Search results for: industrial networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5972

Search results for: industrial networks

2702 New Stress Instability Workability Criteria for Internal Ductile Failure in Steel Cold Heading

Authors: Amar Sabih, James Nemes

Abstract:

The occurrence of internal ductile failure within the Adiabatic Shear Band (ASB) in cold-headed products presents a significant barrier in the fast-expanding cold-heading (CH) industry. The presence of internal ductile failure in cold-headed products may lead to catastrophic fracture under tensile loads despite the ductile nature of the material causing expensive industrial recalls. Therefore, this paper presents a new workability criterion that uses stress instability as an indicator to accurately reveal the locus of initiation of internal ductile failures. The concept of the instability criterion is to use the stress ratio at failure as a weighting function to indicate the initiation of ductile failure inside the ASBs. This paper presents a comprehensive experimental, metallurgical, and finite element simulation study to calculate the material constants used in this criterion.

Keywords: adiabatic sher band, ductile failure, stress instability, workability criterion

Procedia PDF Downloads 91
2701 Exploratory Study on Psychosocial Influences of Spinal Cord Injury to Patients: Basis for Medical Social Work Intervention Plan

Authors: Delies L. Alejo

Abstract:

This study explores the psychosocial influences of Spinal Cord Injury (SCI) on patients in the Philippine Orthopedic Center Hospital in the Philippines, examining their social functioning and proposing interventions for reintegration. Quantitative data were collected through surveys using a concurrent triangulation research design, while qualitative insights were obtained via interviews. Findings revealed significant psychosocial challenges among SCI patients, impacting relationships, family dynamics, work, friendships, parenting, education, and self-care. Demographic profiles indicated variations in psychosocial functioning. The study underscores the importance of tailored interventions for SCI patients based on age, marital status, gender, education, and occupation. Triangulation of data enhanced understanding, revealing four themes: ‘Resilient Navigation of Intimacy and Connection,’ ‘Family Dynamics and Care Challenges,’ ‘Occupational Hurdles and Work Engagement,’ and ‘Social and Community Integration Obstacles.’ The study proposes a holistic intervention plan, addressing emotional challenges, creating support networks, implementing vocational rehabilitation, promoting community engagement, and sustaining collaboration with healthcare professionals.

Keywords: spinal cord injury, psychosocial influences, social functioning, concurrent triangulation, intervention plan

Procedia PDF Downloads 48
2700 Framework Proposal on How to Use Game-Based Learning, Collaboration and Design Challenges to Teach Mechatronics

Authors: Michael Wendland

Abstract:

This paper presents a framework to teach a methodical design approach by the help of using a mixture of game-based learning, design challenges and competitions as forms of direct assessment. In today’s world, developing products is more complex than ever. Conflicting goals of product cost and quality with limited time as well as post-pandemic part shortages increase the difficulty. Common design approaches for mechatronic products mitigate some of these effects by helping the users with their methodical framework. Due to the inherent complexity of these products, the number of involved resources and the comprehensive design processes, students very rarely have enough time or motivation to experience a complete approach in one semester course. But, for students to be successful in the industrial world, it is crucial to know these methodical frameworks and to gain first-hand experience. Therefore, it is necessary to teach these design approaches in a real-world setting and keep the motivation high as well as learning to manage upcoming problems. This is achieved by using a game-based approach and a set of design challenges that are given to the students. In order to mimic industrial collaboration, they work in teams of up to six participants and are given the main development target to design a remote-controlled robot that can manipulate a specified object. By setting this clear goal without a given solution path, a constricted time-frame and limited maximal cost, the students are subjected to similar boundary conditions as in the real world. They must follow the methodical approach steps by specifying requirements, conceptualizing their ideas, drafting, designing, manufacturing and building a prototype using rapid prototyping. At the end of the course, the prototypes will be entered into a contest against the other teams. The complete design process is accompanied by theoretical input via lectures which is immediately transferred by the students to their own design problem in practical sessions. To increase motivation in these sessions, a playful learning approach has been chosen, i.e. designing the first concepts is supported by using lego construction kits. After each challenge, mandatory online quizzes help to deepen the acquired knowledge of the students and badges are awarded to those who complete a quiz, resulting in higher motivation and a level-up on a fictional leaderboard. The final contest is held in presence and involves all teams with their functional prototypes that now need to contest against each other. Prices for the best mechanical design, the most innovative approach and for the winner of the robotic contest are awarded. Each robot design gets evaluated with regards to the specified requirements and partial grades are derived from the results. This paper concludes with a critical review of the proposed framework, the game-based approach for the designed prototypes, the reality of the boundary conditions, the problems that occurred during the design and manufacturing process, the experiences and feedback of the students and the effectiveness of their collaboration as well as a discussion of the potential transfer to other educational areas.

Keywords: design challenges, game-based learning, playful learning, methodical framework, mechatronics, student assessment, constructive alignment

Procedia PDF Downloads 67
2699 Modeling of Surface Roughness in Hard Turning of DIN 1.2210 Cold Work Tool Steel with Ceramic Tools

Authors: Mehmet Erdi Korkmaz, Mustafa Günay

Abstract:

Nowadays, grinding is frequently replaced with hard turning for reducing set up time and higher accuracy. This paper focused on mathematical modeling of average surface roughness (Ra) in hard turning of AISI L2 grade (DIN 1.2210) cold work tool steel with ceramic tools. The steel was hardened to 60±1 HRC after the heat treatment process. Cutting speed, feed rate, depth of cut and tool nose radius was chosen as the cutting conditions. The uncoated ceramic cutting tools were used in the machining experiments. The machining experiments were performed according to Taguchi L27 orthogonal array on CNC lathe. Ra values were calculated by averaging three roughness values obtained from three different points of machined surface. The influences of cutting conditions on surface roughness were evaluated as statistical and experimental. The analysis of variance (ANOVA) with 95% confidence level was applied for statistical analysis of experimental results. Finally, mathematical models were developed using the artificial neural networks (ANN). ANOVA results show that feed rate is the dominant factor affecting surface roughness, followed by tool nose radius and cutting speed.

Keywords: ANN, hard turning, DIN 1.2210, surface roughness, Taguchi method

Procedia PDF Downloads 371
2698 Corporate Social Responsibility: A Comparative Study of Two Largest Banks in India

Authors: Navdeep Kaur

Abstract:

Corporate Social Responsibility is the process through which the organizations execute their philanthropic visions for social welfare. This paper considers the data of one Public Sector Bank–State Bank of India (SBI) and one Private Sector Bank-Industrial Credit and Investment Corporation of India (ICICI) from the year 2008 to 2016. The study is based on descriptive research design, and secondary data collected from the annual report of respective bank from website and different literature are reviewed. Least Square Method is used for estimating CSR spending for the financial year 2017-18. The analysis shows that these banks are making efforts for the implementation of CSR, but are not spending their 2% share of profits on CSR. There is a need for better CSR activities by the banks, which is possible by concentrating more on the prevailing social issues. The finding reveals that the percentage of profit after tax spends for CSR by SBI is more compare to ICICI. The estimated Spending for CSR for 2017-18 is also more in SBI as compared to ICICI.

Keywords: banking sector, corporate social responsibility in India, financial institution, public sector banks, SBI, ICICI

Procedia PDF Downloads 193
2697 Statistical Modeling for Permeabilization of a Novel Yeast Isolate for β-Galactosidase Activity Using Organic Solvents

Authors: Shweta Kumari, Parmjit S. Panesar, Manab B. Bera

Abstract:

The hydrolysis of lactose using β-galactosidase is one of the most promising biotechnological applications, which has wide range of potential applications in food processing industries. However, due to intracellular location of the yeast enzyme, and expensive extraction methods, the industrial applications of enzymatic hydrolysis processes are being hampered. The use of permeabilization technique can help to overcome the problems associated with enzyme extraction and purification of yeast cells and to develop the economically viable process for the utilization of whole cell biocatalysts in food industries. In the present investigation, standardization of permeabilization process of novel yeast isolate was carried out using a statistical model approach known as Response Surface Methodology (RSM) to achieve maximal b-galactosidase activity. The optimum operating conditions for permeabilization process for optimal β-galactosidase activity obtained by RSM were 1:1 ratio of toluene (25%, v/v) and ethanol (50%, v/v), 25.0 oC temperature and treatment time of 12 min, which displayed enzyme activity of 1.71 IU /mg DW.

Keywords: β-galactosidase, optimization, permeabilization, response surface methodology, yeast

Procedia PDF Downloads 254
2696 Survey of Campylobacter Contamination in Poultry Meat and By-Products in Khuzestan Province

Authors: Ali Bagherpour, Masoud Soltanialvar

Abstract:

Campylobacter species are common bacterial pathogens associated with human gastroenteritis which are generally transmitted through foods of animal origin. This study was carried out to determine the prevalence of Campylobacter species in poultry meat and by products in the city of Dezful in Iran. Since April 2012 to July 2013, a total of 400 samples including meat (n = 100), liver (n = 100), gizzard (n = 100), and poultry heart (n = 100), were randomly collected from Dezful industrial poultry abattoir and were experimented in order to investigate presence of Campylobacter species. According to culture test, 251 samples out of 400 samples under study (69%) were contaminated with Campylobacter species. The highest prevalence of Campylobacter species was observed in poultry's liver (78.3%) and then in gizzard (75.8%), heart (65%) and meat (56.7%). The most common isolated Campylobacter were C. jejuni (90.9%) and the rest were C. coli (9.1%). There was a significant difference (P < 0.05) in the prevalence of Campylobacter species between the meat samples taken in the summer (86.7%). The results of this study indicate the importance of edible offal of poultries as the potential source of Campylobacter infections.

Keywords: Campylobacter jejuni, Campylobacter coli, poultry, meat, products

Procedia PDF Downloads 613
2695 Mapping the Intrinsic Vulnerability of the Quaternary Aquifer of the Eastern Mitidja (Northern Algeria)

Authors: Abida Haddouche, Ahmed Chrif Toubal

Abstract:

The Neogene basin of the Eastern Mitidja, object of the study area, represents potential water resources and especially groundwater reserves. This water is an important economic; this resource is highly sensitive which need protection and preservation. Unfortunately, these waters are exposed to various forms of pollution, whether from urban, agricultural, industrial or merely accidental. This pollution is a permanent risk of limiting resource. In this context, the work aims to evaluate the intrinsic vulnerability of the aquifer to protect and preserve the quality of this resource. It will focus on the disposal of water and land managers a cartographic document accessible to locate the areas where the water has a high vulnerability. Vulnerability mapping of the Easter Mitidja quaternary aquifer is performed by applying three methods (DRASTIC, DRIST, and GOD). Comparison and validation results show that the DRASTIC method is the most suitable method for aquifer vulnerability of the study area.

Keywords: Aquifer of Mitidja, DRASTIC method, geographic information system (GIS), vulnerability mapping

Procedia PDF Downloads 384
2694 Industrial Assessment of the Exposed Rocks on Peris Anticline Kurdistan Region of Iraq for Cement Industry

Authors: Faroojan Khajeek Sisak Siakian, Aayda Dikran Abdulahad

Abstract:

The Peris Mountain is one of the main mountains in the Iraqi Kurdistan Region, it forms one of the long anticlines trending almost East – West. The exposed formations on the top of the mountain are Bekhme, and Shiranish, with carbonate rocks of different types and thicknesses. We selected the site for sampling to be relevant for a quarry taking into consideration the thickness of the exposed rocks, no overburden, favorable quarrying faces, hardness of the rocks, bedding nature, good extension of the outcrops, and a favorable place for construction of a cement plant. We sampled the exposed rocks on the top of the mountain where a road crosses the mountain, and a total of 15 samples were collected. The distance between sampling intervals was 5 m, and each sample was collected to represent the sampling interval. The samples were subjected to X-ray fluorescence spectroscopy (XRF) to indicate the main oxides percentages in each sample. The acquired results showed the studied rocks can be used in the cement industry.

Keywords: limestone, quarry, CaO, MgO, overburden

Procedia PDF Downloads 89
2693 Cross Attention Fusion for Dual-Stream Speech Emotion Recognition

Authors: Shaode Yu, Jiajian Meng, Bing Zhu, Hang Yu, Qiurui Sun

Abstract:

Speech emotion recognition (SER) is for recognizing human subjective emotions through audio data in-depth analysis. From speech audios, how to comprehensively extract emotional information and how to effectively fuse extracted features remain challenging. This paper presents a dual-stream SER framework that embraces both full training and transfer learning of different networks for thorough feature encoding. Besides, a plug-and-play cross-attention fusion (CAF) module is implemented for the valid integration of the dual-stream encoder output. The effectiveness of the proposed CAF module is compared to the other three fusion modules (feature summation, feature concatenation, and feature-wise linear modulation) on two databases (RAVDESS and IEMO-CAP) using different dual-stream encoders (full training network, DPCNN or TextRCNN; transfer learning network, HuBERT or Wav2Vec2). Experimental results suggest that the CAF module can effectively reconcile conflicts between features from different encoders and outperform the other three feature fusion modules on the SER task. In the future, the plug-and-play CAF module can be extended for multi-branch feature fusion, and the dual-stream SER framework can be widened for multi-stream data representation to improve the recognition performance and generalization capacity.

Keywords: speech emotion recognition, cross-attention fusion, dual-stream, pre-trained

Procedia PDF Downloads 75
2692 Microwave-Assisted Chemical Pre-Treatment of Waste Sorghum Leaves: Process Optimization and Development of an Intelligent Model for Determination of Volatile Compound Fractions

Authors: Daneal Rorke, Gueguim Kana

Abstract:

The shift towards renewable energy sources for biofuel production has received increasing attention. However, the use and pre-treatment of lignocellulosic material are inundated with the generation of fermentation inhibitors which severely impact the feasibility of bioprocesses. This study reports the profiling of all volatile compounds generated during microwave assisted chemical pre-treatment of sorghum leaves. Furthermore, the optimization of reducing sugar (RS) from microwave assisted acid pre-treatment of sorghum leaves was assessed and gave a coefficient of determination (R2) of 0.76, producing an optimal RS yield of 2.74 g FS/g substrate. The development of an intelligent model to predict volatile compound fractions gave R2 values of up to 0.93 for 21 volatile compounds. Sensitivity analysis revealed that furfural and phenol exhibited high sensitivity to acid concentration, alkali concentration and S:L ratio, while phenol showed high sensitivity to microwave duration and intensity as well. These findings illustrate the potential of using an intelligent model to predict the volatile compound fraction profile of compounds generated during pre-treatment of sorghum leaves in order to establish a more robust and efficient pre-treatment regime for biofuel production.

Keywords: artificial neural networks, fermentation inhibitors, lignocellulosic pre-treatment, sorghum leaves

Procedia PDF Downloads 248
2691 Supercritical Water Gasification of Organic Wastes for Hydrogen Production and Waste Valorization

Authors: Laura Alvarez-Alonso, Francisco Garcia-Carro, Jorge Loredo

Abstract:

Population growth and industrial development imply an increase in the energy demands and the problems caused by emissions of greenhouse effect gases, which has inspired the search for clean sources of energy. Hydrogen (H₂) is expected to play a key role in the world’s energy future by replacing fossil fuels. The properties of H₂ make it a green fuel that does not generate pollutants and supplies sufficient energy for power generation, transportation, and other applications. Supercritical Water Gasification (SCWG) represents an attractive alternative for the recovery of energy from wastes. SCWG allows conversion of a wide range of raw materials into a fuel gas with a high content of hydrogen and light hydrocarbons through their treatment at conditions higher than those that define the critical point of water (temperature of 374°C and pressure of 221 bar). Methane used as a transport fuel is another important gasification product. The number of different uses of gas and energy forms that can be produced depending on the kind of material gasified and type of technology used to process it, shows the flexibility of SCWG. This feature allows it to be integrated with several industrial processes, as well as power generation systems or waste-to-energy production systems. The final aim of this work is to study which conditions and equipment are the most efficient and advantageous to explore the possibilities to obtain streams rich in H₂ from oily wastes, which represent a major problem both for the environment and human health throughout the world. In this paper, the relative complexity of technology needed for feasible gasification process cycles is discussed with particular reference to the different feedstocks that can be used as raw material, different reactors, and energy recovery systems. For this purpose, a review of the current status of SCWG technologies has been carried out, by means of different classifications based on key features as the feed treated or the type of reactor and other apparatus. This analysis allows to improve the technology efficiency through the study of model calculations and its comparison with experimental data, the establishment of kinetics for chemical reactions, the analysis of how the main reaction parameters affect the yield and composition of products, or the determination of the most common problems and risks that can occur. The results of this work show that SCWG is a promising method for the production of both hydrogen and methane. The most significant choices of design are the reactor type and process cycle, which can be conveniently adopted according to waste characteristics. Regarding the future of the technology, the design of SCWG plants is still to be optimized to include energy recovery systems in order to reduce costs of equipment and operation derived from the high temperature and pressure conditions that are necessary to convert water to the SC state, as well as to find solutions to remove corrosion and clogging of components of the reactor.

Keywords: hydrogen production, organic wastes, supercritical water gasification, system integration, waste-to-energy

Procedia PDF Downloads 147
2690 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks

Authors: Naghmeh Moradpoor Sheykhkanloo

Abstract:

Structured Query Language Injection (SQLI) attack is a code injection technique in which malicious SQL statements are inserted into a given SQL database by simply using a web browser. Losing data, disclosing confidential information or even changing the value of data are the severe damages that SQLI attack can cause on a given database. SQLI attack has also been rated as the number-one attack among top ten web application threats on Open Web Application Security Project (OWASP). OWASP is an open community dedicated to enabling organisations to consider, develop, obtain, function, and preserve applications that can be trusted. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLI attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLI attack categories, and an NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLI attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.

Keywords: neural networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection

Procedia PDF Downloads 469
2689 Operation Parameters of Vacuum Cleaned Filters

Authors: Wilhelm Hoeflinger, Thomas Laminger, Johannes Wolfslehner

Abstract:

For vacuum cleaned dust filters, used e. g. in textile industry, there exist no calculation methods to determine design parameters (e. g. traverse speed of the nozzle, filter area...). In this work a method to calculate the optimum traverse speed of the nozzle of an industrial-size flat dust filter at a given mean pressure drop and filter face velocity was elaborated. Well-known equations for the design of a cleanable multi-chamber bag-house-filter were modified in order to take into account a continuously regeneration of a dust filter by a nozzle. Thereby, the specific filter medium resistance and the specific cake resistance values are needed which can be derived from filter tests under constant operation conditions. A lab-scale filter test rig was used to derive the specific filter media resistance value and the specific cake resistance value for vacuum cleaned filter operation. Three different filter media were tested and the determined parameters were compared to each other.

Keywords: design of dust filter, dust removing, filter regeneration, operation parameters

Procedia PDF Downloads 388
2688 Assessing the Risk of Socio-economic Drought: A Case Study of Chuxiong Yi Autonomous Prefecture, China

Authors: Mengdan Guo, Zongmin Wang, Haibo Yang

Abstract:

Drought is one of the most complex and destructive natural disasters, with a huge impact on both nature and society. In recent years, adverse climate conditions and uncontrolled human activities have exacerbated the occurrence of global droughts, among which socio-economic droughts are closely related to human survival. The study of socio-economic drought risk assessment is crucial for sustainable social development. Therefore, this study comprehensively considered the risk of disaster causing factors, the exposure level of the disaster-prone environment, and the vulnerability of the disaster bearing body to construct a socio-economic drought risk assessment model for Chuxiong Prefecture in Yunnan Province. Firstly, a threedimensional frequency analysis of intensity area duration drought was conducted, followed by a statistical analysis of the drought risk of the socio-economic system. Secondly, a grid analysis model was constructed to assess the exposure levels of different agents and study the effects of drought on regional crop growth, industrial economic growth, and human consumption thresholds. Thirdly, an agricultural vulnerability model for different irrigation levels was established by using the DSSAT crop model. Industrial economic vulnerability and domestic water vulnerability under the impact of drought were investigated by constructing a standardized socio-economic drought index and coupling water loss. Finally, the socio-economic drought risk was assessed by combining hazard, exposure, and vulnerability. The results show that the frequency of drought occurrence in Chuxiong Prefecture, Yunnan Province is relatively high, with high population and economic exposure concentrated in urban areas of various counties and districts, and high agricultural exposure concentrated in mountainous and rural areas. Irrigation can effectively reduce agricultural vulnerability in Chuxiong, and the yield loss rate under the 20mm winter irrigation scenario decreased by 10.7% compared to the rain fed scenario. From the perspective of comprehensive risk, the distribution of long-term socio-economic drought risk in Chuxiong Prefecture is relatively consistent, with the more severe areas mainly concentrated in Chuxiong City and Lufeng County, followed by counties such as Yao'an, Mouding and Yuanmou. Shuangbai County has the lowest socio-economic drought risk, which is basically consistent with the economic distribution trend of Chuxiong Prefecture. And in June, July, and August, the drought risk in Chuxiong Prefecture is generally high. These results can provide constructive suggestions for the allocation of water resources and the construction of water conservancy facilities in Chuxiong Prefecture, and provide scientific basis for more effective drought prevention and control. Future research is in the areas of data quality and availability, climate change impacts, human activity impacts, and countermeasures for a more comprehensive understanding and effective response to drought risk in Chuxiong Prefecture.

Keywords: DSSAT model, risk assessment, socio-economic drought, standardized socio-economic drought index

Procedia PDF Downloads 51
2687 Automatic Early Breast Cancer Segmentation Enhancement by Image Analysis and Hough Transform

Authors: David Jurado, Carlos Ávila

Abstract:

Detection of early signs of breast cancer development is crucial to quickly diagnose the disease and to define adequate treatment to increase the survival probability of the patient. Computer Aided Detection systems (CADs), along with modern data techniques such as Machine Learning (ML) and Neural Networks (NN), have shown an overall improvement in digital mammography cancer diagnosis, reducing the false positive and false negative rates becoming important tools for the diagnostic evaluations performed by specialized radiologists. However, ML and NN-based algorithms rely on datasets that might bring issues to the segmentation tasks. In the present work, an automatic segmentation and detection algorithm is described. This algorithm uses image processing techniques along with the Hough transform to automatically identify microcalcifications that are highly correlated with breast cancer development in the early stages. Along with image processing, automatic segmentation of high-contrast objects is done using edge extraction and circle Hough transform. This provides the geometrical features needed for an automatic mask design which extracts statistical features of the regions of interest. The results shown in this study prove the potential of this tool for further diagnostics and classification of mammographic images due to the low sensitivity to noisy images and low contrast mammographies.

Keywords: breast cancer, segmentation, X-ray imaging, hough transform, image analysis

Procedia PDF Downloads 83
2686 Valorization of Residues from Forest Industry for the Generation of Energy

Authors: M. A. Amezcua-Allieri, E. Torres, J. A. Zermeño Eguía-Lis, M. Magdaleno, L. A. Melgarejo, E. Palmerín, A. Rosas, D. López, J. Aburto

Abstract:

The use of biomass to produce renewable energy is one of the forms that can be used to reduce the impact of energy production. Like any other energy resource, there are limitations for biomass use, and it must compete not only with fossil fuels but also with other renewable energy sources such as solar or wind energy. Combustion is currently the most efficient and widely used waste-to-energy process, in the areas where direct use of biomass is possible, without the need to make large transfers of raw material. Many industrial facilities can use agricultural or forestry waste, straw, chips, bagasse, etc. in their thermal systems without making major transformations or adjustments in the feeding to the ovens, making this waste an attractive and cost-effective option in terms of availability, access, and costs. In spite of the facilities and benefits, the environmental reasons (emission of gases and particulate material) are decisive for its use for energy purpose. This paper describes a valorization of residues from forest industry to generate energy, using a case study.

Keywords: bioenergy, forest waste, life-cycle assessment, waste-to-energy, electricity

Procedia PDF Downloads 305
2685 Temporal Fixed Effects: The Macroeconomic Implications on Industry Return

Authors: Mahdy Elhusseiny, Richard Gearhart, Mariam Alyammahi

Abstract:

In this study we analyse the impact of a number of major macroeconomic variables on industry-specific excess rates of return. In later specifications, we include time and recession fixed effects, to potentially capture time-specific trends that may have been changing over our panel. We have a number of results that bear mentioning. Seasonal and temporal factors found to have very large role in sector-specific excess returns. Increases in M1(money supply) decreases bank, insurance, real estate, and telecommunications, while increases industrial and transportation excess returns. The results indicate that the market return increases every sector-specific rate of return. The 2007 to 2009 recession significantly reduced excess returns in the bank, real estate, and transportation sectors.

Keywords: macroeconomic factors, industry returns, fixed effects, temporal factors

Procedia PDF Downloads 76
2684 Investigating the Regulation System of the Synchronous Motor Excitation Mode Serving as a Reactive Power Source

Authors: Baghdasaryan Marinka, Ulikyan Azatuhi

Abstract:

The efficient usage of the compensation abilities of the electrical drive synchronous motors used in production processes can essentially improve the technical and economic indices of the process.  Reducing the flows of the reactive electrical energy due to the compensation of reactive power allows to significantly reduce the load losses of power in the electrical networks. As a result of analyzing the scientific works devoted to the issues of regulating the excitation of the synchronous motors, the need for comprehensive investigation and estimation of the excitation mode has been substantiated. By means of the obtained transmission functions, in the Simulink environment of the software package MATLAB, the transition processes of the excitation mode have been studied. As a result of obtaining and estimating the graph of the Nyquist plot and the transient process, the necessity of developing the Proportional-Integral-Derivative (PID) regulator has been justified. The transient processes of the system of the PID regulator have been investigated, and the amplitude–phase characteristics of the system have been estimated. The analysis of the obtained results has shown that the regulation indices of the developed system have been improved. The developed system can be successfully applied for regulating the excitation voltage of different-power synchronous motors, operating with a changing load, ensuring a value of the power coefficient close to 1.

Keywords: transition process, synchronous motor, excitation mode, regulator, reactive power

Procedia PDF Downloads 235
2683 Dynamic Fault Diagnosis for Semi-Batch Reactor Under Closed-Loop Control via Independent RBFNN

Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm

Abstract:

In this paper, a new robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics and using the weighted sum-squared prediction error as the residual. The recursive orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. The several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.

Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control

Procedia PDF Downloads 498
2682 Fuzzy Inference-Assisted Saliency-Aware Convolution Neural Networks for Multi-View Summarization

Authors: Tanveer Hussain, Khan Muhammad, Amin Ullah, Mi Young Lee, Sung Wook Baik

Abstract:

The Big Data generated from distributed vision sensors installed on large scale in smart cities create hurdles in its efficient and beneficial exploration for browsing, retrieval, and indexing. This paper presents a three-folded framework for effective video summarization of such data and provide a compact and representative format of Big Video Data. In the first fold, the paper acquires input video data from the installed cameras and collect clues such as type and count of objects and clarity of the view from a chunk of pre-defined number of frames of each view. The decision of representative view selection for a particular interval is based on fuzzy inference system, acquiring a precise and human resembling decision, reinforced by the known clues as a part of the second fold. In the third fold, the paper forwards the selected view frames to the summary generation mechanism that is supported by a saliency-aware convolution neural network (CNN) model. The new trend of fuzzy rules for view selection followed by CNN architecture for saliency computation makes the multi-view video summarization (MVS) framework a suitable candidate for real-world practice in smart cities.

Keywords: big video data analysis, fuzzy logic, multi-view video summarization, saliency detection

Procedia PDF Downloads 188
2681 Removal of an Acid Dye from Water Using Cloud Point Extraction and Investigation of Surfactant Regeneration by pH Control

Authors: Ghouas Halima, Haddou Boumedienne, Jean Peal Cancelier, Cristophe Gourdon, Ssaka Collines

Abstract:

This work concerns the coacervate extraction of industrial dye, namely BezanylGreen - F2B, from an aqueous solution by nonionic surfactant “Lutensol AO7 and TX-114” (readily biodegradable). Binary water/surfactant and pseudo-binary (in the presence of solute) phase diagrams were plotted. The extraction results as a function of wt.% of the surfactant and temperature are expressed by the following four quantities: percentage of solute extracted, E%, residual concentrations of solute and surfactant in the dilute phase (Xs,w, and Xt,w, respectively) and volume fraction of coacervate at equilibrium (Фc). For each parameter, whose values are determined by a design of experiments, these results are subjected to empirical smoothing in three dimensions. The aim of this study is to find out the best compromise between E% and Фc. E% increases with surfactant concentration and temperature in optimal conditions, and the extraction extent of TA reaches 98 and 96 % using TX-114 and Lutensol AO7, respectively. The effect of sodium sulfate or cetyltrimethylammonium bromide (CTAB) addition is also studied. Finally, the possibility of recycling the surfactant is proved.

Keywords: extraction, cloud point, non ionic surfactant, bezanyl green

Procedia PDF Downloads 126
2680 A Sufficient Fuzzy Controller for Improving the Transient Response in Electric Motors

Authors: Aliasghar Baziar, Hassan Masoumi, Alireza Ale Saadi

Abstract:

The control of the response of electric motors plays a significant role in the damping of transient responses. In this regard, this paper presents a static VAR compensator (SVC) based on a fuzzy logic which is applied to an industrial power network consisting of three phase synchronous, asynchronous and DC motor loads. The speed and acceleration variations of a specific machine are the inputs of the proposed fuzzy logic controller (FLC). In order to verify the effectiveness and proficiency of the proposed Fuzzy Logic based SVC (FLSVC), several non-linear time-domain digital simulation tests are performed. The proposed fuzzy model can properly control the response of electric motors. The results show that the FLSVC is successful to improve the voltage profile significantly over a wide range of operating conditions and disturbances thus improving the overall dynamic performance of the network.

Keywords: fuzzy logic controller, VAR compensator, single cage asynchronous motor, DC motor

Procedia PDF Downloads 628
2679 Reinventing Business Education: Filling the Knowledge Gap on the Verge of the 4th Industrial Revolution

Authors: Elena Perepelova

Abstract:

As the world approaches the 4th industrial revolution, income inequality has become one of the major societal concerns. Displacement of workers by technology becomes a reality, and in return, new skills and competencies are required. More important than ever, education needs to help individuals understand the wider world around them and make global connections. The author argues for the necessity to incorporate business, economics and finance studies as a part of primary education and offer access to business education to the general population with the primary objective to understand how the world functions. The paper offers a fresh look at existing business theory through an innovative program called 'Usefulnomics'. Realizing that the subject of Economics, Finance and Business are perceived as overwhelming for a large part of the population, the author has taken a holistic approach and created a program that simplifies the definitions of the existing concepts and shifts from the traditional breakdown into subjects and specialties to a teaching method that is based exclusively on real-life example case studies and group debates, in order to better grasp the concepts and put them into context. The paper findings are the result of a two-year project and experimental work with students from UK, USA, Malaysia, Russia, and Spain. The author conducted extensive research through on-line and in-person classes and workshops as well as in-depth interviews of primary and secondary grade students to assess their understanding of what is a business, how businesses operate and the role businesses play in their communities. The findings clearly indicate that students of all ages often understood business concepts and processes only in an intuitive way, which resulted in misconceptions and gaps in knowledge. While knowledge gaps were easier to identify and correct in primary school students, as students’ age increased, the learning process became distorted by career choices, political views, and the students’ actual (or perceived) economic status. While secondary school students recognized more concepts, their real understanding was often on par with upper primary school age students. The research has also shown that lack of correct vocabulary created a strong barrier to communication and real-life application or further learning. Based on these findings, each key business concept was practiced and put into context with small groups of students in order to design the content and format which would be well accepted and understood by the target group. As a result, the final learning program package was based on case studies from daily modern life and used a wide range of examples: from popular brands and well-known companies to basic commodities. In the final stage, the content and format were put into practice in larger classrooms. The author would like to share the key findings from the research, the resulting learning program as well as present new ideas on how the program could be further enriched and adapted so schools and organizations can deliver it.

Keywords: business, finance, economics, lifelong learning, XXI century skills

Procedia PDF Downloads 119
2678 Reconfigurable Intelligent Surfaces (RIS)-Assisted Integrated Leo Satellite and UAV for Non-terrestrial Networks Using a Deep Reinforcement Learning Approach

Authors: Tesfaw Belayneh Abebe

Abstract:

Integrating low-altitude earth orbit (LEO) satellites and unmanned aerial vehicles (UAVs) within a non-terrestrial network (NTN) with the assistance of reconfigurable intelligent surfaces (RIS), we investigate the problem of how to enhance throughput through integrated LEO satellites and UAVs with the assistance of RIS. We propose a method to jointly optimize the associations with the LEO satellite, the 3D trajectory of the UAV, and the phase shifts of the RIS to maximize communication throughput for RIS-assisted integrated LEO satellite and UAV-enabled wireless communications, which is challenging due to the time-varying changes in the position of the LEO satellite, the high mobility of UAVs, an enormous number of possible control actions, and also the large number of RIS elements. Utilizing a multi-agent double deep Q-network (MADDQN), our approach dynamically adjusts LEO satellite association, UAV positioning, and RIS phase shifts. Simulation results demonstrate that our method significantly outperforms baseline strategies in maximizing throughput. Lastly, thanks to the integrated network and the RIS, the proposed scheme achieves up to 65.66x higher peak throughput and 25.09x higher worst-case throughput.

Keywords: integrating low-altitude earth orbit (LEO) satellites, unmanned aerial vehicles (UAVs) within a non-terrestrial network (NTN), reconfigurable intelligent surfaces (RIS), multi-agent double deep Q-network (MADDQN)

Procedia PDF Downloads 48
2677 Design of a Cooperative Neural Network, Particle Swarm Optimization (PSO) and Fuzzy Based Tracking Control for a Tilt Rotor Unmanned Aerial Vehicle

Authors: Mostafa Mjahed

Abstract:

Tilt Rotor UAVs (Unmanned Aerial Vehicles) are naturally unstable and difficult to maneuver. The purpose of this paper is to design controllers for the stabilization and trajectory tracking of this type of UAV. To this end, artificial intelligence methods have been exploited. First, the dynamics of this UAV was modeled using the Lagrange-Euler method. The conventional method based on Proportional, Integral and Derivative (PID) control was applied by decoupling the different flight modes. To improve stability and trajectory tracking of the Tilt Rotor, the fuzzy approach and the technique of multilayer neural networks (NN) has been used. Thus, Fuzzy Proportional Integral and Derivative (FPID) and Neural Network-based Proportional Integral and Derivative controllers (NNPID) have been developed. The meta-heuristic approach based on Particle Swarm Optimization (PSO) method allowed adjusting the setting parameters of NNPID controller, giving us an improved NNPID-PSO controller. Simulation results under the Matlab environment show the efficiency of the approaches adopted. Besides, the Tilt Rotor UAV has become stable and follows different types of trajectories with acceptable precision. The Fuzzy, NN and NN-PSO-based approaches demonstrated their robustness because the presence of the disturbances did not alter the stability or the trajectory tracking of the Tilt Rotor UAV.

Keywords: neural network, fuzzy logic, PSO, PID, trajectory tracking, tilt-rotor UAV

Procedia PDF Downloads 120
2676 Icephobic and Hydrophobic Behaviour of Laser Patterned Transparent Coatings

Authors: Bartłomiej Przybyszewski, Rafał Kozera, Anna Boczkowska, Maciej Traczyk, Paulina Kozera, Malwina Liszewska, Daria Pakuła

Abstract:

The goal of the work was to reduce or completely eliminate the accumulation of dirt, snow and ice build-up on transparent coatings by achieving self-cleaning and icephobic properties. The research involved the use of laser surface texturing technology for chemically modified coatings of the epoxy materials group and their hybrids used to protect glass surfaces. For this purpose, two methods of surface structuring and the preceding volumetric modification of the chemical composition with proprietary organosilicon compounds and/or mineral additives were used. An attractive approach to the topic was the development of efficient and, most importantly, durable coatings with self-cleaning and ice-phobic properties that reduced or avoided dirt build-up and adhesion of water, snow and ice. With a view to the future industrial application of the developed technologies, all methods meet the requirements in terms of their practical use on a large scale.

Keywords: icephobic coatings, hydrophobic coatings, transparent coatings, laser patterning

Procedia PDF Downloads 105
2675 A Simulative Approach for JIT Parts-Feeding Policies

Authors: Zhou BingHai, Fradet Victor

Abstract:

Lean philosophy follows the simple principle of “creating more value with fewer resources”. In accordance with this policy, material handling can be managed by the mean of Kanban which by triggering every feeding tour only when needed regulates the flow of material in one of the most efficient way. This paper focuses on Kanban Supermarket’s parameters and their optimization on a purely cost-based point of view. Number and size of forklifts, as well as size of the containers they carry, will be variables of the cost function which includes handling costs, inventory costs but also shortage costs. With an innovative computational approach encoded into industrial engineering software Tecnomatix and reproducing real-life conditions, a fictive assembly line is established and produces a random list of orders. Multi-scenarios are then run to study the impact of each change of parameter and the variation of costs it implies. Lastly, best-case scenarios financially speaking are selected.

Keywords: Kanban, supermarket, parts-feeding policies, multi-scenario simulation, assembly line

Procedia PDF Downloads 195
2674 Development of Partial Discharge Defect Recognition and Status Diagnosis System with Adaptive Deep Learning

Authors: Chien-kuo Chang, Bo-wei Wu, Yi-yun Tang, Min-chiu Wu

Abstract:

This paper proposes a power equipment diagnosis system based on partial discharge (PD), which is characterized by increasing the readability of experimental data and the convenience of operation. This system integrates a variety of analysis programs of different data formats and different programming languages and then establishes a set of interfaces that can follow and expand the structure, which is also helpful for subsequent maintenance and innovation. This study shows a case of using the developed Convolutional Neural Networks (CNN) to integrate with this system, using the designed model architecture to simplify the complex training process. It is expected that the simplified training process can be used to establish an adaptive deep learning experimental structure. By selecting different test data for repeated training, the accuracy of the identification system can be enhanced. On this platform, the measurement status and partial discharge pattern of each equipment can be checked in real time, and the function of real-time identification can be set, and various training models can be used to carry out real-time partial discharge insulation defect identification and insulation state diagnosis. When the electric power equipment entering the dangerous period, replace equipment early to avoid unexpected electrical accidents.

Keywords: partial discharge, convolutional neural network, partial discharge analysis platform, adaptive deep learning

Procedia PDF Downloads 78
2673 Multi-Criteria Decision Making Approaches for Facility Planning Problem Evaluation: A Survey

Authors: Ahmed M. El-Araby, Ibrahim Sabry, Ahmed El-Assal

Abstract:

The relationships between the industrial facilities, the capacity available for these facilities, and the costs involved are the main factors in deciding the correct selection of a facility layout. In general, an issue of facility layout is considered to be an unstructured problem of decision-making. The objective of this work is to provide a survey that describes the techniques by which a facility planning problem can be solved and also the effect of these techniques on the efficiency of the layout. The multi-criteria decision making (MCDM) techniques can be classified according to the previous researches into three categories which are the use of single MCDM, combining two or more MCDM, and the integration of MCDM with another technique such as genetic algorithms (GA). This paper presents a review of different multi-criteria decision making (MCDM) techniques that have been proposed in the literature to pick the most suitable layout design. These methods are particularly suitable to deal with complex situations, including various criteria and conflicting goals which need to be optimized simultaneously.

Keywords: facility layout, MCDM, GA, literature review

Procedia PDF Downloads 205