Search results for: vibro-acoustic structural health monitoring
14990 Concepts in the Design of Lateral-Load Systems in High Rise Buildings to Reduce Operational Energy Consumption
Authors: Mohamed Ali MiladKrem Salem, Sergio F.Breña, Sanjay R. Arwade, Simi T. Hoque
Abstract:
The location of the main lateral‐load resisting system in high-rise buildings may have positive impacts on sustainability through a reduction in operational energy consumption, and this paper describes an assessment of the accompanying effects on structural performance. It is found that there is a strong influence of design for environmental performance on the structural performance the building, and that systems selected primarily with an eye towards energy use reduction may require substantial additional structural stiffening to meet safety and serviceability limits under lateral load cases. We present a framework for incorporating the environmental costs of meeting structural design requirements through the embodied energy of the core structural materials and also address the issue of economic cost brought on by incorporation of environmental concerns into the selection of the structural system. We address these issues through four case study high-rise buildings with differing structural morphologies (floor plan and core arrangement) and assess each of these building models for cost and embodied energy when the base structural system, which has been suggested by architect Kenneth Yeang based on environmental concerns, is augmented to meet lateral drift requirements under the wind loads prescribed by ASCE 7-10.Keywords: sustainable, embodied, Outrigger, skyscraper, morphology, efficiency
Procedia PDF Downloads 47414989 A Portable Cognitive Tool for Engagement Level and Activity Identification
Authors: Terry Teo, Sun Woh Lye, Yufei Li, Zainuddin Zakaria
Abstract:
Wearable devices such as Electroencephalography (EEG) hold immense potential in the monitoring and assessment of a person’s task engagement. This is especially so in remote or online sites. Research into its use in measuring an individual's cognitive state while performing task activities is therefore expected to increase. Despite the growing number of EEG research into brain functioning activities of a person, key challenges remain in adopting EEG for real-time operations. These include limited portability, long preparation time, high number of channel dimensionality, intrusiveness, as well as level of accuracy in acquiring neurological data. This paper proposes an approach using a 4-6 EEG channels to determine the cognitive states of a subject when undertaking a set of passive and active monitoring tasks of a subject. Air traffic controller (ATC) dynamic-tasks are used as a proxy. The work found that when using the channel reduction and identifier algorithm, good trend adherence of 89.1% can be obtained between a commercially available BCI 14 channel Emotiv EPOC+ EEG headset and that of a carefully selected set of reduced 4-6 channels. The approach can also identify different levels of engagement activities ranging from general monitoring ad hoc and repeated active monitoring activities involving information search, extraction, and memory activities.Keywords: assessment, neurophysiology, monitoring, EEG
Procedia PDF Downloads 7414988 Structural Reliability Analysis Using Extreme Learning Machine
Authors: Mehul Srivastava, Sharma Tushar Ravikant, Mridul Krishn Mishra
Abstract:
In structural design, the evaluation of safety and probability failure of structure is of significant importance, mainly when the variables are random. On real structures, structural reliability can be evaluated obtaining an implicit limit state function. The structural reliability limit state function is obtained depending upon the statistically independent variables. In the analysis of reliability, we considered the statistically independent random variables to be the load intensity applied and the depth or height of the beam member considered. There are many approaches for structural reliability problems. In this paper Extreme Learning Machine technique and First Order Second Moment Method is used to determine the reliability indices for the same set of variables. The reliability index obtained using ELM is compared with the reliability index obtained using FOSM. Higher the reliability index, more feasible is the method to determine the reliability.Keywords: reliability, reliability index, statistically independent, extreme learning machine
Procedia PDF Downloads 68114987 Satellites and Drones: Integrating Two Systems for Monitoring Air Quality and the Stress of the Plants
Authors: Bernabeo R. Alberto
Abstract:
Unmanned aerial vehicles (UAV) platforms or remotely piloted aircraft system (Rpas) - with dedicated sensors - are fundamental support to the planning, running, and control of the territory in which public safety is or may be at risk for post-disaster assessments such as flooding or landslides, for searching lost people, for crime and accident scene photography, for assisting traffic control at major events, for teaching geography, history, natural science and all those subjects that require a continuous cyclical process of observation, evaluation and interpretation. Through the use of proximal remote sensing information related to anthropic landscape and nature integration, there is an opportunity to improve knowledge and management decision-making for the safeguarding of the environment, for farming, wildlife management, land management, mapping, glacier monitoring, atmospheric monitoring, for the conservation of archeological, historical, artistic and architectural sites, allowing an exact delimitation of the site in the territory. This paper will go over many different mission types. Within each mission type, it will give a broad overview to familiarize the reader but not make them an expert. It will also give detailed information on the payloads and other testing parameters the Unmanned Aerial Vehicles (UAV) use to complete a mission. The project's goal is to improve satellite maps about the stress of the plants, air quality monitoring, and related health issues.Keywords: proximal remote sensing, remotely piloted aircraft system, risk, safety, unmanned aerial vehicle
Procedia PDF Downloads 1914986 Design and Development of an Autonomous Underwater Vehicle for Irrigation Canal Monitoring
Authors: Mamoon Masud, Suleman Mazhar
Abstract:
Indus river basin’s irrigation system in Pakistan is extremely complex, spanning over 50,000 km. Maintenance and monitoring of this demands enormous resources. This paper describes the development of a streamlined and low-cost autonomous underwater vehicle (AUV) for the monitoring of irrigation canals including water quality monitoring and water theft detection. The vehicle is a hovering-type AUV, designed mainly for monitoring irrigation canals, with fully documented design and open source code. It has a length of 17 inches, and a radius of 3.5 inches with a depth rating of 5m. Multiple sensors are present onboard the AUV for monitoring water quality parameters including pH, turbidity, total dissolved solids (TDS) and dissolved oxygen. A 9-DOF Inertial Measurement Unit (IMU), GY-85, is used, which incorporates an Accelerometer (ADXL345), a Gyroscope (ITG-3200) and a Magnetometer (HMC5883L). The readings from these sensors are fused together using directional cosine matrix (DCM) algorithm, providing the AUV with the heading angle, while a pressure sensor gives the depth of the AUV. 2 sonar-based range sensors are used for obstacle detection, enabling the vehicle to align itself with the irrigation canals edges. 4 thrusters control the vehicle’s surge, heading and heave, providing 3 DOF. The thrusters are controlled using a proportional-integral-derivative (PID) feedback control system, with heading angle and depth being the controller’s input and the thruster motor speed as the output. A flow sensor has been incorporated to monitor canal water level to detect water-theft event in the irrigation system. In addition to water theft detection, the vehicle also provides information on water quality, providing us with the ability to identify the source(s) of water contamination. Detection of such events can provide useful policy inputs for improving irrigation efficiency and reducing water contamination. The AUV being low cost, small sized and suitable for autonomous maneuvering, water level and quality monitoring in the irrigation canals, can be used for irrigation network monitoring at a large scale.Keywords: the autonomous underwater vehicle, irrigation canal monitoring, water quality monitoring, underwater line tracking
Procedia PDF Downloads 14514985 Simulation and Experimental Study on Tensile Force Measurement of PS Tendons Using an Embedded EM Sensor
Authors: ByoungJoon Yu, Junkyeong Kim, Seunghee Park
Abstract:
The tensile force estimation PS tendons is in great demand on monitoring the structural health condition of PSC girder bridges. Measuring the tensile force of the PS tendons inside the PSC girder using conventional methods is hard due to its location. In this paper, an embedded EM sensor based tensile force estimation of PS tendon was carried out by measuring the permeability of the PS tendons in PSC girder. The permeability is changed due to the induced tensile force by the magneto-elastic effect and the effect then lead to the gradient change of the B-H curve. An experiment was performed to obtain the signals from the EM sensor using three down-scaled PSC girder models. The permeability of PS tendons was proportionally decreased according to the increase of the tensile forces. To verify the experiment results, a simulation of tensile force estimation will be conducted in further study. Consequently, it is expected that both the experiment results and the simulation results increase the accuracy of the tensile force estimation, and then it could be one of the solutions for evaluating the performance of PSC girder.Keywords: tensile force estimation, embedded EM sensor, PSC girder, EM sensor simulation, cross section loss
Procedia PDF Downloads 47714984 The Review of Permanent Downhole Monitoring System
Abstract:
With the increasingly difficult development and operating environment of exploration, there are many new challenges and difficulties in developing and exploiting oil and gas resources. These include the ability to dynamically monitor wells and provide data and assurance for the completion and production of high-cost and complex wells. A key technology in providing these assurances and maximizing oilfield profitability is real-time permanent reservoir monitoring. The emergence of optical fiber sensing systems has gradually begun to replace traditional electronic systems. Traditional temperature sensors can only achieve single-point temperature monitoring, but fiber optic sensing systems based on the Bragg grating principle have a high level of reliability, accuracy, stability, and resolution, enabling cost-effective monitoring, which can be done in real-time, anytime, and without well intervention. Continuous data acquisition is performed along the entire wellbore. The integrated package with the downhole pressure gauge, packer, and surface system can also realize real-time dynamic monitoring of the pressure in some sections of the downhole, avoiding oil well intervention and eliminating the production delay and operational risks of conventional surveys. Real-time information obtained through permanent optical fibers can also provide critical reservoir monitoring data for production and recovery optimization.Keywords: PDHM, optical fiber, coiled tubing, photoelectric composite cable, digital-oilfield
Procedia PDF Downloads 7614983 Developing a Total Quality Management Model Using Structural Equation Modeling for Indonesian Healthcare Industry
Authors: Jonny, T. Yuri M. Zagloel
Abstract:
This paper is made to present an Indonesian Healthcare model. Currently, there are nine TQM (Total Quality Management) practices in healthcare industry. However, these practices are not integrated yet. Therefore, this paper aims to integrate these practices as a model by using Structural Equation Modeling (SEM). After administering about 210 questionnaires to various stakeholders of this industry, a LISREL program was used to evaluate the model's fitness. The result confirmed that the model is fit because the p-value was about 0.45 or above required 0.05. This has signified that previously mentioned of nine TQM practices are able to be integrated as an Indonesian healthcare model.Keywords: healthcare, total quality management (TQM), structural equation modeling (SEM), linear structural relations (LISREL)
Procedia PDF Downloads 29014982 Investigating the Energy Harvesting Potential of a Pitch-Plunge Airfoil Subjected to Fluctuating Wind
Authors: Magu Raam Prasaad R., Venkatramani Jagadish
Abstract:
Recent studies in the literature have shown that randomly fluctuating wind flows can give rise to a distinct regime of pre-flutter oscillations called intermittency. Intermittency is characterized by the presence of sporadic bursts of high amplitude oscillations interspersed amidst low-amplitude aperiodic fluctuations. The focus of this study is on investigating the energy harvesting potential of these intermittent oscillations. Available literature has by and large devoted its attention on extracting energy from flutter oscillations. The possibility of harvesting energy from pre-flutter regimes have remained largely unexplored. However, extracting energy from violent flutter oscillations can be severely detrimental to the structural integrity of airfoil structures. Consequently, investigating the relatively stable pre-flutter responses for energy extraction applications is of practical importance. The present study is devoted towards addressing these concerns. A pitch-plunge airfoil with cubic hardening nonlinearity in the plunge and pitch degree of freedom is considered. The input flow fluctuations are modelled using a sinusoidal term with randomly perturbed frequencies. An electromagnetic coupling is provided to the pitch-plunge equations, such that, energy from the wind induced vibrations of the structural response are extracted. With the mean flow speed as the bifurcation parameter, a fourth order Runge-Kutta based time marching algorithm is used to solve the governing aeroelastic equations with electro-magnetic coupling. The harnessed energy from the intermittency regime is presented and the results are discussed in comparison to that obtained from the flutter regime. The insights from this study could be useful in health monitoring of aeroelastic structures.Keywords: aeroelasticity, energy harvesting, intermittency, randomly fluctuating flows
Procedia PDF Downloads 18614981 Active Vibration Reduction for a Flexible Structure Bonded with Sensor/Actuator Pairs on Efficient Locations Using a Developed Methodology
Authors: Ali H. Daraji, Jack M. Hale, Ye Jianqiao
Abstract:
With the extensive use of high specific strength structures to optimise the loading capacity and material cost in aerospace and most engineering applications, much effort has been expended to develop intelligent structures for active vibration reduction and structural health monitoring. These structures are highly flexible, inherently low internal damping and associated with large vibration and long decay time. The modification of such structures by adding lightweight piezoelectric sensors and actuators at efficient locations integrated with an optimal control scheme is considered an effective solution for structural vibration monitoring and controlling. The size and location of sensor and actuator are important research topics to investigate their effects on the level of vibration detection and reduction and the amount of energy provided by a controller. Several methodologies have been presented to determine the optimal location of a limited number of sensors and actuators for small-scale structures. However, these studies have tackled this problem directly, measuring the fitness function based on eigenvalues and eigenvectors achieved with numerous combinations of sensor/actuator pair locations and converging on an optimal set using heuristic optimisation techniques such as the genetic algorithms. This is computationally expensive for small- and large-scale structures subject to optimise a number of s/a pairs to suppress multiple vibration modes. This paper proposes an efficient method to determine optimal locations for a limited number of sensor/actuator pairs for active vibration reduction of a flexible structure based on finite element method and Hamilton’s principle. The current work takes the simplified approach of modelling a structure with sensors at all locations, subjecting it to an external force to excite the various modes of interest and noting the locations of sensors giving the largest average percentage sensors effectiveness measured by dividing all sensor output voltage over the maximum for each mode. The methodology was implemented for a cantilever plate under external force excitation to find the optimal distribution of six sensor/actuator pairs to suppress the first six modes of vibration. It is shown that the results of the optimal sensor locations give good agreement with published optimal locations, but with very much reduced computational effort and higher effectiveness. Furthermore, it is shown that collocated sensor/actuator pairs placed in these locations give very effective active vibration reduction using optimal linear quadratic control scheme.Keywords: optimisation, plate, sensor effectiveness, vibration control
Procedia PDF Downloads 23014980 Self-Carried Theranostic Nanoparticles for in vitro and in vivo Cancer Therapy with Real-Time Monitoring of Drug Release
Authors: Jinfeng Zhang, Chun-Sing Lee
Abstract:
The use of different nanocarriers for delivering hydrophobic pharmaceutical agents to tumor sites has garnered major attention. Despite the merits of these nanocarriers, further studies are needed for improving their drug loading capacities (typically less than 10%) and reducing their potential systemic toxicity. So development of alternative self-carried nanodrug delivery strategies without using any inert carriers is highly desirable. In this study, we developed a self-carried theranostic curcumin (Cur) nanodrug for highly effective cancer therapy in vitro and in vivo with real-time monitoring of drug release. With a biocompatible C18PMH-PEG functionalization, the Cur nanoparticles (NPs) showed excellent dispersibility and outstanding stability in physiological environment, with drug loading capacity higher than 78 wt.%. Both confocal microscopy and flow cytometry confirmed the cellular fluorescent “OFF-ON” activation and real-time monitoring of Cur molecule release, showing its potential for cancer diagnosis. In vitro and in vivo experiments clearly show that therapeutic efficacy of the PEGylated Cur NPs is much better than that of free Cur. This self-carried theranostic strategy with real-time monitoring of drug release may open a new way for simultaneous cancer therapy and diagnosis.Keywords: drug delivery, in vitro and in vivo cancer therapy, real-time monitoring, self-carried
Procedia PDF Downloads 39614979 Study of Structural Health Monitoring System for Vam Cong Cable-Stayed Bridge
Authors: L. M. Chinh
Abstract:
Vam Cong Bridge beside Can Tho Bridge is the next cable-stayed bridge spanning the Hau River, connecting Lap Vo district with Thot Not district. After construction by the end of 2018, the Vam Cong Bridge with Cao Lanh Bridge will help to improve the road network in this region of Mekong Delta. For this bridge, the SHM system also had designed for two stages – construction stage and exploitation stage. At the moment over 65% of the bridge construction had completed, and the bridge will be completed at the end of 2018. During the construction stage, the SHM system had been install to monitor behaviors of the bridge. Based on the study of the design documentation of the SHM system of the Vam Cong Bridge and site visit during construction work, many designs and installation errors have been detected. In this paper author thoroughly analyzed the pros and cons of this SHM system, simultaneously make conclusions and recommendations for this system. Specially concentrated on the possibility of implementing the acoustic emission method (AE) into this SHM system, which is an alternative to the further development of the system, enabling a full and cost-effective solution for the bridge management, which is of utmost importance for the service life and safe operation of the bridge.Keywords: SHM system, design and installation, Vam Cong bridge, construction stage, acoustic emission method (AE)
Procedia PDF Downloads 23414978 Comparing Quality of Care in Family Planning Services in Primary Public and Private Health Care Facilities in Ethiopia
Authors: Gizachew Assefa Tessema, Mohammad Afzal Mahmood, Judith Streak Gomersall, Caroline O. Laurence
Abstract:
Introduction: Improving access to quality family planning services is the key to improving health of women and children. However, there is currently little evidence on the quality and scope of family planning services provided by private facilities, and this compares to the services provided in public facilities in Ethiopia. This is important, particularly in determining whether the government should further expand the roles of the private sector in the delivery of family planning facility. Methods: This study used the 2014 Ethiopian Services Provision Assessment Plus (ESPA+) survey dataset for comparing the structural aspects of quality of care in family planning services. The present analysis used a weighted sample of 1093 primary health care facilities (955 public and 138 private). This study employed logistic regression analysis to compare key structural variables between public and private facilities. While taking the structural variables as an outcome for comparison, the facility type (public vs private) were used as the key exposure of interest. Results: When comparing availability of basic amenities (infrastructure), public facilities were less likely to have functional cell phones (AOR=0.12; 95% CI: 0.07-0.21), and water supply (AOR=0.29; 95% CI: 0.15-0.58) than private facilities. However, public facilities were more likely to have staff available 24 hours in the facility (AOR=0.12; 95% CI: 0.07-0.21), providers having family planning related training in the past 24 months (AOR=4.4; 95% CI: 2.51, 7.64) and possessing guidelines/protocols (AOR= 3.1 95% CI: 1.87, 5.24) than private facilities. Moreover, comparing the availability of equipment, public facilities had higher odds of having pelvic model for IUD demonstration (AOR=2.60; 95% CI: 1.35, 5.01) and penile model for condom demonstration (AOR=2.51; 95% CI: 1.32, 4.78) than private facilities. Conclusion: The present study suggests that Ethiopian government needs to provide emphasis towards the private sector in terms of providing family planning guidelines and training on family planning services for their staff. It is also worthwhile for the public health facilities to allocate funding for improving the availability of basic amenities. Implications for policy and/ or practice: This study calls policy makers to design appropriate strategies in providing opportunities for training a health care providers working in private health facility.Keywords: quality of care, family planning, public-private, Ethiopia
Procedia PDF Downloads 35214977 Identification of the Relationship Between Signals in Continuous Monitoring of Production Systems
Authors: Maciej Zaręba, Sławomir Lasota
Abstract:
Understanding the dependencies between the input signal, that controls the production system and signals, that capture its output, is of a great importance in intelligent systems. The method for identification of the relationship between signals in continuous monitoring of production systems is described in the paper. The method discovers the correlation between changes in the states derived from input signals and resulting changes in the states of output signals of the production system. The method is able to handle system inertia, which determines the time shift of the relationship between the input and output.Keywords: manufacturing operation management, signal relationship, continuous monitoring, production systems
Procedia PDF Downloads 9114976 A Flute Tracking System for Monitoring the Wear of Cutting Tools in Milling Operations
Authors: Hatim Laalej, Salvador Sumohano-Verdeja, Thomas McLeay
Abstract:
Monitoring of tool wear in milling operations is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Although there are numerous statistical models and artificial intelligence techniques available for monitoring the wear of cutting tools, these techniques cannot pin point which cutting edge of the tool, or which insert in the case of indexable tooling, is worn or broken. Currently, the task of monitoring the wear on the tool cutting edges is carried out by the operator who performs a manual inspection, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from lost productivity. The present study is concerned with the development of a flute tracking system to segment signals related to each physical flute of a cutter with three flutes used in an end milling operation. The purpose of the system is to monitor the cutting condition for individual flutes separately in order to determine their progressive wear rates and to predict imminent tool failure. The results of this study clearly show that signals associated with each flute can be effectively segmented using the proposed flute tracking system. Furthermore, the results illustrate that by segmenting the sensor signal by flutes it is possible to investigate the wear in each physical cutting edge of the cutting tool. These findings are significant in that they facilitate the online condition monitoring of a cutting tool for each specific flute without the need for operators/engineers to perform manual inspections of the tool.Keywords: machining, milling operation, tool condition monitoring, tool wear prediction
Procedia PDF Downloads 29914975 On the Seismic Response of Collided Structures
Authors: George D. Hatzigeorgiou, Nikos G. Pnevmatikos
Abstract:
This study examines the inelastic behavior of adjacent planar reinforced concrete (R.C.) frames subjected to strong ground motions. The investigation focuses on the effects of vertical ground motion on the seismic pounding. The examined structures are modeled and analyzed by RUAUMOKO dynamic nonlinear analysis program using reliable hysteretic models for both structural members and contact elements. It is found that the vertical ground motion mildly affects the seismic response of adjacent buildings subjected to structural pounding and, for this reason, it can be ignored from the displacement and interstorey drifts assessment. However, the structural damage is moderately affected by the vertical component of earthquakes.Keywords: nonlinear seismic behavior, reinforced concrete structures, structural pounding, vertical ground motions
Procedia PDF Downloads 59014974 Analytical Evaluation on Structural Performance and Optimum Section of CHS Damper
Authors: Daniel Y. Abebe, Jeonghyun Jang, Jaehyouk Choi
Abstract:
This study aims to evaluate the effective size, section and structural characteristics of circular hollow steel (CHS) damper. CHS damper is among steel dampers which are used widely for seismic energy dissipation because they are easy to install, maintain and are inexpensive. CHS damper dissipates seismic energy through metallic deformation due to the geometrical elasticity of circular shape and fatigue resistance around connection part. After calculating the effective size, which is found to be height to diameter ratio of √("3"), nonlinear FE analyses were carried out to evaluate the structural characteristics and effective section (diameter-to-ratio).Keywords: circular hollow steel damper, structural characteristics, effective size, effective section, large deformation, FE analysis
Procedia PDF Downloads 35914973 Enhancing Knowledge Graph Convolutional Networks with Structural Adaptive Receptive Fields for Improved Node Representation and Information Aggregation
Authors: Zheng Zhihao
Abstract:
Recently, Knowledge Graph Framework Network (KGCN) has developed powerful capabilities in knowledge representation and reasoning tasks. However, traditional KGCN often uses a fixed weight mechanism when aggregating information, failing to make full use of rich structural information, resulting in a certain expression ability of node representation, and easily causing over-smoothing problems. In order to solve these challenges, the paper proposes an new graph neural network model called KGCN-STAR (Knowledge Graph Convolutional Network with Structural Adaptive Receptive Fields). This model dynamically adjusts the perception of each node by introducing a structural adaptive receptive field. wild range, and a subgraph aggregator is designed to capture local structural information more effectively. Experimental results show that KGCN-STAR shows significant performance improvement on multiple knowledge graph data sets, especially showing considerable capabilities in the task of representation learning of complex structures.Keywords: knowledge graph, graph neural networks, structural adaptive receptive fields, information aggregation
Procedia PDF Downloads 3014972 Biodeterioration of Historic Parks of UK by Algae
Authors: Syeda Fatima Manzelat
Abstract:
This chapter investigates the biodeterioration of parks in the UK caused by lichens, focusing on Campbell Park and Great Linford Manor Park in Milton Keynes. The study first isolates and identifies potent biodeteriogens responsible for potential biodeterioration in these parks, enumerating and recording different classes and genera of lichens known for their biodeteriorative properties. It then examines the implications of lichens on biodeterioration at historic sites within these parks, considering impacts on historic structures, the environment, and associated health risks. Conservation strategies and preventive measures are discussed before concluding.Lichens, characterized by their symbiotic association between a fungus and an alga, thrive on various surfaces including building materials, soil, rock, wood, and trees. The fungal component provides structure and protection, while the algal partner performs photosynthesis. Lichens collected from the park sites, such as Xanthoria, Cladonia, and Arthonia, were observed affecting the historic walls, objects, and trees. Their biodeteriorative impacts were visible to the naked eye, contributing to aesthetic and structural damage. The study highlights the role of lichens as bioindicators of pollution, sensitive to changes in air quality. The presence and diversity of lichens provide insights into the air quality and pollution levels in the parks. However, lichens also pose health risks, with certain species causing respiratory issues, allergies, skin irritation, and other toxic effects in humans and animals. Conservation strategies discussed include regular monitoring, biological and chemical control methods, physical removal, and preventive cleaning. The study emphasizes the importance of a multifaceted, multidisciplinary approach to managing lichen-induced biodeterioration. Future management practices could involve advanced techniques such as eco-friendly biocides and self-cleaning materials to effectively control lichen growth and preserve historic structures. In conclusion, this chapter underscores the dual role of lichens as agents of biodeterioration and indicators of environmental quality. Comprehensive conservation management approaches, encompassing monitoring, targeted interventions, and advanced conservation methods, are essential for preserving the historic and natural integrity of parks like Campbell Park and Great Linford Manor Park.Keywords: biodeterioration, historic parks, algae, UK
Procedia PDF Downloads 3014971 Issues on Optimizing the Structural Parameters of the Induction Converter
Authors: Marinka K. Baghdasaryan, Siranush M. Muradyan, Avgen A. Gasparyan
Abstract:
Analytical expressions of the current and angular errors, as well as the frequency characteristics of an induction converter describing the relation with its structural parameters, the core and winding characteristics are obtained. Based on estimation of the dependences obtained, a mathematical problem of parametric optimization is formulated which can successfully be used for investigation and diagnosing an induction converter.Keywords: induction converters, magnetic circuit material, current and angular errors, frequency response, mathematical formulation, structural parameters
Procedia PDF Downloads 34414970 Analyzing On-Line Process Data for Industrial Production Quality Control
Authors: Hyun-Woo Cho
Abstract:
The monitoring of industrial production quality has to be implemented to alarm early warning for unusual operating conditions. Furthermore, identification of their assignable causes is necessary for a quality control purpose. For such tasks many multivariate statistical techniques have been applied and shown to be quite effective tools. This work presents a process data-based monitoring scheme for production processes. For more reliable results some additional steps of noise filtering and preprocessing are considered. It may lead to enhanced performance by eliminating unwanted variation of the data. The performance evaluation is executed using data sets from test processes. The proposed method is shown to provide reliable quality control results, and thus is more effective in quality monitoring in the example. For practical implementation of the method, an on-line data system must be available to gather historical and on-line data. Recently large amounts of data are collected on-line in most processes and implementation of the current scheme is feasible and does not give additional burdens to users.Keywords: detection, filtering, monitoring, process data
Procedia PDF Downloads 55714969 Development of Multifunctional Yarns and Fabrics for Interactive Textiles
Authors: Muhammad Bilal Qadir, Danish Umer, Amir Shahzad
Abstract:
The use of conductive materials in smart and interactive textiles is gaining significant importance for creating value addition, innovation, and functional product development. These products find their potential applications in health monitoring, military, protection, communication, sensing, monitoring, actuation, fashion, and lifestyles. The materials which are most commonly employed in such type of interactive textile include intrinsically conducting polymers, conductive inks, and metallic coating on textile fabrics and inherently conducting metallic fibre yarns. In this study, silver coated polyester filament yarn is explored for the development of multifunctional interactive gloves. The composite yarn was developed by covering the silver coated polyester filament around the polyester spun yarn using hollow spindle technique. The electrical and tensile properties of the yarn were studied. This novel yarn was used to manufacture a smart glove to explore the antibacterial, functional, and interactive properties of the yarn. The change in electrical resistance due to finger movement at different bending positions and antimicrobial properties were studied. This glove was also found useful as an interactive tool to operate the commonly used touch screen devices due to its conductive nature. The yarn can also be used to develop the sensing elements like stretch, strain, and piezoresistive sensors. Such sensor can be effectively used in medical and sports textile for performance monitoring, vital signs monitoring and development of antibacterial textile for healthcare and hygiene.Keywords: conductive yarn, interactive textiles, piezoresistive sensors, smart gloves
Procedia PDF Downloads 23914968 Structural Properties of CuCl, CuBr, and CuI Compounds under Hydrostatic Pressure
Authors: S. Louhibi-Fasla, H. Rekab Djabri, H. Achour
Abstract:
The aim of this work is to investigate the structural phase-transitions and electronic properties of copper halides. Our calculations were performed within the PLW extension to the first principle FPLMTO method, which enables an accurate treatment of all kinds of structures including the open ones. Results are given for lattice parameters, bulk modulus and its first derivatives in five different surface phases, and are compared with the available theoretical and experimental data. In the zinc-blende (B3) and PbO (B10) phases, the fundamental gap remains direct with both the top of VB and the bottom of CB located at Γ.Keywords: FPLMTO, structural properties, Copper halides, phase transitions, ground state phase
Procedia PDF Downloads 43014967 Evaluation Using a Bidirectional Microphone as a Pressure Pulse Wave Meter
Authors: Shunsuke Fujiwara, Takashi Kaburagi, Kazuyuki Kobayashi, Kajiro Watanabe, Yosuke Kurihara
Abstract:
This paper describes a novel sensor device, a pressure pulse wave meter, which uses a bidirectional condenser microphone. The microphone work as a microphone as well as a sensor with high gain over a wide frequency range; they are also highly reliable and economical. Currently aging is becoming a serious social issue in Japan causing increased medical expenses in the country. Hence, it is important for elderly citizens to check health condition at home, and to care the health conditions through daily monitoring. Given this circumstances, we developed a novel pressure pulse wave meter based on a bidirectional condenser microphone. This novel pressure pulse wave meter device is used as a measuring instrument of health conditions.Keywords: bidirectional microphone, pressure pulse wave meter, health condition, novel sensor device
Procedia PDF Downloads 55014966 Structural Engineering Forensic Evaluation of Misdiagnosed Concrete Masonry Wall Cracking
Authors: W. C. Bracken
Abstract:
Given that concrete masonry walls are expected to experience shrinkage combined with thermal expansion and contraction, and in some cases even carbonation, throughout their service life, cracking is to be expected. However, after concrete masonry walls have been placed into service, originally anticipated and accounted for cracking is often misdiagnosed as a structural defect. Such misdiagnoses often result in or are used to support litigation. This paper begins by discussing the causes and types of anticipated cracking within concrete masonry walls followed by a discussion on the processes and analyses that exists for properly evaluating them and their significance. From here, the paper then presents a case of misdiagnosed concrete masonry cracking and the flawed logic employed to support litigation.Keywords: concrete masonry, masonry wall cracking, structural defect, structural damage, construction defect, forensic investigation
Procedia PDF Downloads 24614965 Study of Methods to Reduce Carbon Emissions in Structural Engineering
Authors: Richard Krijnen, Alan Wang
Abstract:
As the world is aiming to reach net zero around 2050, structural engineers must begin finding solutions to contribute to this global initiative. Approximately 40% of global energy-related emissions are due to buildings and construction, and a building’s structure accounts for 50% of its embodied carbon, which indicates that structural engineers are key contributors to finding solutions to reach carbon neutrality. However, this task presents a multifaceted challenge as structural engineers must navigate technical, safety and economic considerations while striving to reduce emissions. This study reviews several options and considerations to reduce carbon emissions that structural engineers can use in their future designs without compromising the structural integrity of their proposed design. Low-carbon structures should adhere to several guiding principles. Firstly, prioritize the selection of materials with low carbon footprints, such as recyclable or alternative materials. Optimization of design and engineering methods is crucial to minimize material usage. Encouraging the use of recyclable and renewable materials reduces dependency on natural resources. Energy efficiency is another key consideration involving the design of structures to minimize energy consumption across various systems. Choosing local materials and minimizing transportation distances help in reducing carbon emissions during transport. Innovation, such as pre-fabrication and modular design or low-carbon concrete, can further cut down carbon emissions during manufacturing and construction. Collaboration among stakeholders and sharing experiences and resources are essential for advancing the development and application of low-carbon structures. This paper identifies current available tools and solutions to reduce embodied carbon in structures, which can be used as part of daily structural engineering practice.Keywords: efficient structural design, embodied carbon, low-carbon material, sustainable structural design
Procedia PDF Downloads 3814964 Usability Evaluation of a Self-Report Mobile App for COVID-19 Symptoms: Supporting Health Monitoring in the Work Context
Authors: Kevin Montanez, Patricia Garcia
Abstract:
The confinement and restrictions adopted to avoid an exponential spread of the COVID-19 have negatively impacted the Peruvian economy. In this context, Industries offering essential products could continue operating, but they have to follow safety protocols and implement strategies to ensure employee health. In view of the increasing internet access and mobile phone ownership, “Alerta Temprana”, a mobile app, was developed to self-report COVID-19 symptoms in the work context. In this study, the usability of the mobile app “Alerta Temprana” was evaluated from the perspective of health monitors and workers. In addition to reporting the metrics related to the usability of the application, the utility of the system is also evaluated from the monitors' perspective. In this descriptive study, the participants used the mobile app for two months. Afterwards, System Usability Scale (SUS) questionnaire was answered by the workers and monitors. A Usefulness questionnaire with open questions was also used for the monitors. The data related to the use of the application was collected during one month. Furthermore, descriptive statistics and bivariate analysis were used. The workers rated the application as good (70.39). In the case of the monitors, usability was excellent (83.0). The most important feature for the monitors were the emails generated by the application. The average interaction per user was 30 seconds and a total of 6172 self-reports were sent. Finally, a statistically significant association was found between the acceptability scale and the work area. The results of this study suggest that Alerta Temprana has the potential to be used for surveillance and health monitoring in any context of face-to-face modality. Participants reported a high degree of ease of use. However, from the perspective of workers, SUS cannot diagnose usability issues and we suggest we use another standard usability questionnaire to improve "Alerta Temprana" for future use.Keywords: public health in informatics, mobile app, usability, self-report
Procedia PDF Downloads 11714963 Beyond Information Failure and Misleading Beliefs in Conditional Cash Transfer Programs: A Qualitative Account of Structural Barriers Explaining Why the Poor Do Not Invest in Human Capital in Northern Mexico
Authors: Francisco Fernandez de Castro
Abstract:
The Conditional Cash Transfer (CCT) model gives monetary transfers to beneficiary families on the condition that they take specific education and health actions. According to the economic rationale of CCTs the poor need incentives to invest in their human capital because they are trapped by a lack of information and misleading beliefs. If left to their own decision, the poor will not be able to choose what is in their best interests. The basic assumption of the CCT model is that the poor need incentives to take care of their own education and health-nutrition. Due to the incentives (income cash transfers and conditionalities), beneficiary families are supposed to attend doctor visits and health talks. Children would stay in the school. These incentivized behaviors would produce outcomes such as better health and higher level of education, which in turn will reduce poverty. Based on a grounded theory approach to conduct a two-year period of qualitative data collection in northern Mexico, this study shows that this explanation is incomplete. In addition to the information failure and inadequate beliefs, there are structural barriers in everyday life of households that make health-nutrition and education investments difficult. In-depth interviews and observation work showed that the program takes for granted local conditions in which beneficiary families should fulfill their co-responsibilities. Data challenged the program’s assumptions and unveiled local obstacles not contemplated in the program’s design. These findings have policy and research implications for the CCT agenda. They bring elements for late programming due to the gap between the CCT strategy as envisioned by policy designers, and the program that beneficiary families experience on the ground. As for research consequences, these findings suggest new avenues for scholarly work regarding the causal mechanisms and social processes explaining CCT outcomes.Keywords: conditional cash transfers, incentives, poverty, structural barriers
Procedia PDF Downloads 11314962 A Case Study on the Long-Term Stability Monitoring of Underground Powerhouse Complex Using Geotechnical Instrumentation
Authors: Sudhakar Kadiyala, Sripad R. Naik
Abstract:
Large cavern in Bhutan Himalayas is being monitored since the construction period. The behavior of the cavern is being monitored for last 16 years. Instrumentation includes measurement of convergence of high walls by geodetic monitoring, load on the support systems with load cells and instrumented bolts. Analysis of the results of instrumentation showed that during the construction period of the cavern, the convergence of the cavern varied from 181 - 233 mm in the unit bay area with maximum convergence rate of 2.80mm/day. Whereas during the operational period the total convergence observed was in the range of 21 to 45 mm during a period of 11.30 years with convergence rate of 0.005 to 0.011 mm/day. During the last five years, there were no instances of high tensile stress recorded by the instrumented bolts. Load on the rock bolts have shown stabilization trend at most of the locations. This paper discusses in detail the results of long-term monitoring using the geotechnical instruments and how the data is being used in 3D numerical model to confirm the stability of the cavern.Keywords: convergence, displacements, geodetic monitoring, long-term stability
Procedia PDF Downloads 17814961 Automated Monitoring System to Support Investigation of Contributing Factors of Work-Related Disorders and Accidents
Authors: Erika R. Chambriard, Sandro C. Izidoro, Davidson P. Mendes, Douglas E. V. Pires
Abstract:
Work-related illnesses and disorders have been a constant aspect of work. Although their nature has changed over time, from musculoskeletal disorders to illnesses related to psychosocial aspects of work, its impact on the life of workers remains significant. Despite significant efforts worldwide to protect workers, the disparity between changes in work legislation and actual benefit for workers’ health has been creating a significant economic burden for social security and health systems around the world. In this context, this study aims to propose, test and validate a modular prototype that allows for work environmental aspects to be assessed, monitored and better controlled. The main focus is also to provide a historical record of working conditions and the means for workers to obtain comprehensible and useful information regarding their work environment and legal limits of occupational exposure to different types of environmental variables, as means to improve prevention of work-related accidents and disorders. We show the developed prototype provides useful and accurate information regarding the work environmental conditions, validating them with standard occupational hygiene equipment. We believe the proposed prototype is a cost-effective and adequate approach to work environment monitoring that could help elucidate the links between work and occupational illnesses, and that different industry sectors, as well as developing countries, could benefit from its capabilities.Keywords: Arduino prototyping, occupational health and hygiene, work environment, work-related disorders prevention
Procedia PDF Downloads 124