Search results for: word segmentation
891 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry
Authors: Deepika Christopher, Garima Anand
Abstract:
To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications
Procedia PDF Downloads 57890 Reading Comprehension in Profound Deaf Readers
Authors: S. Raghibdoust, E. Kamari
Abstract:
Research show that reduced functional hearing has a detrimental influence on the ability of an individual to establish proper phonological representations of words, since the phonological representations are claimed to mediate the conceptual processing of written words. Word processing efficiency is expected to decrease with a decrease in functional hearing. In other words, it is predicted that hearing individuals would be more capable of word processing than individuals with hearing loss, as their functional hearing works normally. Studies also demonstrate that the quality of the functional hearing affects reading comprehension via its effect on their word processing skills. In other words, better hearing facilitates the development of phonological knowledge, and can promote enhanced strategies for the recognition of written words, which in turn positively affect higher-order processes underlying reading comprehension. The aims of this study were to investigate and compare the effect of deafness on the participants’ abilities to process written words at the lexical and sentence levels through using two online and one offline reading comprehension tests. The performance of a group of 8 deaf male students (ages 8-12) was compared with that of a control group of normal hearing male students. All the participants had normal IQ and visual status, and came from an average socioeconomic background. None were diagnosed with a particular learning or motor disability. The language spoken in the homes of all participants was Persian. Two tests of word processing were developed and presented to the participants using OpenSesame software, in order to measure the speed and accuracy of their performance at the two perceptual and conceptual levels. In the third offline test of reading comprehension which comprised of semantically plausible and semantically implausible subject relative clauses, the participants had to select the correct answer out of two choices. The data derived from the statistical analysis using SPSS software indicated that hearing and deaf participants had a similar word processing performance both in terms of speed and accuracy of their responses. The results also showed that there was no significant difference between the performance of the deaf and hearing participants in comprehending semantically plausible sentences (p > 0/05). However, a significant difference between the performances of the two groups was observed with respect to their comprehension of semantically implausible sentences (p < 0/05). In sum, the findings revealed that the seriously impoverished sentence reading ability characterizing the profound deaf subjects of the present research, exhibited their reliance on reading strategies that are based on insufficient or deviant structural knowledge, in particular in processing semantically implausible sentences, rather than a failure to efficiently process written words at the lexical level. This conclusion, of course, does not mean to say that deaf individuals may never experience deficits at the word processing level, deficits that impede their understanding of written texts. However, as stated in previous researches, it sounds reasonable to assume that the more deaf individuals get familiar with written words, the better they can recognize them, despite having a profound phonological weakness.Keywords: deafness, reading comprehension, reading strategy, word processing, subject and object relative sentences
Procedia PDF Downloads 338889 Object Detection Based on Plane Segmentation and Features Matching for a Service Robot
Authors: António J. R. Neves, Rui Garcia, Paulo Dias, Alina Trifan
Abstract:
With the aging of the world population and the continuous growth in technology, service robots are more and more explored nowadays as alternatives to healthcare givers or personal assistants for the elderly or disabled people. Any service robot should be capable of interacting with the human companion, receive commands, navigate through the environment, either known or unknown, and recognize objects. This paper proposes an approach for object recognition based on the use of depth information and color images for a service robot. We present a study on two of the most used methods for object detection, where 3D data is used to detect the position of objects to classify that are found on horizontal surfaces. Since most of the objects of interest accessible for service robots are on these surfaces, the proposed 3D segmentation reduces the processing time and simplifies the scene for object recognition. The first approach for object recognition is based on color histograms, while the second is based on the use of the SIFT and SURF feature descriptors. We present comparative experimental results obtained with a real service robot.Keywords: object detection, feature, descriptors, SIFT, SURF, depth images, service robots
Procedia PDF Downloads 546888 Image Segmentation: New Methods
Authors: Flaurence Benjamain, Michel Casperance
Abstract:
We present in this paper, first, a comparative study of three mathematical theories to achieve the fusion of information sources. This study aims to identify the characteristics inherent in theories of possibilities, belief functions (DST) and plausible and paradoxical reasoning to establish a strategy of choice that allows us to adopt the most appropriate theory to solve a problem of fusion in order, taking into account the acquired information and imperfections that accompany them. Using the new theory of plausible and paradoxical reasoning, also called Dezert-Smarandache Theory (DSmT), to fuse information multi-sources needs, at first step, the generation of the composites events witch is, in general, difficult. Thus, we present in this paper a new approach to construct pertinent paradoxical classes based on gray levels histograms, which also allows to reduce the cardinality of the hyper-powerset. Secondly, we developed a new technique for order and coding generalized focal elements. This method is exploited, in particular, to calculate the cardinality of Dezert and Smarandache. Then, we give an experimentation of classification of a remote sensing image that illustrates the given methods and we compared the result obtained by the DSmT with that resulting from the use of the DST and theory of possibilities.Keywords: segmentation, image, approach, vision computing
Procedia PDF Downloads 275887 Application of Vector Representation for Revealing the Richness of Meaning of Facial Expressions
Authors: Carmel Sofer, Dan Vilenchik, Ron Dotsch, Galia Avidan
Abstract:
Studies investigating emotional facial expressions typically reveal consensus among observes regarding the meaning of basic expressions, whose number ranges between 6 to 15 emotional states. Given this limited number of discrete expressions, how is it that the human vocabulary of emotional states is so rich? The present study argues that perceivers use sequences of these discrete expressions as the basis for a much richer vocabulary of emotional states. Such mechanisms, in which a relatively small number of basic components is expanded to a much larger number of possible combinations of meanings, exist in other human communications modalities, such as spoken language and music. In these modalities, letters and notes, which serve as basic components of spoken language and music respectively, are temporally linked, resulting in the richness of expressions. In the current study, in each trial participants were presented with sequences of two images containing facial expression in different combinations sampled out of the eight static basic expressions (total 64; 8X8). In each trial, using single word participants were required to judge the 'state of mind' portrayed by the person whose face was presented. Utilizing word embedding methods (Global Vectors for Word Representation), employed in the field of Natural Language Processing, and relying on machine learning computational methods, it was found that the perceived meanings of the sequences of facial expressions were a weighted average of the single expressions comprising them, resulting in 22 new emotional states, in addition to the eight, classic basic expressions. An interaction between the first and the second expression in each sequence indicated that every single facial expression modulated the effect of the other facial expression thus leading to a different interpretation ascribed to the sequence as a whole. These findings suggest that the vocabulary of emotional states conveyed by facial expressions is not restricted to the (small) number of discrete facial expressions. Rather, the vocabulary is rich, as it results from combinations of these expressions. In addition, present research suggests that using word embedding in social perception studies, can be a powerful, accurate and efficient tool, to capture explicit and implicit perceptions and intentions. Acknowledgment: The study was supported by a grant from the Ministry of Defense in Israel to GA and CS. CS is also supported by the ABC initiative in Ben-Gurion University of the Negev.Keywords: Glove, face perception, facial expression perception. , facial expression production, machine learning, word embedding, word2vec
Procedia PDF Downloads 176886 Text Localization in Fixed-Layout Documents Using Convolutional Networks in a Coarse-to-Fine Manner
Authors: Beier Zhu, Rui Zhang, Qi Song
Abstract:
Text contained within fixed-layout documents can be of great semantic value and so requires a high localization accuracy, such as ID cards, invoices, cheques, and passports. Recently, algorithms based on deep convolutional networks achieve high performance on text detection tasks. However, for text localization in fixed-layout documents, such algorithms detect word bounding boxes individually, which ignores the layout information. This paper presents a novel architecture built on convolutional neural networks (CNNs). A global text localization network and a regional bounding-box regression network are introduced to tackle the problem in a coarse-to-fine manner. The text localization network simultaneously locates word bounding points, which takes the layout information into account. The bounding-box regression network inputs the features pooled from arbitrarily sized RoIs and refine the localizations. These two networks share their convolutional features and are trained jointly. A typical type of fixed-layout documents: ID cards, is selected to evaluate the effectiveness of the proposed system. These networks are trained on data cropped from nature scene images, and synthetic data produced by a synthetic text generation engine. Experiments show that our approach locates high accuracy word bounding boxes and achieves state-of-the-art performance.Keywords: bounding box regression, convolutional networks, fixed-layout documents, text localization
Procedia PDF Downloads 194885 A Grey-Box Text Attack Framework Using Explainable AI
Authors: Esther Chiramal, Kelvin Soh Boon Kai
Abstract:
Explainable AI is a strong strategy implemented to understand complex black-box model predictions in a human-interpretable language. It provides the evidence required to execute the use of trustworthy and reliable AI systems. On the other hand, however, it also opens the door to locating possible vulnerabilities in an AI model. Traditional adversarial text attack uses word substitution, data augmentation techniques, and gradient-based attacks on powerful pre-trained Bidirectional Encoder Representations from Transformers (BERT) variants to generate adversarial sentences. These attacks are generally white-box in nature and not practical as they can be easily detected by humans e.g., Changing the word from “Poor” to “Rich”. We proposed a simple yet effective Grey-box cum Black-box approach that does not require the knowledge of the model while using a set of surrogate Transformer/BERT models to perform the attack using Explainable AI techniques. As Transformers are the current state-of-the-art models for almost all Natural Language Processing (NLP) tasks, an attack generated from BERT1 is transferable to BERT2. This transferability is made possible due to the attention mechanism in the transformer that allows the model to capture long-range dependencies in a sequence. Using the power of BERT generalisation via attention, we attempt to exploit how transformers learn by attacking a few surrogate transformer variants which are all based on a different architecture. We demonstrate that this approach is highly effective to generate semantically good sentences by changing as little as one word that is not detectable by humans while still fooling other BERT models.Keywords: BERT, explainable AI, Grey-box text attack, transformer
Procedia PDF Downloads 137884 The Power of Words: A Corpus Analysis of Campaign Speeches of President Donald J. Trump
Authors: Aiza Dalman
Abstract:
Words are powerful when these are used wisely and strategically. In this study, twelve (12) campaign speeches of President Donald J. Trump were analyzed as to frequently used words and ethos, pathos and logos being employed. The speeches were read thoroughly, analyzed and interpreted. With the use of Word Counter Tool and Text Analyzer software accessible online, it was found out that the word ‘will’ has the highest frequency of 121, followed by Hillary (58), American (38), going (35), plan and Clinton (32), illegal (30), government (28), corruption (26) and criminal (24). When the speeches were analyzed as to ethos, pathos and logos, on the other hand, it revealed that these were all employed in his speeches. The statements under these pointed out against Hillary or in his favor. The unique strategy of President Donald J. Trump as to frequently used words and ethos, pathos and logos in persuading people perhaps lead the way to his victory.Keywords: campaign speeches, corpus analysis, ethos, logos and pathos, power of words
Procedia PDF Downloads 279883 The Implementation of the Javanese Lettered-Manuscript Image Preprocessing Stage Model on the Batak Lettered-Manuscript Image
Authors: Anastasia Rita Widiarti, Agus Harjoko, Marsono, Sri Hartati
Abstract:
This paper presents the results of a study to test whether the Javanese character manuscript image preprocessing model that have been more widely applied, can also be applied to segment of the Batak characters manuscripts. The treatment process begins by converting the input image into a binary image. After the binary image is cleaned of noise, then the segmentation lines using projection profile is conducted. If unclear histogram projection is found, then the smoothing process before production indexes line segments is conducted. For each line image which has been produced, then the segmentation scripts in the line is applied, with regard of the connectivity between pixels which making up the letters that there is no characters are truncated. From the results of manuscript preprocessing system prototype testing, it is obtained the information about the system truth percentage value on pieces of Pustaka Batak Podani Ma AjiMamisinon manuscript ranged from 65% to 87.68% with a confidence level of 95%. The value indicates the truth percentage shown the initial processing model in Javanese characters manuscript image can be applied also to the image of the Batak characters manuscript.Keywords: connected component, preprocessing, manuscript image, projection profiles
Procedia PDF Downloads 399882 Optical Imaging Based Detection of Solder Paste in Printed Circuit Board Jet-Printing Inspection
Authors: D. Heinemann, S. Schramm, S. Knabner, D. Baumgarten
Abstract:
Purpose: Applying solder paste to printed circuit boards (PCB) with stencils has been the method of choice over the past years. A new method uses a jet printer to deposit tiny droplets of solder paste through an ejector mechanism onto the board. This allows for more flexible PCB layouts with smaller components. Due to the viscosity of the solder paste, air blisters can be trapped in the cartridge. This can lead to missing solder joints or deviations in the applied solder volume. Therefore, a built-in and real-time inspection of the printing process is needed to minimize uncertainties and increase the efficiency of the process by immediate correction. The objective of the current study is the design of an optimal imaging system and the development of an automatic algorithm for the detection of applied solder joints from optical from the captured images. Methods: In a first approach, a camera module connected to a microcomputer and LED strips are employed to capture images of the printed circuit board under four different illuminations (white, red, green and blue). Subsequently, an improved system including a ring light, an objective lens, and a monochromatic camera was set up to acquire higher quality images. The obtained images can be divided into three main components: the PCB itself (i.e., the background), the reflections induced by unsoldered positions or screw holes and the solder joints. Non-uniform illumination is corrected by estimating the background using a morphological opening and subtraction from the input image. Image sharpening is applied in order to prevent error pixels in the subsequent segmentation. The intensity thresholds which divide the main components are obtained from the multimodal histogram using three probability density functions. Determining the intersections delivers proper thresholds for the segmentation. Remaining edge gradients produces small error areas which are removed by another morphological opening. For quantitative analysis of the segmentation results, the dice coefficient is used. Results: The obtained PCB images show a significant gradient in all RGB channels, resulting from ambient light. Using different lightings and color channels 12 images of a single PCB are available. A visual inspection and the investigation of 27 specific points show the best differentiation between those points using a red lighting and a green color channel. Estimating two thresholds from analyzing the multimodal histogram of the corrected images and using them for segmentation precisely extracts the solder joints. The comparison of the results to manually segmented images yield high sensitivity and specificity values. Analyzing the overall result delivers a Dice coefficient of 0.89 which varies for single object segmentations between 0.96 for a good segmented solder joints and 0.25 for single negative outliers. Conclusion: Our results demonstrate that the presented optical imaging system and the developed algorithm can robustly detect solder joints on printed circuit boards. Future work will comprise a modified lighting system which allows for more precise segmentation results using structure analysis.Keywords: printed circuit board jet-printing, inspection, segmentation, solder paste detection
Procedia PDF Downloads 336881 Memory Retrieval and Implicit Prosody during Reading: Anaphora Resolution by L1 and L2 Speakers of English
Authors: Duong Thuy Nguyen, Giulia Bencini
Abstract:
The present study examined structural and prosodic factors on the computation of antecedent-reflexive relationships and sentence comprehension in native English (L1) and Vietnamese-English bilinguals (L2). Participants read sentences presented on the computer screen in one of three presentation formats aimed at manipulating prosodic parsing: word-by-word (RSVP), phrase-segment (self-paced), or whole-sentence (self-paced), then completed a grammaticality rating and a comprehension task (following Pratt & Fernandez, 2016). The design crossed three factors: syntactic structure (simple; complex), grammaticality (target-match; target-mismatch) and presentation format. An example item is provided in (1): (1) The actress that (Mary/John) interviewed at the awards ceremony (about two years ago/organized outside the theater) described (herself/himself) as an extreme workaholic). Results showed that overall, both L1 and L2 speakers made use of a good-enough processing strategy at the expense of more detailed syntactic analyses. L1 and L2 speakers’ comprehension and grammaticality judgements were negatively affected by the most prosodically disrupting condition (word-by-word). However, the two groups demonstrated differences in their performance in the other two reading conditions. For L1 speakers, the whole-sentence and the phrase-segment formats were both facilitative in the grammaticality rating and comprehension tasks; for L2, compared with the whole-sentence condition, the phrase-segment paradigm did not significantly improve accuracy or comprehension. These findings are consistent with the findings of Pratt & Fernandez (2016), who found a similar pattern of results in the processing of subject-verb agreement relations using the same experimental paradigm and prosodic manipulation with English L1 and L2 English-Spanish speakers. The results provide further support for a Good-Enough cue model of sentence processing that integrates cue-based retrieval and implicit prosodic parsing (Pratt & Fernandez, 2016) and highlights similarities and differences between L1 and L2 sentence processing and comprehension.Keywords: anaphora resolution, bilingualism, implicit prosody, sentence processing
Procedia PDF Downloads 152880 Unsupervised Assistive and Adaptative Intelligent Agent in Smart Enviroment
Authors: Sebastião Pais, João Casal, Ricardo Ponciano, Sérgio Lorenço
Abstract:
The adaptation paradigm is a basic defining feature for pervasive computing systems. Adaptation systems must work efficiently in a smart environment while providing suitable information relevant to the user system interaction. The key objective is to deduce the information needed information changes. Therefore relying on fixed operational models would be inappropriate. This paper presents a study on developing an Intelligent Personal Assistant to assist the user in interacting with their Smart Environment. We propose an Unsupervised and Language-Independent Adaptation through Intelligent Speech Interface and a set of methods of Acquiring Knowledge, namely Semantic Similarity and Unsupervised Learning.Keywords: intelligent personal assistants, intelligent speech interface, unsupervised learning, language-independent, knowledge acquisition, association measures, symmetric word similarities, attributional word similarities
Procedia PDF Downloads 560879 Unsupervised Assistive and Adaptive Intelligent Agent in Smart Environment
Authors: Sebastião Pais, João Casal, Ricardo Ponciano, Sérgio Lourenço
Abstract:
The adaptation paradigm is a basic defining feature for pervasive computing systems. Adaptation systems must work efficiently in smart environment while providing suitable information relevant to the user system interaction. The key objective is to deduce the information needed information changes. Therefore, relying on fixed operational models would be inappropriate. This paper presents a study on developing a Intelligent Personal Assistant to assist the user in interacting with their Smart Environment. We propose a Unsupervised and Language-Independent Adaptation through Intelligent Speech Interface and a set of methods of Acquiring Knowledge, namely Semantic Similarity and Unsupervised Learning.Keywords: intelligent personal assistants, intelligent speech interface, unsupervised learning, language-independent, knowledge acquisition, association measures, symmetric word similarities, attributional word similarities
Procedia PDF Downloads 643878 The Meaning of Happiness and Unhappiness among Female Teenagers in Urban Finland: A Social Representations Approach
Authors: Jennifer De Paola
Abstract:
Objectives: The literature is saturated with figures and hard data on happiness and its rates, causes and effects at a large scale, whereas very little is known about the way specific groups of people within societies understand and talk about happiness in their everyday life. The present study contributes to fill this gap in the happiness research by analyzing social representations of happiness among young women through the theoretical frame provided by Moscovici’s Social Representation Theory. Methods: Participants were (N= 351) female students (16-18 year olds) from Finnish, Swedish and English speaking high schools in the Helsinki region, Finland. Main source of data collection were word associations using the stimulus word ‘happiness’ and word associations using as stimulus the term that in the participants’ opinion represents the opposite of happiness. The allowed number of associations was five per stimulus word (10 associations per participant). In total, the 351 participants produced 6973 associations with the two stimulus words given: 3500 (50,19%) associations with ‘happiness’ and 3473 (49,81%) associations with ‘opposite of happiness’. The associations produced were analyzed qualitatively to identify associations with similar meaning and then coded combining similar associations in larger categories. Results: In total, 33 categories were identified respectively for the stimulus word ‘happiness’ and for the stimulus word ‘opposite of happiness’. In general terms, the 33 categories identified for ‘happiness’ included associations regarding relationships with key people considered important, such as ‘family’, abstract concepts such as meaningful life, success and moral values as well as more mundane and hedonic elements like food, pleasure and fun. Similarly, the 33 categories emerged for ‘opposite of happiness’ included relationship problems and arguments, negative feelings such as sadness, depression, stress as well as more concrete issues such as financial problems. Participants were also asked to rate their own level of happiness on a scale from 1 to 10. Results indicated the mean of the self-rated level of happiness was 7,93 (the range varied from 1 to 10; SD = 1, 50). Participants’ responses were further divided into three different groups according to the self-rated level of happiness: group 1 (level 10-9), group 2 (level 8-6), and group 3 (level 5 and lower) in order to investigate the way the categories mentioned above were distributed among the different groups. Preliminary results show that the category ‘family’ is associated with higher level of happiness, whereas its presence gradually decreases among the participants with a lower level of happiness. Moreover, the category ‘depression’ seems to be mainly present among participants in group 3, whereas the category ‘sadness’ is mainly present among participants with higher level of happiness. Conclusion: In conclusion, this study indicates the prevalent ways of thinking about happiness and its opposite among young female students, suggesting that representations varied to some extent depending on the happiness level of the participants. This study contributes to bringing new knowledge as it considers happiness as a holistic state, thus going beyond the literature that so far has too often viewed happiness as a mere unidimensional spectrum.Keywords: female, happiness, social representations, unhappiness
Procedia PDF Downloads 225877 Hyperspectral Image Classification Using Tree Search Algorithm
Authors: Shreya Pare, Parvin Akhter
Abstract:
Remotely sensing image classification becomes a very challenging task owing to the high dimensionality of hyperspectral images. The pixel-wise classification methods fail to take the spatial structure information of an image. Therefore, to improve the performance of classification, spatial information can be integrated into the classification process. In this paper, the multilevel thresholding algorithm based on a modified fuzzy entropy function is used to perform the segmentation of hyperspectral images. The fuzzy parameters of the MFE function have been optimized by using a new meta-heuristic algorithm based on the Tree-Search algorithm. The segmented image is classified by a large distribution machine (LDM) classifier. Experimental results are shown on a hyperspectral image dataset. The experimental outputs indicate that the proposed technique (MFE-TSA-LDM) achieves much higher classification accuracy for hyperspectral images when compared to state-of-art classification techniques. The proposed algorithm provides accurate segmentation and classification maps, thus becoming more suitable for image classification with large spatial structures.Keywords: classification, hyperspectral images, large distribution margin, modified fuzzy entropy function, multilevel thresholding, tree search algorithm, hyperspectral image classification using tree search algorithm
Procedia PDF Downloads 177876 Intelligent Rheumatoid Arthritis Identification System Based Image Processing and Neural Classifier
Authors: Abdulkader Helwan
Abstract:
Rheumatoid joint inflammation is characterized as a perpetual incendiary issue which influences the joints by hurting body tissues Therefore, there is an urgent need for an effective intelligent identification system of knee Rheumatoid arthritis especially in its early stages. This paper is to develop a new intelligent system for the identification of Rheumatoid arthritis of the knee utilizing image processing techniques and neural classifier. The system involves two principle stages. The first one is the image processing stage in which the images are processed using some techniques such as RGB to gryascale conversion, rescaling, median filtering, background extracting, images subtracting, segmentation using canny edge detection, and features extraction using pattern averaging. The extracted features are used then as inputs for the neural network which classifies the X-ray knee images as normal or abnormal (arthritic) based on a backpropagation learning algorithm which involves training of the network on 400 X-ray normal and abnormal knee images. The system was tested on 400 x-ray images and the network shows good performance during that phase, resulting in a good identification rate 97%.Keywords: rheumatoid arthritis, intelligent identification, neural classifier, segmentation, backpropoagation
Procedia PDF Downloads 532875 Seashore Debris Detection System Using Deep Learning and Histogram of Gradients-Extractor Based Instance Segmentation Model
Authors: Anshika Kankane, Dongshik Kang
Abstract:
Marine debris has a significant influence on coastal environments, damaging biodiversity, and causing loss and damage to marine and ocean sector. A functional cost-effective and automatic approach has been used to look up at this problem. Computer vision combined with a deep learning-based model is being proposed to identify and categorize marine debris of seven kinds on different beach locations of Japan. This research compares state-of-the-art deep learning models with a suggested model architecture that is utilized as a feature extractor for debris categorization. The model is being proposed to detect seven categories of litter using a manually constructed debris dataset, with the help of Mask R-CNN for instance segmentation and a shape matching network called HOGShape, which can then be cleaned on time by clean-up organizations using warning notifications of the system. The manually constructed dataset for this system is created by annotating the images taken by fixed KaKaXi camera using CVAT annotation tool with seven kinds of category labels. A pre-trained HOG feature extractor on LIBSVM is being used along with multiple templates matching on HOG maps of images and HOG maps of templates to improve the predicted masked images obtained via Mask R-CNN training. This system intends to timely alert the cleanup organizations with the warning notifications using live recorded beach debris data. The suggested network results in the improvement of misclassified debris masks of debris objects with different illuminations, shapes, viewpoints and litter with occlusions which have vague visibility.Keywords: computer vision, debris, deep learning, fixed live camera images, histogram of gradients feature extractor, instance segmentation, manually annotated dataset, multiple template matching
Procedia PDF Downloads 106874 Automated Ultrasound Carotid Artery Image Segmentation Using Curvelet Threshold Decomposition
Authors: Latha Subbiah, Dhanalakshmi Samiappan
Abstract:
In this paper, we propose denoising Common Carotid Artery (CCA) B mode ultrasound images by a decomposition approach to curvelet thresholding and automatic segmentation of the intima media thickness and adventitia boundary. By decomposition, the local geometry of the image, its direction of gradients are well preserved. The components are combined into a single vector valued function, thus removes noise patches. Double threshold is applied to inherently remove speckle noise in the image. The denoised image is segmented by active contour without specifying seed points. Combined with level set theory, they provide sub regions with continuous boundaries. The deformable contours match to the shapes and motion of objects in the images. A curve or a surface under constraints is developed from the image with the goal that it is pulled into the necessary features of the image. Region based and boundary based information are integrated to achieve the contour. The method treats the multiplicative speckle noise in objective and subjective quality measurements and thus leads to better-segmented results. The proposed denoising method gives better performance metrics compared with other state of art denoising algorithms.Keywords: curvelet, decomposition, levelset, ultrasound
Procedia PDF Downloads 340873 Pharyngealization Spread in Ibbi Dialect of Yemeni Arabic: An Acoustic Study
Authors: Fadhl Qutaish
Abstract:
This paper examines the pharyngealization spread in one of the Yemeni Arabic dialects, namely, Ibbi Arabic (IA). It investigates how pharyngealized sounds spread their acoustic features onto the neighboring vowels and change their default features. This feature has been investigated quietly well in MSA but still has to be deeply studied in the different dialect of Arabic which will bring about a clearer picture of the similarities and the differences among these dialects and help in mapping them based on the way this feature is utilized. Though the studies are numerous, no one of them has illustrated how far in the multi-syllabic word the spread can be and whether it takes a steady or gradient manner. This study tries to fill this gap and give a satisfactory explanation of the pharyngealization spread in Ibbi Dialect. This study is the first step towards a larger investigation of the different dialects of Yemeni Arabic in the future. The data recorded are represented in minimal pairs in which the trigger (pharyngealized or the non-pharyngealized sound) is in the initial or final position of monosyllabic and multisyllabic words. A group of 24 words were divided into four groups and repeated three times by three subjects which will yield 216 tokens that are tested and analyzed. The subjects are three male speakers aged between 28 and 31 with no history of neurological, speaking or hearing problems. All of them are bilingual speakers of Arabic and English and native speakers of Ibbi-Dialect. Recordings were done in a sound-proof room and praat software was used for the analysis and coding of the trajectories of F1 and F2 for the low vowel /a/ to see the effect of pharyngealization on the formant trajectory within the same syllable and in other syllables of the same word by comparing the F1 and F2 formants to the non-pharyngealized environment. The results show that pharyngealization spread is gradient (progressively and regressively). The spread is reflected in the gradual raising of F1 as we move closer towards the trigger and the gradual lowering of F2 as well. The results of the F1 mean values in tri-syllabic words when the trigger is word initially show that there is a raise of 37.9 HZ in the first syllable, 26.8HZ in the second syllable and 14.2HZ in the third syllable. F2 mean values undergo a lowering of 239 HZ in the first syllable, 211.7 HZ in the second syllable and 176.5 in the third syllable. This gradual decrease in the difference of F2 values in the non-pharyngealized and pharyngealized context illustrates that the spread is gradient. A similar result was found when the trigger is word-final which proves that the spread is gradient (progressively and regressively.Keywords: pharyngealization, Yemeni Arabic, Ibbi dialect, pharyngealization spread
Procedia PDF Downloads 222872 Content Based Video Retrieval System Using Principal Object Analysis
Authors: Van Thinh Bui, Anh Tuan Tran, Quoc Viet Ngo, The Bao Pham
Abstract:
Video retrieval is a searching problem on videos or clips based on content in which they are relatively close to an input image or video. The application of this retrieval consists of selecting video in a folder or recognizing a human in security camera. However, some recent approaches have been in challenging problem due to the diversity of video types, frame transitions and camera positions. Besides, that an appropriate measures is selected for the problem is a question. In order to overcome all obstacles, we propose a content-based video retrieval system in some main steps resulting in a good performance. From a main video, we process extracting keyframes and principal objects using Segmentation of Aggregating Superpixels (SAS) algorithm. After that, Speeded Up Robust Features (SURF) are selected from those principal objects. Then, the model “Bag-of-words” in accompanied by SVM classification are applied to obtain the retrieval result. Our system is performed on over 300 videos in diversity from music, history, movie, sports, and natural scene to TV program show. The performance is evaluated in promising comparison to the other approaches.Keywords: video retrieval, principal objects, keyframe, segmentation of aggregating superpixels, speeded up robust features, bag-of-words, SVM
Procedia PDF Downloads 301871 Towards a Dialogical Approach between Christianity and Hinduism: A Comparative Theological Analysis of the Concept of Logos, and Shabd
Authors: Abraham Kuruvilla
Abstract:
Since the inception of Christianity, one of the most important precepts has been that of the ‘word becoming flesh.’ Incarnation, as we understand it, is that the ‘word became flesh.’ As we know, it is a commonly held understanding that the concept of Logos was borrowed from the Greek religion. Such understanding has dominated our thought process. This is problematic as it does not draw out the deep roots of Logos. The understanding of Logos also existed in religion such as Hinduism. For the Hindu faith, the understanding of Shabd is pivotal. It could be arguably equated with the understanding of the Logos. The paper looks into the connection of the primal Christian doctrine of the Logos with that of the Hindu understanding of Shabd. The methodology of the paper would be a comparative theological analysis with the New Testament understanding of the Logos with that of the understanding of Shabd as perceived in the different Vedas of the Hindu faith. The paper would come to the conclusion that there is a conceptual connectivity between Logos and the Shabd. As such the understanding of Logos cannot just be attributed to the Greek understanding of Logos, but rather it predates the Greek understanding of Logos by being connected to the Hindu understanding of Shabd. Accordingly, such comparison brings out the implication for a constructive dialogue between Christianity and the Hindu faith.Keywords: Christianity, Hinudism, Logos, Shabd
Procedia PDF Downloads 224870 Using the Smith-Waterman Algorithm to Extract Features in the Classification of Obesity Status
Authors: Rosa Figueroa, Christopher Flores
Abstract:
Text categorization is the problem of assigning a new document to a set of predetermined categories, on the basis of a training set of free-text data that contains documents whose category membership is known. To train a classification model, it is necessary to extract characteristics in the form of tokens that facilitate the learning and classification process. In text categorization, the feature extraction process involves the use of word sequences also known as N-grams. In general, it is expected that documents belonging to the same category share similar features. The Smith-Waterman (SW) algorithm is a dynamic programming algorithm that performs a local sequence alignment in order to determine similar regions between two strings or protein sequences. This work explores the use of SW algorithm as an alternative to feature extraction in text categorization. The dataset used for this purpose, contains 2,610 annotated documents with the classes Obese/Non-Obese. This dataset was represented in a matrix form using the Bag of Word approach. The score selected to represent the occurrence of the tokens in each document was the term frequency-inverse document frequency (TF-IDF). In order to extract features for classification, four experiments were conducted: the first experiment used SW to extract features, the second one used unigrams (single word), the third one used bigrams (two word sequence) and the last experiment used a combination of unigrams and bigrams to extract features for classification. To test the effectiveness of the extracted feature set for the four experiments, a Support Vector Machine (SVM) classifier was tuned using 20% of the dataset. The remaining 80% of the dataset together with 5-Fold Cross Validation were used to evaluate and compare the performance of the four experiments of feature extraction. Results from the tuning process suggest that SW performs better than the N-gram based feature extraction. These results were confirmed by using the remaining 80% of the dataset, where SW performed the best (accuracy = 97.10%, weighted average F-measure = 97.07%). The second best was obtained by the combination of unigrams-bigrams (accuracy = 96.04, weighted average F-measure = 95.97) closely followed by the bigrams (accuracy = 94.56%, weighted average F-measure = 94.46%) and finally unigrams (accuracy = 92.96%, weighted average F-measure = 92.90%).Keywords: comorbidities, machine learning, obesity, Smith-Waterman algorithm
Procedia PDF Downloads 297869 Meaning Interpretation of Persian Noun-Noun Compounds: A Conceptual Blending Approach
Authors: Bahareh Yousefian, Laurel Smith Stvan
Abstract:
Linguistic structures have two facades: form and meaning. These structures could have either literal meaning or figurative meaning (although it could also depend on the context in which that structure appears). The literal meaning is understandable more easily, but for the figurative meaning, a word or concept is understood from a different word or concept. In linguistic structures with a figurative meaning, it’s more difficult to relate their forms to the meanings than structures with literal meaning. In these cases, the relationship between form and figurative meaning could be studied from different perspectives. Various linguists have been curious about what happens in someone’s mind to understand figurative meaning through the forms; they have used different perspectives and theories to explain this process. It has been studied through cognitive linguistics as well, in which mind and mental activities are really important. In this viewpoint, meaning (in other words, conceptualization) is considered a mental process. In this descriptive-analytic study, 20 Persian compound nouns with figurative meanings have been collected from the Persian-language Moeen Encyclopedic Dictionary and other sources. Examples include [“Sofreh Xaneh”] (traditional restaurant) and [“Dast Yar”] (Assistant). These were studied in a cognitive semantics framework using “Conceptual Blending Theory” which hasn’t been tested on Persian compound nouns before. It was noted that “Conceptual Blending Theory” could lead to the process of understanding the figurative meanings of Persian compound nouns. Many cognitive linguists believe that “Conceptual Blending” is not only a linguistic theory but it’s also a basic human cognitive ability that plays important roles in thought, imagination, and even everyday life as well (though unconsciously). The ability to use mental spaces and conceptual blending (which is exclusive to humankind) is such a basic but unconscious ability that we are unaware of its existence and importance. What differentiates Conceptual Blending Theory from other ways of understanding figurative meaning, are arising new semantic aspects (emergent structure) that lead to a more comprehensive and precise meaning. In this study, it was found that Conceptual Blending Theory could explain reaching the figurative meanings of Persian compound nouns from their forms, such as [talkative for compound word of “Bolbol + Zabani” (nightingale + tongue)] and [wage for compound word of “Dast + Ranj” (hand + suffering)].Keywords: cognitive linguistics, conceptual blending, figurative meaning, Persian compound nouns
Procedia PDF Downloads 77868 Electrophysiological Correlates of Statistical Learning in Children with and without Developmental Language Disorder
Authors: Ana Paula Soares, Alexandrina Lages, Helena Oliveira, Francisco-Javier Gutiérrez-Domínguez, Marisa Lousada
Abstract:
From an early age, exposure to a spoken language allows us to implicitly capture the structure underlying the succession of the speech sounds in that language and to segment it into meaningful units (words). Statistical learning (SL), i.e., the ability to pick up patterns in the sensory environment even without intention or consciousness of doing it, is thus assumed to play a central role in the acquisition of the rule-governed aspects of language and possibly to lie behind the language difficulties exhibited by children with development language disorder (DLD). The research conducted so far has, however, led to inconsistent results, which might stem from the behavioral tasks used to test SL. In a classic SL experiment, participants are first exposed to a continuous stream (e.g., syllables) in which, unbeknownst to the participants, stimuli are grouped into triplets that always appear together in the stream (e.g., ‘tokibu’, ‘tipolu’), with no pauses between each other (e.g., ‘tokibutipolugopilatokibu’) and without any information regarding the task or the stimuli. Following exposure, SL is assessed by asking participants to discriminate between triplets previously presented (‘tokibu’) from new sequences never presented together during exposure (‘kipopi’), i.e., to perform a two-alternative-forced-choice (2-AFC) task. Despite the widespread use of the 2-AFC to test SL, it has come under increasing criticism as it is an offline post-learning task that only assesses the result of the learning that had occurred during the previous exposure phase and that might be affected by other factors beyond the computation of regularities embedded in the input, typically the likelihood two syllables occurring together, a statistic known as transitional probability (TP). One solution to overcome these limitations is to assess SL as exposure to the stream unfolds using online techniques such as event-related potentials (ERP) that is highly sensitive to the time-course of the learning in the brain. Here we collected ERPs to examine the neurofunctional correlates of SL in preschool children with DLD, and chronological-age typical language development (TLD) controls who were exposed to an auditory stream in which eight three-syllable nonsense words, four of which presenting high-TPs and the other four low-TPs, to further analyze whether the ability of DLD and TLD children to extract-word-like units from the steam was modulated by words’ predictability. Moreover, to ascertain if the previous knowledge of the to-be-learned-regularities affected the neural responses to high- and low-TP words, children performed the auditory SL task, firstly, under implicit, and, subsequently, under explicit conditions. Although behavioral evidence of SL was not obtained in either group, the neural responses elicited during the exposure phases of the SL tasks differentiated children with DLD from children with TLD. Specifically, the results indicated that only children from the TDL group showed neural evidence of SL, particularly in the SL task performed under explicit conditions, firstly, for the low-TP, and, subsequently, for the high-TP ‘words’. Taken together, these findings support the view that children with DLD showed deficits in the extraction of the regularities embedded in the auditory input which might underlie the language difficulties.Keywords: development language disorder, statistical learning, transitional probabilities, word segmentation
Procedia PDF Downloads 188867 Robustness Conditions for the Establishment of Stationary Patterns of Drosophila Segmentation Gene Expression
Authors: Ekaterina M. Myasnikova, Andrey A. Makashov, Alexander V. Spirov
Abstract:
First manifestation of a segmentation pattern in the early Drosophila development is the formation of expression domains (along with the main embryo axis) of genes belonging to the trunk gene class. Highly variable expression of genes from gap family in early Drosophila embryo is strongly reduced by the start of gastrulation due to the gene cross-regulation. The dynamics of gene expression is described by a gene circuit model for a system of four gap genes. It is shown that for the formation of a steep and stationary border by the model it is necessary that there existed a nucleus (modeling point) in which the gene expression level is constant in time and hence is described by a stationary equation. All the rest genes expressed in this nucleus are in a dynamic equilibrium. The mechanism of border formation associated with the existence of a stationary nucleus is also confirmed by the experiment. An important advantage of this approach is that properties of the system in a stationary nucleus are described by algebraic equations and can be easily handled analytically. Thus we explicitly characterize the cross-regulation properties necessary for the robustness and formulate the conditions providing this effect through the properties of the initial input data. It is shown that our formally derived conditions are satisfied for the previously published model solutions.Keywords: drosophila, gap genes, reaction-diffusion model, robustness
Procedia PDF Downloads 366866 Locomotion, Object Exploration, Social Communicative Skills, and Improve in Language Abilities
Authors: Wanqing He
Abstract:
The current study explores aspects of exploratory behaviors and social capacities in urban Chinese infants to examine whether these factors mediate the link between infant walking and receptive and productive vocabularies. The linkage between the onset of walking and language attainment proves solid, but little is known about the factors that drive such link. This study examined whether joint attention, gesture use, and object activities mediate the association between locomotion and language development. Results showed that both the frequency (p = .05) and duration (p = .03) of carrying an object are strong mediators that afford opportunities for word comprehension. Also, accessing distal objects may be beneficial to infants’ language expression. Further studies on why object carrying may account for word comprehension and why infants with autism could not benefit from walking onset in terms of language development may yield valuable clinical implications.Keywords: exploratory behaviors, infancy, language acquisition, motor development, social communicative skills
Procedia PDF Downloads 121865 A Generative Pretrained Transformer-Based Question-Answer Chatbot and Phantom-Less Quantitative Computed Tomography Bone Mineral Density Measurement System for Osteoporosis
Authors: Mian Huang, Chi Ma, Junyu Lin, William Lu
Abstract:
Introduction: Bone health attracts more attention recently and an intelligent question and answer (QA) chatbot for osteoporosis is helpful for science popularization. With Generative Pretrained Transformer (GPT) technology developing, we build an osteoporosis corpus dataset and then fine-tune LLaMA, a famous open-source GPT foundation large language model(LLM), on our self-constructed osteoporosis corpus. Evaluated by clinical orthopedic experts, our fine-tuned model outperforms vanilla LLaMA on osteoporosis QA task in Chinese. Three-dimensional quantitative computed tomography (QCT) measured bone mineral density (BMD) is considered as more accurate than DXA for BMD measurement in recent years. We develop an automatic Phantom-less QCT(PL-QCT) that is more efficient for BMD measurement since no need of an external phantom for calibration. Combined with LLM on osteoporosis, our PL-QCT provides efficient and accurate BMD measurement for our chatbot users. Material and Methods: We build an osteoporosis corpus containing about 30,000 Chinese literatures whose titles are related to osteoporosis. The whole process is done automatically, including crawling literatures in .pdf format, localizing text/figure/table region by layout segmentation algorithm and recognizing text by OCR algorithm. We train our model by continuous pre-training with Low-rank Adaptation (LoRA, rank=10) technology to adapt LLaMA-7B model to osteoporosis domain, whose basic principle is to mask the next word in the text and make the model predict that word. The loss function is defined as cross-entropy between the predicted and ground-truth word. Experiment is implemented on single NVIDIA A800 GPU for 15 days. Our automatic PL-QCT BMD measurement adopt AI-associated region-of-interest (ROI) generation algorithm for localizing vertebrae-parallel cylinder in cancellous bone. Due to no phantom for BMD calibration, we calculate ROI BMD by CT-BMD of personal muscle and fat. Results & Discussion: Clinical orthopaedic experts are invited to design 5 osteoporosis questions in Chinese, evaluating performance of vanilla LLaMA and our fine-tuned model. Our model outperforms LLaMA on over 80% of these questions, understanding ‘Expert Consensus on Osteoporosis’, ‘QCT for osteoporosis diagnosis’ and ‘Effect of age on osteoporosis’. Detailed results are shown in appendix. Future work may be done by training a larger LLM on the whole orthopaedics with more high-quality domain data, or a multi-modal GPT combining and understanding X-ray and medical text for orthopaedic computer-aided-diagnosis. However, GPT model gives unexpected outputs sometimes, such as repetitive text or seemingly normal but wrong answer (called ‘hallucination’). Even though GPT give correct answers, it cannot be considered as valid clinical diagnoses instead of clinical doctors. The PL-QCT BMD system provided by Bone’s QCT(Bone’s Technology(Shenzhen) Limited) achieves 0.1448mg/cm2(spine) and 0.0002 mg/cm2(hip) mean absolute error(MAE) and linear correlation coefficient R2=0.9970(spine) and R2=0.9991(hip)(compared to QCT-Pro(Mindways)) on 155 patients in three-center clinical trial in Guangzhou, China. Conclusion: This study builds a Chinese osteoporosis corpus and develops a fine-tuned and domain-adapted LLM as well as a PL-QCT BMD measurement system. Our fine-tuned GPT model shows better capability than LLaMA model on most testing questions on osteoporosis. Combined with our PL-QCT BMD system, we are looking forward to providing science popularization and early morning screening for potential osteoporotic patients.Keywords: GPT, phantom-less QCT, large language model, osteoporosis
Procedia PDF Downloads 71864 Neologisms and Word-Formation Processes in Board Game Rulebook Corpus: Preliminary Results
Authors: Athanasios Karasimos, Vasiliki Makri
Abstract:
This research focuses on the design and development of the first text Corpus based on Board Game Rulebooks (BGRC) with direct application on the morphological analysis of neologisms and tendencies in word-formation processes. Corpus linguistics is a dynamic field that examines language through the lens of vast collections of texts. These corpora consist of diverse written and spoken materials, ranging from literature and newspapers to transcripts of everyday conversations. By morphologically analyzing these extensive datasets, morphologists can gain valuable insights into how language functions and evolves, as these extensive datasets can reflect the byproducts of inflection, derivation, blending, clipping, compounding, and neology. This entails scrutinizing how words are created, modified, and combined to convey meaning in a corpus of challenging, creative, and straightforward texts that include rules, examples, tutorials, and tips. Board games teach players how to strategize, consider alternatives, and think flexibly, which are critical elements in language learning. Their rulebooks reflect not only their weight (complexity) but also the language properties of each genre and subgenre of these games. Board games are a captivating realm where strategy, competition, and creativity converge. Beyond the excitement of gameplay, board games also spark the art of word creation. Word games, like Scrabble, Codenames, Bananagrams, Wordcraft, Alice in the Wordland, Once uUpona Time, challenge players to construct words from a pool of letters, thus encouraging linguistic ingenuity and vocabulary expansion. These games foster a love for language, motivating players to unearth obscure words and devise clever combinations. On the other hand, the designers and creators produce rulebooks, where they include their joy of discovering the hidden potential of language, igniting the imagination, and playing with the beauty of words, making these games a delightful fusion of linguistic exploration and leisurely amusement. In this research, more than 150 rulebooks in English from all types of modern board games, either language-independent or language-dependent, are used to create the BGRC. A representative sample of each genre (family, party, worker placement, deckbuilding, dice, and chance games, strategy, eurogames, thematic, role-playing, among others) was selected based on the score from BoardGameGeek, the size of the texts and the level of complexity (weight) of the game. A morphological model with morphological networks, multi-word expressions, and word-creation mechanics based on the complexity of the textual structure, difficulty, and board game category will be presented. In enabling the identification of patterns, trends, and variations in word formation and other morphological processes, this research aspires to make avail of this creative yet strict text genre so as to (a) give invaluable insight into morphological creativity and innovation that (re)shape the lexicon of the English language and (b) test morphological theories. Overall, it is shown that corpus linguistics empowers us to explore the intricate tapestry of language, and morphology in particular, revealing its richness, flexibility, and adaptability in the ever-evolving landscape of human expression.Keywords: board game rulebooks, corpus design, morphological innovations, neologisms, word-formation processes
Procedia PDF Downloads 98863 Application of the Quantile Regression Approach to the Heterogeneity of the Fine Wine Prices
Authors: Charles-Olivier Amédée-Manesme, Benoit Faye, Eric Le Fur
Abstract:
In this paper, the heterogeneity of the Bordeaux Legends 50 wine market price segment is addressed. For this purpose, quantile regression is applied – with market segmentation based on wine bottle price quantile – and the hedonic price of wine attributes is computed for various price segments of the market. The approach is applied to a major privately held data set which consists of approximately 30,000 transactions over the 2003–2014 period. The findings suggest that the relative hedonic prices of several wine attributes differ significantly among deciles. In particular, the elasticity coefficient of the expert ratings shows strong variation among prices. If - as suggested in the literature - expert ratings have a positive influence on wine price on average, they have a clearly decreasing impact over the quantiles. Finally, the lower the wine price, the higher the potential for price appreciation over time. Other variables such as chateaux or vintage are also shown to vary across the distribution of wine prices. While enhancing our understanding of the complex market dynamics that underlie Bordeaux wines’ price, this research provides empirical evidence that the QR approach adequately captures heterogeneity among wine price ranges, which simultaneously applies to wine stock, vintage and auctions’ house.Keywords: hedonics, market segmentation, quantile regression, heterogeneity, wine economics
Procedia PDF Downloads 340862 Reading and Writing of Biscriptal Children with and Without Reading Difficulties in Two Alphabetic Scripts
Authors: Baran Johansson
Abstract:
This PhD dissertation aimed to explore children’s writing and reading in L1 (Persian) and L2 (Swedish). It adds new perspectives to reading and writing studies of bilingual biscriptal children with and without reading and writing difficulties (RWD). The study used standardised tests to examine linguistic and cognitive skills related to word reading and writing fluency in both languages. Furthermore, all participants produced two texts (one descriptive and one narrative) in each language. The writing processes and the writing product of these children were explored using logging methodologies (Eye and Pen) for both languages. Furthermore, this study investigated how two bilingual children with RWD presented themselves through writing across their languages. To my knowledge, studies utilizing standardised tests and logging tools to investigate bilingual children’s word reading and writing fluency across two different alphabetic scripts are scarce. There have been few studies analysing how bilingual children construct meaning in their writing, and none have focused on children who write in two different alphabetic scripts or those with RWD. Therefore, some aspects of the systemic functional linguistics (SFL) perspective were employed to examine how two participants with RWD created meaning in their written texts in each language. The results revealed that children with and without RWD had higher writing fluency in all measures (e.g. text lengths, writing speed) in their L2 compared to their L1. Word reading abilities in both languages were found to influence their writing fluency. The findings also showed that bilingual children without reading difficulties performed 1 standard deviation below the mean when reading words in Persian. However, their reading performance in Swedish aligned with the expected age norms, suggesting greater efficient in reading Swedish than in Persian. Furthermore, the results showed that the level of orthographic depth, consistency between graphemes and phonemes, and orthographic features can probably explain these differences across languages. The analysis of meaning-making indicated that the participants with RWD exhibited varying levels of difficulty, which influenced their knowledge and usage of writing across languages. For example, the participant with poor word recognition (PWR) presented himself similarly across genres, irrespective of the language in which he wrote. He employed the listing technique similarly across his L1 and L2. However, the participant with mixed reading difficulties (MRD) had difficulties with both transcription and text production. He produced spelling errors and frequently paused in both languages. He also struggled with word retrieval and producing coherent texts, consistent with studies of monolingual children with poor comprehension or with developmental language disorder. The results suggest that the mother tongue instruction provided to the participants has not been sufficient for them to become balanced biscriptal readers and writers in both languages. Therefore, increasing the number of hours dedicated to mother tongue instruction and motivating the children to participate in these classes could be potential strategies to address this issue.Keywords: reading, writing, reading and writing difficulties, bilingual children, biscriptal
Procedia PDF Downloads 70