Search results for: space vector pulse width modulation
2940 Environmental Radioactivity Analysis by a Sequential Approach
Authors: G. Medkour Ishak-Boushaki, A. Taibi, M. Allab
Abstract:
Quantitative environmental radioactivity measurements are needed to determine the level of exposure of a population to ionizing radiations and for the assessment of the associated risks. Gamma spectrometry remains a very powerful tool for the analysis of radionuclides present in an environmental sample but the basic problem in such measurements is the low rate of detected events. Using large environmental samples could help to get around this difficulty but, unfortunately, new issues are raised by gamma rays attenuation and self-absorption. Recently, a new method has been suggested, to detect and identify without quantification, in a short time, a gamma ray of a low count source. This method does not require, as usually adopted in gamma spectrometry measurements, a pulse height spectrum acquisition. It is based on a chronological record of each detected photon by simultaneous measurements of its energy ε and its arrival time τ on the detector, the pair parameters [ε,τ] defining an event mode sequence (EMS). The EMS serials are analyzed sequentially by a Bayesian approach to detect the presence of a given radioactive source. The main object of the present work is to test the applicability of this sequential approach in radioactive environmental materials detection. Moreover, for an appropriate health oversight of the public and of the concerned workers, the analysis has been extended to get a reliable quantification of the radionuclides present in environmental samples. For illustration, we consider as an example, the problem of detection and quantification of 238U. Monte Carlo simulated experience is carried out consisting in the detection, by a Ge(Hp) semiconductor junction, of gamma rays of 63 keV emitted by 234Th (progeny of 238U). The generated EMS serials are analyzed by a Bayesian inference. The application of the sequential Bayesian approach, in environmental radioactivity analysis, offers the possibility of reducing the measurements time without requiring large environmental samples and consequently avoids the attached inconvenient. The work is still in progress.Keywords: Bayesian approach, event mode sequence, gamma spectrometry, Monte Carlo method
Procedia PDF Downloads 4952939 Diversity Indices as a Tool for Evaluating Quality of Water Ways
Authors: Khadra Ahmed, Khaled Kheireldin
Abstract:
In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.Keywords: planktons, diversity indices, water quality index, water ways
Procedia PDF Downloads 5182938 The Effects of Functionality Level on Gait in Subjects with Low Back Pain
Authors: Vedat Kurt, Tansel Koyunoglu, Gamze Kurt, Ozgen Aras
Abstract:
Low back pain is one of the most common health problem in public. Common symptoms that can be associated with low back pain include; pain, functional disability, gait disturbances. The aim of the study was to investigate the differences between disability scores and gait parameters in subjects with low back pain. Sixty participants are included in our study, (35 men, 25 women, mean age: 37.65±10.02 years). Demographic characteristics of participants were recorded. Pain (visual analog scale) and disability level (Oswestry Disability Index(ODI)) were evaluated. Gait parameters were measured with Zebris-FDM-2 platform. Independent samples t-test was used to analyse the differences between subjects with under 40 points (n=31, mean age:35.8±11.3) and above 40 points (n=29, mean age:39.6±8.1) of ODI scores. Significant level in statistical analysis was accepted as 0.05. There was no significant difference between the ODI scores and groups’ ages. Statistically significant differences were found in step width between subjects with under 40 points of ODI and above 40 points of ODI score(p < 0.05). But there were non-significant differences with other gait parameters (p > 0.05). The differences between gait parameters and pain scores were not statistically significant (p > 0.05). Researchers generally agree that individuals with LBP walk slower and take shorter steps and have asymmetric step lengths when compared with than their age-matched pain-free counterparts. Also perceived general disability may have moderate correlation with walking performance. In the current study, the patients classified as minimal/moderate and severe disability level by using ODI scores. As a result, a patient with LBP who have higher disability level tends to increase support surface. On the other hand, we did not find any relation between pain intensity and gait parameters. It may be caused by the classification system of pain scores. Additional research is needed to investigate the effects of functionality level and pain intensity on gait in subjects with low back pain under different classification types.Keywords: functionality, low back pain, gait, pain
Procedia PDF Downloads 2852937 The Richtmyer-Meshkov Instability Impacted by the Interface with Different Components Distribution
Authors: Sheng-Bo Zhang, Huan-Hao Zhang, Zhi-Hua Chen, Chun Zheng
Abstract:
In this paper, the Richtmyer-Meshkov instability has been studied numerically by using the high-resolution Roe scheme based on the two-dimensional unsteady Euler equation, which was caused by the interaction between shock wave and the helium circular light gas cylinder with different component distributions. The numerical results further discuss the deformation process of the gas cylinder, the wave structure of the flow field and quantitatively analyze the characteristic dimensions (length, height, and central axial width) of the gas cylinder, the volume compression ratio of the cylinder over time. In addition, the flow mechanism of shock-driven interface gas mixing is analyzed from multiple perspectives by combining it with the flow field pressure, velocity, circulation, and gas mixing rate. Then the effects of different initial component distribution conditions on interface instability are investigated. The results show when the diffusion interface transit to the sharp interface, the reflection coefficient gradually increases on both sides of the interface. When the incident shock wave interacts with the cylinder, the transmission of the shock wave will transit from conventional transmission to unconventional transmission. At the same time, the reflected shock wave is gradually strengthened, and the transmitted shock wave is gradually weakened, which leads to an increase in the Richtmyer-Meshkov instability. Moreover, the Atwood number on both sides of the interface also increases as the diffusion interface transit to the sharp interface, which leads to an increase in the Rayleigh-Taylor instability and the Kelvin-Helmholtz instability. Therefore, the increase in instability will lead to an increase the circulation, resulting in an increase in the growth rate of gas mixing rate.Keywords: shock wave, He light cylinder, Richtmyer-Meshkov instability, Gaussian distribution
Procedia PDF Downloads 772936 A Study on Computational Fluid Dynamics (CFD)-Based Design Optimization Techniques Using Multi-Objective Evolutionary Algorithms (MOEA)
Authors: Ahmed E. Hodaib, Mohamed A. Hashem
Abstract:
In engineering applications, a design has to be as fully perfect as possible in some defined case. The designer has to overcome many challenges in order to reach the optimal solution to a specific problem. This process is called optimization. Generally, there is always a function called “objective function” that is required to be maximized or minimized by choosing input parameters called “degrees of freedom” within an allowed domain called “search space” and computing the values of the objective function for these input values. It becomes more complex when we have more than one objective for our design. As an example for Multi-Objective Optimization Problem (MOP): A structural design that aims to minimize weight and maximize strength. In such case, the Pareto Optimal Frontier (POF) is used, which is a curve plotting two objective functions for the best cases. At this point, a designer should make a decision to choose the point on the curve. Engineers use algorithms or iterative methods for optimization. In this paper, we will discuss the Evolutionary Algorithms (EA) which are widely used with Multi-objective Optimization Problems due to their robustness, simplicity, suitability to be coupled and to be parallelized. Evolutionary algorithms are developed to guarantee the convergence to an optimal solution. An EA uses mechanisms inspired by Darwinian evolution principles. Technically, they belong to the family of trial and error problem solvers and can be considered global optimization methods with a stochastic optimization character. The optimization is initialized by picking random solutions from the search space and then the solution progresses towards the optimal point by using operators such as Selection, Combination, Cross-over and/or Mutation. These operators are applied to the old solutions “parents” so that new sets of design variables called “children” appear. The process is repeated until the optimal solution to the problem is reached. Reliable and robust computational fluid dynamics solvers are nowadays commonly utilized in the design and analyses of various engineering systems, such as aircraft, turbo-machinery, and auto-motives. Coupling of Computational Fluid Dynamics “CFD” and Multi-Objective Evolutionary Algorithms “MOEA” has become substantial in aerospace engineering applications, such as in aerodynamic shape optimization and advanced turbo-machinery design.Keywords: mathematical optimization, multi-objective evolutionary algorithms "MOEA", computational fluid dynamics "CFD", aerodynamic shape optimization
Procedia PDF Downloads 2562935 Intercultural Competencies as a Means to Rethink the Pedagogies of Diversity in Latin America
Authors: Marcelo Jose Cabarcas Ortega, Lissette Herrera, Juan Carlos Lemus Stave
Abstract:
This work makes a rather theoretical reflection on a pedagogical response against the coloniality of knowledge and power. The purpose here is to reflect on the challenges and opportunities it opens up in the educational field. No doubt, ours derived in a more abstract than concrete reflection. The quest, nevertheless, to stimulate the interest in a non-violent, non-contemptuous education able to balance, improves and if necessary, transforms the relationships that have made it a space of privilege and exclusion. We all know the school has found itself in need of rethinking diversity while developing awareness of its own role in reproducing inequality. Intercultural education may provide an answer to that hurry when fostering critical awareness and dialogue.Keywords: decoloniality, coloniality of power, diversity, interculturality
Procedia PDF Downloads 2332934 The Anesthesia Considerations in Robotic Mastectomies
Authors: Amrit Vasdev, Edwin Rho, Gurinder Vasdev
Abstract:
Robotic surgery has enabled a new spectrum of minimally invasive breast reconstruction by improving visualization, surgeon posturing, and improved patient outcomes.1 The DaVinci robot system can be utilized in nipple sparing mastectomies and reconstructions. The process involves the insufflation of the subglandular space and a dissection of the mammary gland with a combination of cautery and blunt dissection. This case outlines a 35-year-old woman who has a long-standing family history of breast cancer and a diagnosis of a deleterious BRCA2 genetic mutation. She has decided to proceed with bilateral nipple sparing mastectomies with implants. Her perioperative mammogram and MRI were negative for masses, however, her left internal mammary lymph node was enlarged. She has taken oral contraceptive pills for 3-5 years and denies DES exposure, radiation therapy, human replacement therapy, or prior breast surgery. She does not smoke and rarely consumes alcohol. During the procedure, the patient received a standardized anesthetic for out-patient surgery of propofol infusion, succinylcholine, sevoflurane, and fentanyl. Aprepitant was given as an antiemetic and preoperative Tylenol and gabapentin for pain management. Concerns for the patient during the procedure included CO2 insufflation into the subcutaneous space. With CO2 insufflation, there is a potential for rapid uptake leading to severe acidosis, embolism, and subcutaneous emphysema.2To mitigate this, it is important to hyperventilate the patient and reduce both the insufflation pressure and the CO2 flow rate to the minimal acceptable by the surgeon. For intraoperative monitoring during this 6-9 hour long procedure, it has been suggested to utilize an Arterial-Line for end-tidal CO2 monitoring. However, in this case, it was not necessary as the patient had excellent cardiovascular reserve, and end-tidal CO2 was within normal limits for the duration of the procedure. A BIS monitor was also utilized to reduce anesthesia burden and to facilitate a prompt discharge from the PACU. Minimal Invasive Robotic Surgery will continue to evolve, and anesthesiologists need to be prepared for the new challenges ahead. Based on our limit number of patients, robotic mastectomy appears to be a safe alternative to open surgery with the promise of clearer tissue demarcation and better cosmetic results.Keywords: anesthesia, mastectomies, robotic, hypercarbia
Procedia PDF Downloads 1122933 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting
Authors: Kemal Polat
Abstract:
In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.Keywords: fuzzy C-means clustering, fuzzy C-means clustering based attribute weighting, Pima Indians diabetes, SVM
Procedia PDF Downloads 4132932 Molecular Dynamics Simulation Studies of Thermal Effects Created by High-Intensity, Ultra-Short Pulses Induced Cell Membrane Electroporation
Authors: Jiahui Song
Abstract:
The use of electric fields with high intensity (~ 100kV/cm or higher) and ultra short pulse durations (nanosecond range) has been a recent development. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal effects that drive for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. MD simulations of a lipid layer with constant electric field strength of 0.5 V/nm at 25 °C and 47 °C are implemented to simulate the appropriate thermal effects. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. The high background electric field is typically used in MD simulations to probe electroporation. It serves as an accelerated test of the pore formation process since low electric fields would take inordinately long simulation time. MD simulation shows no pore is formed in a 1-ns snapshot for a DPPC membrane set at a temperature of 25°C after a 0.5 V/nm electric field is applied. A nano-sized pore is clearly seen in a 0.75-ns snapshot on the same geometry, but with the membrane surfaces kept at temperatures of 47°C. And the pore increases at 1 ns. The MD simulation results suggest the possibility that the increase in temperature can result in different degrees of electrically stimulated bio-effects. The results points to the role of thermal effects in facilitating and accelerating the electroporation process.Keywords: high-intensity, ultra-short, electroporation, thermal effects, molecular dynamics
Procedia PDF Downloads 522931 Compromising Quality of Life in Low Income Settlemnt’s: The Case of Ashrayan Prakalpa Prakalpa, Khulna
Authors: Salma Akter, Md. Kamal Uddin
Abstract:
Ashrayan (shelter) Prakalpa – a fully subsidized ‘integrated poverty eradication program’ through the provisioning of shelter of Bangladesh Government (GoB) targeting the internally displaced and homeless. In spite of the inclusiveness (poverty alleviation, employment opportunity, Tenure ship and training) of the shelter policy, dwellers are not merely questioned by the issue of 'the quality of life' .This study demonstrates how top-down policies, ambiguous ownership status of land and dwelling environments lead to ‘everyday compromise’ by the grassroots in both subjective (satisfaction, comfort and safety) and objective (physical design elements and physical environmental elements) issues in three respective scale macro (neighborhood) meso (shelter /built environment) and micro(family). It shows that by becoming subject to Government’s resettlements policies and after becoming user of its shelter units (although locally known as ‘barracks’ rather shelter or housing), the once displaced settlers assume a curious form of spatial practice where both social and spatial often bear slippery meanings. Thus, Policy-based shelter force the dwellers frequently compromise with their provided built environments and spaces within the settlements both in overtly and covertly. Compromises are made during the production of space and forms, whereas interesting new spaces and space-making practices emerge. The settlements under study are Dakshin Chandani Mahal Ashrayan Prakalpa located at the Eastern fringe area of Khulna, Bangladesh. In terms of methodology, this research is primarily exploratory and assumes a qualitative approach. Key tools used to obtain information are policy analysis, literature review, key informant interview, focus group discussion and participant observation at the level of dwelling and settlements. Necessary drawings and photographs have been taken to promote the study objective. Findings revealed that various shortages, inadequacies and negligence of policymakers make a compromising character of displaced by the means of 'quality of life' both in objective and subjective ground. Thus the study ends up with a recommendation to the policymakers to take an initiative to ensure the quality of life of the dwellers.Keywords: Ashrayan, compromise, displaced people, quality of life
Procedia PDF Downloads 3382930 Modulation of Isoprenaline-Induced Myocardial Damage by Atorvastatin
Authors: Dalia Atallah, Lamiaa Ahmed, Hala Zaki, Mahmoud Khattab
Abstract:
Background: Isoprenaline (ISO) administration induces myocardial damage via oxidative stress and endothelial dysfunction. Atorvastatin (ATV) treatment improves both oxidative stress and endothelial dysfunction yet recent studies have reported a pro-oxidant effect upon ATV administration on both clinical and experimental studies. The present study was directed to investigate the effect of ATV pre-treatment and treatment on ISO-induced myocardial damage. Methods: Male rats were divided into five groups (n = 10). Rats were given ISO (5mg/kg/day, i.p.) for one week with or without ATV (10mg/kg/day, p.o.). ATV was given either as pre-treatment for one week before its co-administration with ISO for another week or as a treatment for two weeks at the end of the ISO administration. At the end of the experiment, the electrocardiographic examination was done and blood was isolated for the estimation of plasma creatine kinase MB (CK-MB) activity. Rats were then sacrificed and the whole ventricles were isolated for histological examination and the estimation of lipid peroxides as malondialdehyde (MDA) level, reduced glutathione (GSH) level, catalase activity, total nitrate-nitrite (NOx), as well as the estimation of both endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) protein expression. Results: ISO-induced myocardial damage showed a significant elevation in ST segment, an increase in CK-MB activity, as well as increased oxidative stress biomarkers. Also, ISO-treated rats showed a significant decrease in myocardial NOx level and eNOS as well as degeneration in the myocardium. ATV pre-treatment didn’t show any protection to ISO-treated rats. On the other hand, ATV treatment showed a significant decrease in both the elevated ST wave and CK-MB activity. Moreover, ATV Treatment succeeded to improve oxidative stress biomarkers, tissue NOx, and eNOS protein expression, as well as amelioration of the histological alterations. Conclusion: Pre-treatment with ATV failed to protect against ISO-induced damage. This might suggest a synergistic pro-oxidant effect upon administration of the pro-oxidant ISO along with ATV as demonstrated by the increased oxidative stress and endothelial dysfunction. On the other side, ATV treatment succeeded to significantly improve oxidative stress biomarkers, endothelial dysfunction and myocardial degeneration.Keywords: atorvastatin, endothelial dysfunction, isoprenaline, oxidative stress
Procedia PDF Downloads 4462929 Strained Channel Aluminum Nitride/Gallium Nitride Heterostructures Homoepitaxially Grown on Aluminum Nitride-On-Sapphire Template by Plasma-Assisted Molecular Beam Epitaxy
Authors: Jiajia Yao, GuanLin Wu, Fang liu, JunShuai Xue, JinCheng Zhang, Yue Hao
Abstract:
Due to its outstanding material properties like high thermal conductivity and ultra-wide bandgap, Aluminum nitride (AlN) has the promising potential to provide high breakdown voltage and high output power among III-nitrides for various applications in electronics and optoelectronics. This work presents material growth and characterization of strained channel Aluminum nitride/Gallium nitride (AlN/GaN) heterostructures grown by plasma-assisted molecular beam epitaxy (PA-MBE) on AlN-on-sapphire templates. To improve the crystal quality and manifest the ability of the PA-MBE approach, a thick AlN buffer with a thickness of 180 nm is first grown on AlN template, which acts as a back-barrier to enhance the breakdown characteristic and isolates the leakage path existing in the interface between AlN epilayer and AlN template, as well as improve the heat dissipation. The grown AlN buffer features a root-mean-square roughness of 0.2 nm over a scanned area of 2×2 µm2 measured by atomic force microscopy (AFM), and exhibits full-width at half-maximum of 95 and 407 arcsec for the (002) and (102) plane the X-ray rocking curve, respectively, tested by high resolution x-ray diffraction (HR-XRD). With a thin and strained GaN channel, the electron mobility of 294 cm2 /Vs. with a carrier concentration of 2.82×1013 cm-2 at room temperature is achieved in AlN/GaN double-channel heterostructures, and the depletion capacitance is as low as 14 pF resolved by the capacitance-voltage, which indicates the promising opportunities for future applications in next-generation high temperature, high-frequency and high-power electronics with a further increased electron mobility by optimization of heterointerface quality.Keywords: AlN/GaN, HEMT, MBE, homoepitaxy
Procedia PDF Downloads 962928 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions
Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu
Abstract:
There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.Keywords: artificial intelligence, ML, logistic regression, performance, prediction
Procedia PDF Downloads 1092927 Effect of Laminating Sequence of MWCNTs and Fe₂O₃ Filled Nanocomposites on Emi Shielding Effectiveness
Authors: Javeria Ahmad, Ayesha Maryam, Zahid Rizwan, Nadeem Nasir, Yasir Nawab, Hafiz Shehbaz Ahmad
Abstract:
Mitigation of electromagnetic interference (EMI) through thin, lightweight, and cost-effective materials is critical for electronic appliances as well as human health. The present research work discusses the design of composites that are suitable to minimize EMI through various stacking sequences. The carbon fibers reinforced composite structures impregnated with dielectric (MWCNTs) and magnetic nanofillers (Fe₂O₃) were developed to investigate their microwave absorption properties. The composite structure comprising a single type of nanofillers, each of MWCNTs & Fe₂O₃, was developed, and then their layers were stacked over each other with various stacking sequences to investigate the best stacking sequence, which presents good microwave absorption characteristics. A vector network analyzer (VNA) was used to analyze the microwave absorption properties of these developed composite structures. The composite structures impregnated with the layers of a dielectric nanofiller and sandwiched between the layers of a magnetic nanofiller show the highest EMI shielding value of 59 dB and a dielectric conductivity of 35 S/cm in the frequency range of 0.1 to 13.6 GHz. The results also demonstrate that the microwave absorption properties of the developed composite structures were dominant over reflection properties. The absence of an external peak in X-ray diffraction (XRD), marked the purity of the added nanofillers.Keywords: nanocomposites, microwave absorption, EMI shielding, skin depth, reflection loss
Procedia PDF Downloads 522926 Students’ Online Forum Activities and Social Network Analysis in an E-Learning Environment
Authors: P. L. Cheng, I. N. Umar
Abstract:
Online discussion forum is a popular e-learning technique that allows participants to interact and construct knowledge. This study aims to examine the levels of participation, categories of participants and the structure of their interactions in a forum. A convenience sampling of one course coordinator and 23 graduate students was selected in this study. The forums’ log file and the Social Network Analysis software were used in this study. The analysis reveals 610 activities (including viewing forum’s topic, viewing discussion thread, posting a new thread, replying to other participants’ post, updating an existing thread and deleting a post) performed by them in this forum, with an average of 3.83 threads posted. Also, this forum consists of five at-risk participants, six bridging participants, four isolated participants and five leaders of information. In addition, the network density value is 0.15 and there exist five reciprocal interactions in this forum. The closeness value varied between 28 and 68 while the eigen vector centrality value varied between 0.008 and 0.39. The finding indicates that the participants tend to listen more rather than express their opinions in the forum. It was also revealed that those who actively provide supports in the discussion forum were not the same people who received the most responses from their peers. This study found that cliques do not exist in the forum and the participants are not selective to whom they response to, rather, it was based on the content of the posts made by their peers. Based upon the findings, further analysis with different method and population, larger sample size and a longer time frame are recommended.Keywords: e-learning, learning management system, online forum, social network analysis
Procedia PDF Downloads 3902925 Distributed Listening in Intensive Care: Nurses’ Collective Alarm Responses Unravelled through Auditory Spatiotemporal Trajectories
Authors: Michael Sonne Kristensen, Frank Loesche, James Foster, Elif Ozcan, Judy Edworthy
Abstract:
Auditory alarms play an integral role in intensive care nurses’ daily work. Most medical devices in the intensive care unit (ICU) are designed to produce alarm sounds in order to make nurses aware of immediate or prospective safety risks. The utilisation of sound as a carrier of crucial patient information is highly dependent on nurses’ presence - both physically and mentally. For ICU nurses, especially the ones who work with stationary alarm devices at the patient bed space, it is a challenge to display ‘appropriate’ alarm responses at all times as they have to navigate with great flexibility in a complex work environment. While being primarily responsible for a small number of allocated patients they are often required to engage with other nurses’ patients, relatives, and colleagues at different locations inside and outside the unit. This work explores the social strategies used by a team of nurses to comprehend and react to the information conveyed by the alarms in the ICU. Two main research questions guide the study: To what extent do alarms from a patient bed space reach the relevant responsible nurse by direct auditory exposure? By which means do responsible nurses get informed about their patients’ alarms when not directly exposed to the alarms? A comprehensive video-ethnographic field study was carried out to capture and evaluate alarm-related events in an ICU. The study involved close collaboration with four nurses who wore eye-level cameras and ear-level binaural audio recorders during several work shifts. At all time the entire unit was monitored by multiple video and audio recorders. From a data set of hundreds of hours of recorded material information about the nurses’ location, social interaction, and alarm exposure at any point in time was coded in a multi-channel replay-interface. The data shows that responsible nurses’ direct exposure and awareness of the alarms of their allocated patients vary significantly depending on work load, social relationships, and the location of the patient’s bed space. Distributed listening is deliberately employed by the nursing team as a social strategy to respond adequately to alarms, but the patterns of information flow prompted by alarm-related events are not uniform. Auditory Spatiotemporal Trajectory (AST) is proposed as a methodological label to designate the integration of temporal, spatial and auditory load information. As a mixed-method metrics it provides tangible evidence of how nurses’ individual alarm-related experiences differ from one another and from stationary points in the ICU. Furthermore, it is used to demonstrate how alarm-related information reaches the individual nurse through principles of social and distributed cognition, and how that information relates to the actual alarm event. Thereby it bridges a long-standing gap in the literature on medical alarm utilisation between, on the one hand, initiatives to measure objective data of the medical sound environment without consideration for any human experience, and, on the other hand, initiatives to study subjective experiences of the medical sound environment without detailed evidence of the objective characteristics of the environment.Keywords: auditory spatiotemporal trajectory, medical alarms, social cognition, video-ethography
Procedia PDF Downloads 1902924 Major Depressive Disorder: Diagnosis based on Electroencephalogram Analysis
Authors: Wajid Mumtaz, Aamir Saeed Malik, Syed Saad Azhar Ali, Mohd Azhar Mohd Yasin
Abstract:
In this paper, a technique based on electroencephalogram (EEG) analysis is presented, aiming for diagnosing major depressive disorder (MDD) among a potential population of MDD patients and healthy controls. EEG is recognized as a clinical modality during applications such as seizure diagnosis, index for anesthesia, detection of brain death or stroke. However, its usability for psychiatric illnesses such as MDD is less studied. Therefore, in this study, for the sake of diagnosis, 2 groups of study participants were recruited, 1) MDD patients, 2) healthy people as controls. EEG data acquired from both groups were analyzed involving inter-hemispheric asymmetry and composite permutation entropy index (CPEI). To automate the process, derived quantities from EEG were utilized as inputs to classifier such as logistic regression (LR) and support vector machine (SVM). The learning of these classification models was tested with a test dataset. Their learning efficiency is provided as accuracy of classifying MDD patients from controls, their sensitivities and specificities were reported, accordingly (LR =81.7 % and SVM =81.5 %). Based on the results, it is concluded that the derived measures are indicators for diagnosing MDD from a potential population of normal controls. In addition, the results motivate further exploring other measures for the same purpose.Keywords: major depressive disorder, diagnosis based on EEG, EEG derived features, CPEI, inter-hemispheric asymmetry
Procedia PDF Downloads 5462923 Implementation of a Multimodal Biometrics Recognition System with Combined Palm Print and Iris Features
Authors: Rabab M. Ramadan, Elaraby A. Elgallad
Abstract:
With extensive application, the performance of unimodal biometrics systems has to face a diversity of problems such as signal and background noise, distortion, and environment differences. Therefore, multimodal biometric systems are proposed to solve the above stated problems. This paper introduces a bimodal biometric recognition system based on the extracted features of the human palm print and iris. Palm print biometric is fairly a new evolving technology that is used to identify people by their palm features. The iris is a strong competitor together with face and fingerprints for presence in multimodal recognition systems. In this research, we introduced an algorithm to the combination of the palm and iris-extracted features using a texture-based descriptor, the Scale Invariant Feature Transform (SIFT). Since the feature sets are non-homogeneous as features of different biometric modalities are used, these features will be concatenated to form a single feature vector. Particle swarm optimization (PSO) is used as a feature selection technique to reduce the dimensionality of the feature. The proposed algorithm will be applied to the Institute of Technology of Delhi (IITD) database and its performance will be compared with various iris recognition algorithms found in the literature.Keywords: iris recognition, particle swarm optimization, feature extraction, feature selection, palm print, the Scale Invariant Feature Transform (SIFT)
Procedia PDF Downloads 2352922 The Impact of Natural Resources on Financial Development: The Global Perspective
Authors: Remy Jonkam Oben
Abstract:
Using a time series approach, this study investigates how natural resources impact financial development from a global perspective over the 1980-2019 period. Some important determinants of financial development (economic growth, trade openness, population growth, and investment) have been added to the model as control variables. Unit root tests have revealed that all the variables are integrated into order one. Johansen's cointegration test has shown that the variables are in a long-run equilibrium relationship. The vector error correction model (VECM) has estimated the coefficient of the error correction term (ECT), which suggests that the short-run values of natural resources, economic growth, trade openness, population growth, and investment contribute to financial development converging to its long-run equilibrium level by a 23.63% annual speed of adjustment. The estimated coefficients suggest that global natural resource rent has a statistically-significant negative impact on global financial development in the long-run (thereby validating the financial resource curse) but not in the short-run. Causality test results imply that neither global natural resource rent nor global financial development Granger-causes each other.Keywords: financial development, natural resources, resource curse hypothesis, time series analysis, Granger causality, global perspective
Procedia PDF Downloads 1702921 Influence of Reinforcement Stiffness on the Performance of Back-to-Back Reinforced Earth Wall upon Rainwater Infiltration
Authors: Gopika Rajagopal, Sudheesh Thiyyakkandi
Abstract:
Back-to-back reinforced earth (RE) walls are extensively used in these days as bridge abutments and highway ramps, owing to their cost efficiency and ease of construction. High quality select fill is the most suitable backfill material due to its excellent engineering properties and constructability. However, industries are compelled to use low quality, locally available soil because of its ample availability on site. However, several failure cases of such walls are reported, especially subsequent to rainfall events. The stiffness of reinforcement is one of the major factors affecting the performance of RE walls. The present study focused on analyzing the effect of reinforcement stiffness on the performance of complete select fill, complete marginal fill, and hybrid-fill (i.e., combination of select and marginal fills) back-to-back RE walls, immediately after construction and upon rainwater infiltration through finite element modelling. A constant width to height (W/H) ratio of 3 and height (H) of 6 m was considered for the numerical analysis and the stiffness of reinforcement layers was varied from 500 kN/m to 10000 kN/m. Results showed that reinforcement stiffness had a noticeable influence on the response of RE wall, subsequent to construction as well as rainwater infiltration. Facing displacement was found to decrease and maximum reinforcement tension and factor of safety were observed to increase with increasing the stiffness of reinforcement. However, beyond a stiffness of 5000 kN/m, no significant reduction in facing displacement was observed. The behavior of fully marginal fill wall considered in this study was found to be reasonable even after rainwater infiltration when the high stiffness reinforcement layers are used.Keywords: back-to-back reinforced earth wall, finite element modelling, rainwater infiltration, reinforcement stiffness
Procedia PDF Downloads 1552920 Assessing Antimicrobial Activity of Various Plant Extracts on Midgutmicroflora of Aedesaegypti
Authors: V. Baweja, K. K. Gupta, V. Dubey, C. Keshavam
Abstract:
Antimicrobial activity of six indigenous plants such as Tulsi Ocimum sanctum, Neem Azadirachta indica, Aloe vera, Turmeric Curcuma longa, Lantana Lantana camara, and Clove Syzygium aromaticum was assessed against the gut microbiota of the dengue fever mosquito Aedes aegypti, keeping in view that the presence of midgut bacteria may affect the ability of the vector to transmit pathogens. Eleven different types of bacterial clones were isolated from the midgut of lab-reared fourth instar larvae of Aedes aegypti and were grown on LB agar medium at an optimum temperature of 25 ºC. Identification of these bacteria was done on the basis of their colony characteristic such as colony size, shape, opacity, elevation, consistency, and growth. Light microscopic studies of the gut microbiota revealed dominance of Gram-negative cocci over gram positive cocci and bacilli and Gram-negative bacilli. Identification of species was done by chemical characterization of the colonies. Crude extracts of all test plants were screened for their antimicrobial activities against gut microbiota by disc diffusion assay. The zone of exclusion seen after 24 hr of incubation in different assays revealed the most potent antibacterial activities in neem followed by clove and turmeric. Lantana and Aloe vera were least effective.Keywords: plant extract, aedes, dengue, antimicrobial activity
Procedia PDF Downloads 4042919 Disturbance Observer for Lateral Trajectory Tracking Control for Autonomous and Cooperative Driving
Authors: Christian Rathgeber, Franz Winkler, Dirk Odenthal, Steffen Müller
Abstract:
In this contribution a structure for high level lateral vehicle tracking control based on the disturbance observer is presented. The structure is characterized by stationary compensating side forces disturbances and guaranteeing a cooperative behavior at the same time. Driver inputs are not compensated by the disturbance observer. Moreover the structure is especially useful as it robustly stabilizes the vehicle. Therefore the parameters are selected using the Parameter Space Approach. The implemented algorithms are tested in real world scenarios.Keywords: disturbance observer, trajectory tracking, robust control, autonomous driving, cooperative driving
Procedia PDF Downloads 5632918 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network
Procedia PDF Downloads 1362917 Setting Ground for Improvement of Knowledge Managament System in the Educational Organization
Authors: Mladen Djuric, Ivan Janicijevic, Sasa Lazarevic
Abstract:
One of the organizational issues is how to develop and shape decision making and knowledge management systems which will continually avoid traps of both paralyses by analyses“ and extinction by instinct“, the concepts that are a kind of tolerant limits anti-patterns which define what we can call decision making and knowledge management patterns control zone. This paper discusses potentials for development of a core base for recognizing, capturing, and analyzing anti-patterns in the educational organization, thus creating a space for improving decision making and knowledge management processes in education.Keywords: anti-patterns, decision making, education, knowledge management
Procedia PDF Downloads 6322916 Augmented Reality Aplications for Armed Forces
Authors: Murat Sözen
Abstract:
It is not at all difficult to estimate which level today’s technology reaches considering that humankinds space-faring in early 1950s. Technology is a means to help achieve goals and people can produce systems on their physical and mental abilities. Needed and used as tools in all areas of life and became a necessity and dependency, technology, widely used in the military field. To be a revolutionary change in the military matters, opportunities offered by technology should be put into practice. Tech makes weapons, sensors, platforms and soldiers carrying them more effective. To increase this efficiency in the battlefield defense industry is seeking every advantage of technology. In this study, the applicability of existing and on-going augmented reality applications for Armed Forces will be evaluated.Keywords: augmented reality, battlefield, military, virtual reality
Procedia PDF Downloads 2672915 Rapid Flood Damage Assessment of Population and Crops Using Remotely Sensed Data
Authors: Urooj Saeed, Sajid Rashid Ahmad, Iqra Khalid, Sahar Mirza, Imtiaz Younas
Abstract:
Pakistan, a flood-prone country, has experienced worst floods in the recent past which have caused extensive damage to the urban and rural areas by loss of lives, damage to infrastructure and agricultural fields. Poor flood management system in the country has projected the risks of damages as the increasing frequency and magnitude of floods are felt as a consequence of climate change; affecting national economy directly or indirectly. To combat the needs of flood emergency, this paper focuses on remotely sensed data based approach for rapid mapping and monitoring of flood extent and its damages so that fast dissemination of information can be done, from local to national level. In this research study, spatial extent of the flooding caused by heavy rains of 2014 has been mapped by using space borne data to assess the crop damages and affected population in sixteen districts of Punjab. For this purpose, moderate resolution imaging spectroradiometer (MODIS) was used to daily mark the flood extent by using Normalised Difference Water Index (NDWI). The highest flood value data was integrated with the LandScan 2014, 1km x 1km grid based population, to calculate the affected population in flood hazard zone. It was estimated that the floods covered an area of 16,870 square kilometers, with 3.0 million population affected. Moreover, to assess the flood damages, Object Based Image Analysis (OBIA) aided with spectral signatures was applied on Landsat image to attain the thematic layers of healthy (0.54 million acre) and damaged crops (0.43 million acre). The study yields that the population of Jhang district (28% of 2.5 million population) was affected the most. Whereas, in terms of crops, Jhang and Muzzafargarh are the ‘highest damaged’ ranked district of floods 2014 in Punjab. This study was completed within 24 hours of the peak flood time, and proves to be an effective methodology for rapid assessment of damages due to flood hazardKeywords: flood hazard, space borne data, object based image analysis, rapid damage assessment
Procedia PDF Downloads 3282914 A Finite Element Based Predictive Stone Lofting Simulation Methodology for Automotive Vehicles
Authors: Gaurav Bisht, Rahul Rathnakumar, Ravikumar Duggirala
Abstract:
Predictive simulations are one of the key focus areas in safety-critical industries such as aerospace and high-performance automotive engineering. The stone-chipping study is one such effort taken up by the industry to predict and evaluate the damage caused due to gravel impact on vehicles. This paper describes a finite elements based method that can simulate the ejection of gravel chips from a vehicle tire. The FE simulations were used to obtain the initial ejection velocity of the stones for various driving conditions using a computational contact mechanics approach. To verify the accuracy of the tire model, several parametric studies were conducted. The FE simulations resulted in stone loft velocities ranging from 0–8 m/s, regardless of tire speed. The stress on the tire at the instant of initial contact with the stone increased linearly with vehicle speed. Mesh convergence studies indicated that a highly resolved tire mesh tends to result in better momentum transfer between the tire and the stone. A fine tire mesh also showed a linearly increasing relationship between the tire forward speed and stone lofting speed, which was not observed in coarser meshes. However, it also highlighted a potential challenge, in that the ejection velocity vector of the stone seemed to be sensitive to the mesh, owing to the FE-based contact mechanical formulation of the problem.Keywords: abaqus, contact mechanics, foreign object debris, stone chipping
Procedia PDF Downloads 2632913 Dynamic Fault Diagnosis for Semi-Batch Reactor Under Closed-Loop Control via Independent RBFNN
Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm
Abstract:
In this paper, a new robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics and using the weighted sum-squared prediction error as the residual. The recursive orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. The several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control
Procedia PDF Downloads 4982912 Segmented Pupil Phasing with Deep Learning
Authors: Dumont Maxime, Correia Carlos, Sauvage Jean-François, Schwartz Noah, Gray Morgan
Abstract:
Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise.Keywords: wavefront sensing, deep learning, deployable telescope, space telescope
Procedia PDF Downloads 1042911 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information
Authors: Haifeng Wang, Haili Zhang
Abstract:
Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.Keywords: computational social science, movie preference, machine learning, SVM
Procedia PDF Downloads 260