF Downloads 193
3636 An Approximation Technique to Automate Tron

Authors: P. Jayashree, S. Rajkumar

Abstract:

With the trend of virtual and augmented reality environments booming to provide a life like experience, gaming is a major tool in supporting such learning environments. In this work, a variant of Voronoi heuristics, employing supervised learning for the TRON game is proposed. The paper discusses the features that would be really useful when a machine learning bot is to be used as an opponent against a human player. Various game scenarios, nature of the bot and the experimental results are provided for the proposed variant to prove that the approach is better than those that are currently followed.

Keywords: artificial Intelligence, automation, machine learning, TRON game, Voronoi heuristics

Procedia PDF Downloads 470
3635 Multi-Objective Electric Vehicle Charge Coordination for Economic Network Management under Uncertainty

Authors: Ridoy Das, Myriam Neaimeh, Yue Wang, Ghanim Putrus

Abstract:

Electric vehicles are a popular transportation medium renowned for potential environmental benefits. However, large and uncontrolled charging volumes can impact distribution networks negatively. Smart charging is widely recognized as an efficient solution to achieve both improved renewable energy integration and grid relief. Nevertheless, different decision-makers may pursue diverse and conflicting objectives. In this context, this paper proposes a multi-objective optimization framework to control electric vehicle charging to achieve both energy cost reduction and peak shaving. A weighted-sum method is developed due to its intuitiveness and efficiency. Monte Carlo simulations are implemented to investigate the impact of uncertain electric vehicle driving patterns and provide decision-makers with a robust outcome in terms of prospective cost and network loading. The results demonstrate that there is a conflict between energy cost efficiency and peak shaving, with the decision-makers needing to make a collaborative decision.

Keywords: electric vehicles, multi-objective optimization, uncertainty, mixed integer linear programming

Procedia PDF Downloads 180
3634 Harnessing the Power of Artificial Intelligence: Advancements and Ethical Considerations in Psychological and Behavioral Sciences

Authors: Nayer Mofidtabatabaei

Abstract:

Advancements in artificial intelligence (AI) have transformed various fields, including psychology and behavioral sciences. This paper explores the diverse ways in which AI is applied to enhance research, diagnosis, therapy, and understanding of human behavior and mental health. We discuss the potential benefits and challenges associated with AI in these fields, emphasizing the ethical considerations and the need for collaboration between AI researchers and psychological and behavioral science experts. Artificial Intelligence (AI) has gained prominence in recent years, revolutionizing multiple industries, including healthcare, finance, and entertainment. One area where AI holds significant promise is the field of psychology and behavioral sciences. AI applications in this domain range from improving the accuracy of diagnosis and treatment to understanding complex human behavior patterns. This paper aims to provide an overview of the various AI applications in psychological and behavioral sciences, highlighting their potential impact, challenges, and ethical considerations. Mental Health Diagnosis AI-driven tools, such as natural language processing and sentiment analysis, can analyze large datasets of text and speech to detect signs of mental health issues. For example, chatbots and virtual therapists can provide initial assessments and support to individuals suffering from anxiety or depression. Autism Spectrum Disorder (ASD) Diagnosis AI algorithms can assist in early ASD diagnosis by analyzing video and audio recordings of children's behavior. These tools help identify subtle behavioral markers, enabling earlier intervention and treatment. Personalized Therapy AI-based therapy platforms use personalized algorithms to adapt therapeutic interventions based on an individual's progress and needs. These platforms can provide continuous support and resources for patients, making therapy more accessible and effective. Virtual Reality Therapy Virtual reality (VR) combined with AI can create immersive therapeutic environments for treating phobias, PTSD, and social anxiety. AI algorithms can adapt VR scenarios in real-time to suit the patient's progress and comfort level. Data Analysis AI aids researchers in processing vast amounts of data, including survey responses, brain imaging, and genetic information. Privacy Concerns Collecting and analyzing personal data for AI applications in psychology and behavioral sciences raise significant privacy concerns. Researchers must ensure the ethical use and protection of sensitive information. Bias and Fairness AI algorithms can inherit biases present in training data, potentially leading to biased assessments or recommendations. Efforts to mitigate bias and ensure fairness in AI applications are crucial. Transparency and Accountability AI-driven decisions in psychology and behavioral sciences should be transparent and subject to accountability. Patients and practitioners should understand how AI algorithms operate and make decisions. AI applications in psychological and behavioral sciences have the potential to transform the field by enhancing diagnosis, therapy, and research. However, these advancements come with ethical challenges that require careful consideration. Collaboration between AI researchers and psychological and behavioral science experts is essential to harness AI's full potential while upholding ethical standards and privacy protections. The future of AI in psychology and behavioral sciences holds great promise, but it must be navigated with caution and responsibility.

Keywords: artificial intelligence, psychological sciences, behavioral sciences, diagnosis and therapy, ethical considerations

Procedia PDF Downloads 73
3633 Manufacturing New Insulating Materials: A Study on Thermal Properties of Date Palm Wood

Authors: K. Almi, S. Lakel, A. Benchabane, A. Kriker

Abstract:

The fiber–matrix compatibility can be improved if suitable enforcements are chosen. Whenever the reinforcements have more thermal stability, they can resist to the main processes for wood–thermoplastic composites. Several researches are focused on natural resources for the production of biomaterials intended for technical applications. Date palm wood present one of the world’s most important natural resource. Its use as insulating materials will help to solve the severe environmental and recycling problems which other artificial insulating materials caused. This paper reports the results of an experimental investigation on the thermal proprieties of date palm wood from Algeria. A study of physical, chemical and mechanical properties is also carried out. The goal is to use this natural material in the manufacture of thermal insulation materials for buildings. The local natural resources used in this study are the date palm fibers from Biskra oasis in Algeria. The results have shown that there is no significant difference in the morphological proprieties of the four types of residues. Their chemical composition differed slightly; with the lowest amounts of cellulose and lignin content belong to Petiole. Water absorption study proved that Rachis has a low value of sorption whereas Petiole and Fibrillium have a high value of sorption what influenced their mechanical properties. It is seen that the Rachis and leaflets exhibit a high tensile strength values compared to the other residue. On the other hand the low value of bulk density of Petiole and Fibrillium leads to high value of specific tensile strength and young modulus. It was found that the specific young modulus of Petiole and Fibrillium was higher than that of Rachis and Leaflets and that of other natural fibers or even artificial fibers. Compared to the other materials date palm wood provide a good thermal proprieties thus, date palm wood will be a good candidate for the manufacturing efficient and safe insulating materials.

Keywords: composite materials, date palm fiber, natural fibers, tensile tests, thermal proprieties

Procedia PDF Downloads 644
3632 Other-Generated Disclosure: A Challenge to Privacy on Social Network Sites

Authors: Tharntip Tawnie Chutikulrungsee, Oliver Kisalay Burmeister, Maumita Bhattacharya, Dragana Calic

Abstract:

Sharing on social network sites (SNSs) has rapidly emerged as a new social norm and has become a global phenomenon. Billions of users reveal not only their own information (self disclosure) but also information about others (other-generated disclosure), resulting in a risk and a serious threat to either personal or informational privacy. Self-disclosure (SD) has been extensively researched in the literature, particularly regarding control of individual and existing privacy management. However, far too little attention has been paid to other-generated disclosure (OGD), especially by insiders. OGD has a strong influence on self-presentation, self-image, and electronic word of mouth (eWOM). Moreover, OGD is more credible and less likely manipulated than SD, but lacks privacy control and legal protection to some extent. This article examines OGD in depth, ranging from motivation to both online and offline impacts, based upon lived experiences from both ‘the disclosed’ and ‘the discloser’. Using purposive sampling, this phenomenological study involves an online survey and in-depth interviews. The findings report the influence of peer disclosure as well as users’ strategies to mitigate privacy issues. This article also calls attention to the challenge of OGD privacy and inadequacies in the law related to privacy protection in the digital domain.

Keywords: facebook, online privacy, other-generated disclosure, social networks sites (SNSs)

Procedia PDF Downloads 254
3631 Relay Node Placement for Connectivity Restoration in Wireless Sensor Networks Using Genetic Algorithms

Authors: Hanieh Tarbiat Khosrowshahi, Mojtaba Shakeri

Abstract:

Wireless Sensor Networks (WSNs) consist of a set of sensor nodes with limited capability. WSNs may suffer from multiple node failures when they are exposed to harsh environments such as military zones or disaster locations and lose connectivity by getting partitioned into disjoint segments. Relay nodes (RNs) are alternatively introduced to restore connectivity. They cost more than sensors as they benefit from mobility, more power and more transmission range, enforcing a minimum number of them to be used. This paper addresses the problem of RN placement in a multiple disjoint network by developing a genetic algorithm (GA). The problem is reintroduced as the Steiner tree problem (which is known to be an NP-hard problem) by the aim of finding the minimum number of Steiner points where RNs are to be placed for restoring connectivity. An upper bound to the number of RNs is first computed to set up the length of initial chromosomes. The GA algorithm then iteratively reduces the number of RNs and determines their location at the same time. Experimental results indicate that the proposed GA is capable of establishing network connectivity using a reasonable number of RNs compared to the best existing work.

Keywords: connectivity restoration, genetic algorithms, multiple-node failure, relay nodes, wireless sensor networks

Procedia PDF Downloads 246
3630 End-to-End Pyramid Based Method for Magnetic Resonance Imaging Reconstruction

Authors: Omer Cahana, Ofer Levi, Maya Herman

Abstract:

Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction.

Keywords: magnetic resonance imaging, image reconstruction, pyramid network, deep learning

Procedia PDF Downloads 93
3629 Interactive Glare Visualization Model for an Architectural Space

Authors: Florina Dutt, Subhajit Das, Matthew Swartz

Abstract:

Lighting design and its impact on indoor comfort conditions are an integral part of good interior design. Impact of lighting in an interior space is manifold and it involves many sub components like glare, color, tone, luminance, control, energy efficiency, flexibility etc. While other components have been researched and discussed multiple times, this paper discusses the research done to understand the glare component from an artificial lighting source in an indoor space. Consequently, the paper discusses a parametric model to convey real time glare level in an interior space to the designer/ architect. Our end users are architects and likewise for them it is of utmost importance to know what impression the proposed lighting arrangement and proposed furniture layout will have on indoor comfort quality. This involves specially those furniture elements (or surfaces) which strongly reflect light around the space. Essentially, the designer needs to know the ramification of the ‘discomfortable glare’ at the early stage of design cycle, when he still can afford to make changes to his proposed design and consider different routes of solution for his client. Unfortunately, most of the lighting analysis tools that are present, offer rigorous computation and analysis on the back end eventually making it challenging for the designer to analyze and know the glare from interior light quickly. Moreover, many of them do not focus on glare aspect of the artificial light. That is why, in this paper, we explain a novel approach to approximate interior glare data. Adding to that we visualize this data in a color coded format, expressing the implications of their proposed interior design layout. We focus on making this analysis process very fluid and fast computationally, enabling complete user interaction with the capability to vary different ranges of user inputs adding more degrees of freedom for the user. We test our proposed parametric model on a case study, a Computer Lab space in our college facility.

Keywords: computational geometry, glare impact in interior space, info visualization, parametric lighting analysis

Procedia PDF Downloads 352
3628 Performance Based Road Asset Evaluation

Authors: Kidus Dawit Gedamu

Abstract:

Addis Ababa City Road Authority is responsible for managing and setting performance evaluation of the city’s road network using the International Roughness Index (IRI). This helps the authority to conduct pavement condition assessments of asphalt roads each year to determine the health status or Level of service (LOS) of the roadway network and plan program improvements such as maintenance, resurfacing and rehabilitation. For a lower IRI limit economical and acceptable maintenance strategy may be selected among a number of maintenance alternatives. The Highway Development and Management (HDM-4) tool can do such measures to help decide which option is the best by evaluating the economic and structural conditions. This paper specifically addresses flexible pavement, including two principal arterial streets under the administration of the Addis Ababa City Roads Authority. The roads include the road from Megenagna Interchange to Ayat Square and from Ayat Square to Tafo RA. First, it was assessed the procedures followed by the city's road authority to develop the appropriate road maintenance strategies. Questionnaire surveys and interviews are used to collect information from the city's road maintenance departments. Second, the project analysis was performed for functional and economic comparison of different maintenance alternatives using HDM-4.

Keywords: appropriate maintenance strategy, cost stream, road deterioration, maintenance alternative

Procedia PDF Downloads 63
3627 Strengthening by Assessment: A Case Study of Rail Bridges

Authors: Evangelos G. Ilias, Panagiotis G. Ilias, Vasileios T. Popotas

Abstract:

The United Kingdom has one of the oldest railway networks in the world dating back to 1825 when the world’s first passenger railway was opened. The network has some 40,000 bridges of various construction types using a wide range of materials including masonry, steel, cast iron, wrought iron, concrete and timber. It is commonly accepted that the successful operation of the network is vital for the economy of the United Kingdom, consequently the cost effective maintenance of the existing infrastructure is a high priority to maintain the operability of the network, prevent deterioration and to extend the life of the assets. Every bridge on the railway network is required to be assessed every eighteen years and a structured approach to assessments is adopted with three main types of progressively more detailed assessments used. These assessment types include Level 0 (standardized spreadsheet assessment tools), Level 1 (analytical hand calculations) and Level 2 (generally finite element analyses). There is a degree of conservatism in the first two types of assessment dictated to some extent by the relevant standards which can lead to some structures not achieving the required load rating. In these situations, a Level 2 Assessment is often carried out using finite element analysis to uncover ‘latent strength’ and improve the load rating. If successful, the more sophisticated analysis can save on costly strengthening or replacement works and avoid disruption to the operational railway. This paper presents the ‘strengthening by assessment’ achieved by Level 2 analyses. The use of more accurate analysis assumptions and the implementation of non-linear modelling and functions (material, geometric and support) to better understand buckling modes and the structural behaviour of historic construction details that are not specifically covered by assessment codes are outlined. Metallic bridges which are susceptible to loss of section size through corrosion have largest scope for improvement by the Level 2 Assessment methodology. Three case studies are presented, demonstrating the effectiveness of the sophisticated Level 2 Assessment methodology using finite element analysis against the conservative approaches employed for Level 0 and Level 1 Assessments. One rail overbridge and two rail underbridges that did not achieve the required load rating by means of a Level 1 Assessment due to the inadequate restraint provided by U-Frame action are examined and the increase in assessed capacity given by the Level 2 Assessment is outlined.

Keywords: assessment, bridges, buckling, finite element analysis, non-linear modelling, strengthening

Procedia PDF Downloads 312
3626 Microbial Bioproduction with Design of Metabolism and Enzyme Engineering

Authors: Tomokazu Shirai, Akihiko Kondo

Abstract:

Technologies of metabolic engineering or synthetic biology are essential for effective microbial bioproduction. It is especially important to develop an in silico tool for designing a metabolic pathway producing an unnatural and valuable chemical such as fossil materials of fuel or plastics. We here demonstrated two in silico tools for designing novel metabolic pathways: BioProV and HyMeP. Furthermore, we succeeded in creating an artificial metabolic pathway by enzyme engineering.

Keywords: bioinformatics, metabolic engineering, synthetic biology, genome scale model

Procedia PDF Downloads 339
3625 Spanish Language Violence Corpus: An Analysis of Offensive Language in Twitter

Authors: Beatriz Botella-Gil, Patricio Martínez-Barco, Lea Canales

Abstract:

The Internet and ICT are an integral element of and omnipresent in our daily lives. Technologies have changed the way we see the world and relate to it. The number of companies in the ICT sector is increasing every year, and there has also been an increase in the work that occurs online, from sending e-mails to the way companies promote themselves. In social life, ICT’s have gained momentum. Social networks are useful for keeping in contact with family or friends that live far away. This change in how we manage our relationships using electronic devices and social media has been experienced differently depending on the age of the person. According to currently available data, people are increasingly connected to social media and other forms of online communication. Therefore, it is no surprise that violent content has also made its way to digital media. One of the important reasons for this is the anonymity provided by social media, which causes a sense of impunity in the victim. Moreover, it is not uncommon to find derogatory comments, attacking a person’s physical appearance, hobbies, or beliefs. This is why it is necessary to develop artificial intelligence tools that allow us to keep track of violent comments that relate to violent events so that this type of violent online behavior can be deterred. The objective of our research is to create a guide for detecting and recording violent messages. Our annotation guide begins with a study on the problem of violent messages. First, we consider the characteristics that a message should contain for it to be categorized as violent. Second, the possibility of establishing different levels of aggressiveness. To download the corpus, we chose the social network Twitter for its ease of obtaining free messages. We chose two recent, highly visible violent cases that occurred in Spain. Both of them experienced a high degree of social media coverage and user comments. Our corpus has a total of 633 messages, manually tagged, according to the characteristics we considered important, such as, for example, the verbs used, the presence of exclamations or insults, and the presence of negations. We consider it necessary to create wordlists that are present in violent messages as indicators of violence, such as lists of negative verbs, insults, negative phrases. As a final step, we will use automatic learning systems to check the data obtained and the effectiveness of our guide.

Keywords: human language technologies, language modelling, offensive language detection, violent online content

Procedia PDF Downloads 135
3624 Characteristic Sentence Stems in Academic English Texts: Definition, Identification, and Extraction

Authors: Jingjie Li, Wenjie Hu

Abstract:

Phraseological units in academic English texts have been a central focus in recent corpus linguistic research. A wide variety of phraseological units have been explored, including collocations, chunks, lexical bundles, patterns, semantic sequences, etc. This paper describes a special category of clause-level phraseological units, namely, Characteristic Sentence Stems (CSSs), with a view to describing their defining criteria and extraction method. CSSs are contiguous lexico-grammatical sequences which contain a subject-predicate structure and which are frame expressions characteristic of academic writing. The extraction of CSSs consists of six steps: Part-of-speech tagging, n-gram segmentation, structure identification, significance of occurrence calculation, text range calculation, and overlapping sequence reduction. Significance of occurrence calculation is the crux of this study. It includes the computing of both the internal association and the boundary independence of a CSS and tests the occurring significance of the CSS from both inside and outside perspectives. A new normalization algorithm is also introduced into the calculation of LocalMaxs for reducing overlapping sequences. It is argued that many sentence stems are so recurrent in academic texts that the most typical of them have become the habitual ways of making meaning in academic writing. Therefore, studies of CSSs could have potential implications and reference value for academic discourse analysis, English for Academic Purposes (EAP) teaching and writing.

Keywords: characteristic sentence stem, extraction method, phraseological unit, the statistical measure

Procedia PDF Downloads 170
3623 Using Hidden Markov Chain for Improving the Dependability of Safety-Critical Wireless Sensor Networks

Authors: Issam Alnader, Aboubaker Lasebae, Rand Raheem

Abstract:

Wireless sensor networks (WSNs) are distributed network systems used in a wide range of applications, including safety-critical systems. The latter provide critical services, often concerned with human life or assets. Therefore, ensuring the dependability requirements of Safety critical systems is of paramount importance. The purpose of this paper is to utilize the Hidden Markov Model (HMM) to elongate the service availability of WSNs by increasing the time it takes a node to become obsolete via optimal load balancing. We propose an HMM algorithm that, given a WSN, analyses and predicts undesirable situations, notably, nodes dying unexpectedly or prematurely. We apply this technique to improve on C. Lius’ algorithm, a scheduling-based algorithm which has served to improve the lifetime of WSNs. Our experiments show that our HMM technique improves the lifetime of the network, achieved by detecting nodes that die early and rebalancing their load. Our technique can also be used for diagnosis and provide maintenance warnings to WSN system administrators. Finally, our technique can be used to improve algorithms other than C. Liu’s.

Keywords: wireless sensor networks, IoT, dependability of safety WSNs, energy conservation, sleep awake schedule

Procedia PDF Downloads 103
3622 DTI Connectome Changes in the Acute Phase of Aneurysmal Subarachnoid Hemorrhage Improve Outcome Classification

Authors: Sarah E. Nelson, Casey Weiner, Alexander Sigmon, Jun Hua, Haris I. Sair, Jose I. Suarez, Robert D. Stevens

Abstract:

Graph-theoretical information from structural connectomes indicated significant connectivity changes and improved acute prognostication in a Random Forest (RF) model in aneurysmal subarachnoid hemorrhage (aSAH), which can lead to significant morbidity and mortality and has traditionally been fraught by poor methods to predict outcome. This study’s hypothesis was that structural connectivity changes occur in canonical brain networks of acute aSAH patients, and that these changes are associated with functional outcome at six months. In a prospective cohort of patients admitted to a single institution for management of acute aSAH, patients underwent diffusion tensor imaging (DTI) as part of a multimodal MRI scan. A weighted undirected structural connectome was created of each patient’s images using Constant Solid Angle (CSA) tractography, with 176 regions of interest (ROIs) defined by the Johns Hopkins Eve atlas. ROIs were sorted into four networks: Default Mode Network, Executive Control Network, Salience Network, and Whole Brain. The resulting nodes and edges were characterized using graph-theoretic features, including Node Strength (NS), Betweenness Centrality (BC), Network Degree (ND), and Connectedness (C). Clinical (including demographics and World Federation of Neurologic Surgeons scale) and graph features were used separately and in combination to train RF and Logistic Regression classifiers to predict two outcomes: dichotomized modified Rankin Score (mRS) at discharge and at six months after discharge (favorable outcome mRS 0-2, unfavorable outcome mRS 3-6). A total of 56 aSAH patients underwent DTI a median (IQR) of 7 (IQR=8.5) days after admission. The best performing model (RF) combining clinical and DTI graph features had a mean Area Under the Receiver Operator Characteristic Curve (AUROC) of 0.88 ± 0.00 and Area Under the Precision Recall Curve (AUPRC) of 0.95 ± 0.00 over 500 trials. The combined model performed better than the clinical model alone (AUROC 0.81 ± 0.01, AUPRC 0.91 ± 0.00). The highest-ranked graph features for prediction were NS, BC, and ND. These results indicate reorganization of the connectome early after aSAH. The performance of clinical prognostic models was increased significantly by the inclusion of DTI-derived graph connectivity metrics. This methodology could significantly improve prognostication of aSAH.

Keywords: connectomics, diffusion tensor imaging, graph theory, machine learning, subarachnoid hemorrhage

Procedia PDF Downloads 191
3621 Radish Sprout Growth Dependency on LED Color in Plant Factory Experiment

Authors: Tatsuya Kasuga, Hidehisa Shimada, Kimio Oguchi

Abstract:

Recent rapid progress in ICT (Information and Communication Technology) has advanced the penetration of sensor networks (SNs) and their attractive applications. Agriculture is one of the fields well able to benefit from ICT. Plant factories control several parameters related to plant growth in closed areas such as air temperature, humidity, water, culture medium concentration, and artificial lighting by using computers and AI (Artificial Intelligence) is being researched in order to obtain stable and safe production of vegetables and medicinal plants all year anywhere, and attain self-sufficiency in food. By providing isolation from the natural environment, a plant factory can achieve higher productivity and safe products. However, the biggest issue with plant factories is the return on investment. Profits are tenuous because of the large initial investments and running costs, i.e. electric power, incurred. At present, LED (Light Emitting Diode) lights are being adopted because they are more energy-efficient and encourage photosynthesis better than the fluorescent lamps used in the past. However, further cost reduction is essential. This paper introduces experiments that reveal which color of LED lighting best enhances the growth of cultured radish sprouts. Radish sprouts were cultivated in the experimental environment formed by a hydroponics kit with three cultivation shelves (28 samples per shelf) each with an artificial lighting rack. Seven LED arrays of different color (white, blue, yellow green, green, yellow, orange, and red) were compared with a fluorescent lamp as the control. Lighting duration was set to 12 hours a day. Normal water with no fertilizer was circulated. Seven days after germination, the length, weight and area of leaf of each sample were measured. Electrical power consumption for all lighting arrangements was also measured. Results and discussions: As to average sample length, no clear difference was observed in terms of color. As regards weight, orange LED was less effective and the difference was significant (p < 0.05). As to leaf area, blue, yellow and orange LEDs were significantly less effective. However, all LEDs offered higher productivity per W consumed than the fluorescent lamp. Of the LEDs, the blue LED array attained the best results in terms of length, weight and area of leaf per W consumed. Conclusion and future works: An experiment on radish sprout cultivation under 7 different color LED arrays showed no clear difference in terms of sample size. However, if electrical power consumption is considered, LEDs offered about twice the growth rate of the fluorescent lamp. Among them, blue LEDs showed the best performance. Further cost reduction e.g. low power lighting remains a big issue for actual system deployment. An automatic plant monitoring system with sensors is another study target.

Keywords: electric power consumption, LED color, LED lighting, plant factory

Procedia PDF Downloads 191