Search results for: tracking type floating photovoltaic system
23381 Lyapunov-Based Tracking Control for Nonholonomic Wheeled Mobile Robot
Authors: Raouf Fareh, Maarouf Saad, Sofiane Khadraoui, Tamer Rabie
Abstract:
This paper presents a tracking control strategy based on Lyapunov approach for nonholonomic wheeled mobile robot. This control strategy consists of two levels. First, a kinematic controller is developed to adjust the right and left wheel velocities. Using this velocity control law, the stability of the tracking error is guaranteed using Lyapunov approach. This kinematic controller cannot be generated directly by the motors. To overcome this problem, the second level of the controllers, dynamic control, is designed. This dynamic control law is developed based on Lyapunov theory in order to track the desired trajectories of the mobile robot. The stability of the tracking error is proved using Lupunov and Barbalat approaches. Simulation results on a nonholonomic wheeled mobile robot are given to demonstrate the feasibility and effectiveness of the presented approach.Keywords: mobile robot, trajectory tracking, Lyapunov, stability
Procedia PDF Downloads 37323380 Navigating Uncertainties in Project Control: A Predictive Tracking Framework
Authors: Byung Cheol Kim
Abstract:
This study explores a method for the signal-noise separation challenge in project control, focusing on the limitations of traditional deterministic approaches that use single-point performance metrics to predict project outcomes. We detail how traditional methods often overlook future uncertainties, resulting in tracking biases when reliance is placed solely on immediate data without adjustments for predictive accuracy. Our investigation led to the development of the Predictive Tracking Project Control (PTPC) framework, which incorporates network simulation and Bayesian control models to adapt more effectively to project dynamics. The PTPC introduces controlled disturbances to better identify and separate tracking biases from useful predictive signals. We will demonstrate the efficacy of the PTPC with examples, highlighting its potential to enhance real-time project monitoring and decision-making, marking a significant shift towards more accurate project management practices.Keywords: predictive tracking, project control, signal-noise separation, Bayesian inference
Procedia PDF Downloads 1823379 Objects Tracking in Catadioptric Images Using Spherical Snake
Authors: Khald Anisse, Amina Radgui, Mohammed Rziza
Abstract:
Tracking objects on video sequences is a very challenging task in many works in computer vision applications. However, there is no article that treats this topic in catadioptric vision. This paper is an attempt that tries to describe a new approach of omnidirectional images processing based on inverse stereographic projection in the half-sphere. We used the spherical model proposed by Gayer and al. For object tracking, our work is based on snake method, with optimization using the Greedy algorithm, by adapting its different operators. The algorithm will respect the deformed geometries of omnidirectional images such as spherical neighborhood, spherical gradient and reformulation of optimization algorithm on the spherical domain. This tracking method that we call "spherical snake" permitted to know the change of the shape and the size of object in different replacements in the spherical image.Keywords: computer vision, spherical snake, omnidirectional image, object tracking, inverse stereographic projection
Procedia PDF Downloads 40223378 Dust and Soling Accumulation Effect on Photovoltaic Systems in Middle East and North Africa Region
Authors: Iyad Muslih, Azzah Alkhalailah, Ali Merdji
Abstract:
Photovoltaic efficiency is highly affected by dust accumulation; the dust particles prevent direct solar radiation from reaching the panel surface; therefore a reduction in output power will occur. A study of dust and soiling accumulation effect on the output power of PV panels was conducted for different periods of time from May to October in three countries of the MENA region, Jordan, Egypt, and Algeria, under local weather conditions. This study leads to build a more realistic equation to estimate the power reduction as a function of time. This logarithmic function shows the high reduction in power in the first days with 10% reduction in output power compared to the reference system, where it reaches a steady state value after 60 days to reach a maximum value of 30%.Keywords: solar energy, PV system, soiling, MENA
Procedia PDF Downloads 21923377 Wind Tunnel Tests on Ground-Mounted and Roof-Mounted Photovoltaic Array Systems
Authors: Chao-Yang Huang, Rwey-Hua Cherng, Chung-Lin Fu, Yuan-Lung Lo
Abstract:
Solar energy is one of the replaceable choices to reduce the CO2 emission produced by conventional power plants in the modern society. As an island which is frequently visited by strong typhoons and earthquakes, it is an urgent issue for Taiwan to make an effort in revising the local regulations to strengthen the safety design of photovoltaic systems. Currently, the Taiwanese code for wind resistant design of structures does not have a clear explanation on photovoltaic systems, especially when the systems are arranged in arrayed format. Furthermore, when the arrayed photovoltaic system is mounted on the rooftop, the approaching flow is significantly altered by the building and led to different pressure pattern in the different area of the photovoltaic system. In this study, L-shape arrayed photovoltaic system is mounted on the ground of the wind tunnel and then mounted on the building rooftop. The system is consisted of 60 PV models. Each panel model is equivalent to a full size of 3.0 m in depth and 10.0 m in length. Six pressure taps are installed on the upper surface of the panel model and the other six are on the bottom surface to measure the net pressures. Wind attack angle is varied from 0° to 360° in a 10° interval for the worst concern due to wind direction. The sampling rate of the pressure scanning system is set as high enough to precisely estimate the peak pressure and at least 20 samples are recorded for good ensemble average stability. Each sample is equivalent to 10-minute time length in full scale. All the scale factors, including timescale, length scale, and velocity scale, are properly verified by similarity rules in low wind speed wind tunnel environment. The purpose of L-shape arrayed system is for the understanding the pressure characteristics at the corner area. Extreme value analysis is applied to obtain the design pressure coefficient for each net pressure. The commonly utilized Cook-and-Mayne coefficient, 78%, is set to the target non-exceedance probability for design pressure coefficients under Gumbel distribution. Best linear unbiased estimator method is utilized for the Gumbel parameter identification. Careful time moving averaging method is also concerned in data processing. Results show that when the arrayed photovoltaic system is mounted on the ground, the first row of the panels reveals stronger positive pressure than that mounted on the rooftop. Due to the flow separation occurring at the building edge, the first row of the panels on the rooftop is most in negative pressures; the last row, on the other hand, shows positive pressures because of the flow reattachment. Different areas also have different pressure patterns, which corresponds well to the regulations in ASCE7-16 describing the area division for design values. Several minor observations are found according to parametric studies, such as rooftop edge effect, parapet effect, building aspect effect, row interval effect, and so on. General comments are then made for the proposal of regulation revision in Taiwanese code.Keywords: aerodynamic force coefficient, ground-mounted, roof-mounted, wind tunnel test, photovoltaic
Procedia PDF Downloads 13823376 Optimization of Black Grass Jelly Formulation to Reduce Leaching and Increase Floating Rate
Authors: M. M. Nor, H. I. Sheikh, M. F. H. Hassan, S. Mokhtar, A. Suganthi, A. Fadhlina
Abstract:
Black grass jelly (BGJ) is a popular black jelly used in preparing various drinks and desserts. Food industries often use preservatives to maintain the physicochemical properties of foods, such as color and texture. These preservatives (e.g., phosphoric acid) are linked with deleterious health effects such as kidney disease. Using gelling agents, carrageenan, and gelatin to make BGJ could improve its physiochemical and textural properties. This study was designed to optimize BGJ-selected physicochemical and textural properties using carrageenan and gelatin. Various black grass jelly formulations (BGJF) were designed using an I-optimal mixture design in Design Expert® software. Data from commercial BGJ were used as a reference during the optimization process. The combination of carrageenan and gelatin added to the formulations was up to 14.38g (~5%), respectively. The results showed that adding 2.5g carrageenan and 2.5g gelatin at approximately 5g (~5%) effectively maintained most of the physiochemical properties with an overall desirability function of 0.81. This formulation was selected as the optimum black grass jelly formulation (OBGJF). The leaching properties and floating duration were measured on the OBGJF and commercial grass jelly for 20 min and 40 min, respectively. The results indicated that OBGJF showed significantly (p<0.0001) lower leaching rate and floating time (p<0.05). Hence, further optimization is needed to increase the floating duration of carrageenan and gelatin-based BGJ.Keywords: cincau, Mesona chinensis, black grass jelly, carrageenan, gelatin
Procedia PDF Downloads 8223375 Real-Time Radar Tracking Based on Nonlinear Kalman Filter
Authors: Milca F. Coelho, K. Bousson, Kawser Ahmed
Abstract:
To accurately track an aerospace vehicle in a time-critical situation and in a highly nonlinear environment, is one of the strongest interests within the aerospace community. The tracking is achieved by estimating accurately the state of a moving target, which is composed of a set of variables that can provide a complete status of the system at a given time. One of the main ingredients for a good estimation performance is the use of efficient estimation algorithms. A well-known framework is the Kalman filtering methods, designed for prediction and estimation problems. The success of the Kalman Filter (KF) in engineering applications is mostly due to the Extended Kalman Filter (EKF), which is based on local linearization. Besides its popularity, the EKF presents several limitations. To address these limitations and as a possible solution to tracking problems, this paper proposes the use of the Ensemble Kalman Filter (EnKF). Although the EnKF is being extensively used in the context of weather forecasting and it is being recognized for producing accurate and computationally effective estimation on systems with a very high dimension, it is almost unknown by the tracking community. The EnKF was initially proposed as an attempt to improve the error covariance calculation, which on the classic Kalman Filter is difficult to implement. Also, in the EnKF method the prediction and analysis error covariances have ensemble representations. These ensembles have sizes which limit the number of degrees of freedom, in a way that the filter error covariance calculations are a lot more practical for modest ensemble sizes. In this paper, a realistic simulation of a radar tracking was performed, where the EnKF was applied and compared with the Extended Kalman Filter. The results suggested that the EnKF is a promising tool for tracking applications, offering more advantages in terms of performance.Keywords: Kalman filter, nonlinear state estimation, optimal tracking, stochastic environment
Procedia PDF Downloads 14623374 Vehicular Speed Detection Camera System Using Video Stream
Authors: C. A. Anser Pasha
Abstract:
In this paper, a new Vehicular Speed Detection Camera System that is applicable as an alternative to traditional radars with the same accuracy or even better is presented. The real-time measurement and analysis of various traffic parameters such as speed and number of vehicles are increasingly required in traffic control and management. Image processing techniques are now considered as an attractive and flexible method for automatic analysis and data collections in traffic engineering. Various algorithms based on image processing techniques have been applied to detect multiple vehicles and track them. The SDCS processes can be divided into three successive phases; the first phase is Objects detection phase, which uses a hybrid algorithm based on combining an adaptive background subtraction technique with a three-frame differencing algorithm which ratifies the major drawback of using only adaptive background subtraction. The second phase is Objects tracking, which consists of three successive operations - object segmentation, object labeling, and object center extraction. Objects tracking operation takes into consideration the different possible scenarios of the moving object like simple tracking, the object has left the scene, the object has entered the scene, object crossed by another object, and object leaves and another one enters the scene. The third phase is speed calculation phase, which is calculated from the number of frames consumed by the object to pass by the scene.Keywords: radar, image processing, detection, tracking, segmentation
Procedia PDF Downloads 46723373 Myosin-Driven Movement of Nanoparticles – An Approach to High-Speed Tracking
Authors: Sneha Kumari, Ravi Krishnan Elangovan
Abstract:
This abstract describes the development of a high-speed tracking method by modification in motor components for nanoparticle attachment. Myosin motors are nano-sized protein machines powering movement that defines life. These miniature molecular devices serve as engines utilizing chemical energy stored in ATP to produce useful mechanical energy in the form of a few nanometre displacement events leading to force generation that is required for cargo transport, cell division, cell locomotion, translated to macroscopic movements like running etc. With the advent of in vitro motility assay (IVMA), detailed functional studies of the actomyosin system could be performed. The major challenge with the currently available IVMA for tracking actin filaments is a resolution limitation of ± 50nm. To overcome this, we are trying to develop Single Molecule IVMA in which nanoparticle (GNP/QD) will be attached along or on the barbed end of actin filaments using CapZ protein and visualization by a compact TIRF module called ‘cTIRF’. The waveguide-based illumination by cTIRF offers a unique separation of excitation and collection optics, enabling imaging by scattering without emission filters. So, this technology is well equipped to perform tracking with high precision in temporal resolution of 2ms with significantly improved SNR by 100-fold as compared to conventional TIRF. Also, the nanoparticles (QD/GNP) attached to actin filament act as a point source of light coffering ease in filament tracking compared to conventional manual tracking. Moreover, the attachment of cargo (QD/GNP) to the thin filament paves the way for various nano-technological applications through their transportation to different predetermined locations on the chipKeywords: actin, cargo, IVMA, myosin motors and single-molecule system
Procedia PDF Downloads 8723372 Keypoints Extraction for Markerless Tracking in Augmented Reality Applications: A Case Study in Dar As-Saraya Museum
Authors: Jafar W. Al-Badarneh, Abdalkareem R. Al-Hawary, Abdulmalik M. Morghem, Mostafa Z. Ali, Rami S. Al-Gharaibeh
Abstract:
Archeological heritage is at the heart of each country’s national glory. Moreover, it could develop into a source of national income. Heritage management requires socially-responsible marketing that achieves high visitor satisfaction while maintaining high site conservation. We have developed an Augmented Reality (AR) experience for heritage and cultural reservation at Dar-As-Saraya museum in Jordan. Our application of this notion relied on markerless-based tracking approach. This approach uses keypoints extraction technique where features of the environment are identified and defined into the system as keypoints. A set of these keypoints forms a tracker for an augmented object to be displayed and overlaid with a real scene at Dar As-Saraya museum. We tested and compared several techniques for markerless tracking and then applied the best technique to complete a mosaic artifact with AR content. The successful results from our application open the door for applications in open archeological sites where markerless tracking is mostly needed.Keywords: augmented reality, cultural heritage, keypoints extraction, virtual recreation
Procedia PDF Downloads 33723371 Automated Tracking and Statistics of Vehicles at the Signalized Intersection
Authors: Qiang Zhang, Xiaojian Hu1
Abstract:
Intersection is the place where vehicles and pedestrians must pass through, turn and evacuate. Obtaining the motion data of vehicles near the intersection is of great significance for transportation research. Since there are usually many targets and there are more conflicts between targets, this makes it difficult to obtain vehicle motion parameters in traffic videos of intersections. According to the characteristics of traffic videos, this paper applies video technology to realize the automated track, count and trajectory extraction of vehicles to collect traffic data by roadside surveillance cameras installed near the intersections. Based on the video recognition method, the vehicles in each lane near the intersection are tracked with extracting trajectory and counted respectively in various degrees of occlusion and visibility. The performances are compared with current recognized CPU-based algorithms of real-time tracking-by-detection. The speed of the presented system is higher than the others and the system has a better real-time performance. The accuracy of direction has reached about 94.99% on average, and the accuracy of classification and statistics has reached about 75.12% on average.Keywords: tracking and statistics, vehicle, signalized intersection, motion parameter, trajectory
Procedia PDF Downloads 22123370 The Effect of Photovoltaic Integrated Shading Devices on the Energy Performance of Apartment Buildings in a Mediterranean Climate
Authors: Jenan Abu Qadourah
Abstract:
With the depletion of traditional fossil resources and the growing human population, it is now more important than ever to reduce our energy usage and harmful emissions. In the Mediterranean region, the intense solar radiation contributes to summertime overheating, which raises energy costs and building carbon footprints, alternatively making it suitable for the installation of solar energy systems. In urban settings, where multi-story structures predominate and roof space is limited, photovoltaic integrated shading devices (PVSD) are a clean solution for building designers. However, incorporating photovoltaic (PV) systems into a building's envelope is a complex procedure that, if not executed correctly, might result in the PV system failing. As a result, potential PVSD design solutions must be assessed based on their overall energy performance from the project's early design stage. Therefore, this paper aims to investigate and compare the possible impact of various PVSDs on the energy performance of new apartments in the Mediterranean region, with a focus on Amman, Jordan. To achieve the research aim, computer simulations were performed to assess and compare the energy performance of different PVSD configurations. Furthermore, an energy index was developed by taking into account all energy aspects, including the building's primary energy demand and the PVSD systems' net energy production. According to the findings, the PVSD system can meet 12% to 43% of the apartment building's electricity needs. By highlighting the potential interest in PVSD systems, this study aids the building designer in producing more energy-efficient buildings and encourages building owners to install PV systems on the façade of their buildings.Keywords: photovoltaic integrated shading device, solar energy, architecture, energy performance, simulation, overall energy index, Jordan
Procedia PDF Downloads 8423369 General Purpose Graphic Processing Units Based Real Time Video Tracking System
Authors: Mallikarjuna Rao Gundavarapu, Ch. Mallikarjuna Rao, K. Anuradha Bai
Abstract:
Real Time Video Tracking is a challenging task for computing professionals. The performance of video tracking techniques is greatly affected by background detection and elimination process. Local regions of the image frame contain vital information of background and foreground. However, pixel-level processing of local regions consumes a good amount of computational time and memory space by traditional approaches. In our approach we have explored the concurrent computational ability of General Purpose Graphic Processing Units (GPGPU) to address this problem. The Gaussian Mixture Model (GMM) with adaptive weighted kernels is used for detecting the background. The weights of the kernel are influenced by local regions and are updated by inter-frame variations of these corresponding regions. The proposed system has been tested with GPU devices such as GeForce GTX 280, GeForce GTX 280 and Quadro K2000. The results are encouraging with maximum speed up 10X compared to sequential approach.Keywords: connected components, embrace threads, local weighted kernel, structuring elements
Procedia PDF Downloads 44023368 Visual Servoing for Quadrotor UAV Target Tracking: Effects of Target Information Sharing
Authors: Jason R. King, Hugh H. T. Liu
Abstract:
This research presents simulation and experimental work in the visual servoing of a quadrotor Unmanned Aerial Vehicle (UAV) to stabilize overtop of a moving target. Most previous work in the field assumes static or slow-moving, unpredictable targets. In this experiment, the target is assumed to be a friendly ground robot moving freely on a horizontal plane, which shares information with the UAV. This information includes velocity and acceleration information of the ground target to aid the quadrotor in its tracking task. The quadrotor is assumed to have a downward-facing camera which is fixed to the frame of the quadrotor. Only onboard sensing for the quadrotor is utilized for the experiment, with a VICON motion capture system in place used only to measure ground truth and evaluate the performance of the controller. The experimental platform consists of an ArDrone 2.0 and a Create Roomba, communicating using Robot Operating System (ROS). The addition of the target’s information is demonstrated to help the quadrotor in its tracking task using simulations of the dynamic model of a quadrotor in Matlab Simulink. A nested PID control loop is utilized for inner-loop control the quadrotor, similar to previous works at the Flight Systems and Controls Laboratory (FSC) at the University of Toronto Institute for Aerospace Studies (UTIAS). Experiments are performed with ground truth provided by an indoor motion capture system, and the results are analyzed. It is demonstrated that a velocity controller which incorporates the additional information is able to perform better than the controllers which do not have access to the target’s information.Keywords: quadrotor, target tracking, unmanned aerial vehicle, UAV, UAS, visual servoing
Procedia PDF Downloads 34123367 Iot-Based Interactive Patient Identification and Safety Management System
Authors: Jonghoon Chun, Insung Kim, Jonghyun Lim, Gun Ro
Abstract:
We believe that it is possible to provide a solution to reduce patient safety accidents by displaying correct medical records and prescription information through interactive patient identification. Our system is based on the use of smart bands worn by patients and these bands communicate with the hybrid gateways which understand both BLE and Wifi communication protocols. Through the convergence of low-power Bluetooth (BLE) and hybrid gateway technology, which is one of short-range wireless communication technologies, we implement ‘Intelligent Patient Identification and Location Tracking System’ to prevent medical malfunction frequently occurring in medical institutions. Based on big data and IOT technology using MongoDB, smart band (BLE, NFC function) and hybrid gateway, we develop a system to enable two-way communication between medical staff and hospitalized patients as well as to store locational information of the patients in minutes. Based on the precise information provided using big data systems, such as location tracking and movement of in-hospital patients wearing smart bands, our findings include the fact that a patient-specific location tracking algorithm can more efficiently operate HIS (Hospital Information System) and other related systems. Through the system, we can always correctly identify patients using identification tags. In addition, the system automatically determines whether the patient is a scheduled for medical service by the system in use at the medical institution, and displays the appropriateness of the medical treatment and the medical information (medical record and prescription information) on the screen and voice. This work was supported in part by the Korea Technology and Information Promotion Agency for SMEs (TIPA) grant funded by the Korean Small and Medium Business Administration (No. S2410390).Keywords: BLE, hybrid gateway, patient identification, IoT, safety management, smart band
Procedia PDF Downloads 31123366 An Intelligent Controller Augmented with Variable Zero Lag Compensation for Antilock Braking System
Authors: Benjamin Chijioke Agwah, Paulinus Chinaenye Eze
Abstract:
Antilock braking system (ABS) is one of the important contributions by the automobile industry, designed to ensure road safety in such way that vehicles are kept steerable and stable when during emergency braking. This paper presents a wheel slip-based intelligent controller with variable zero lag compensation for ABS. It is required to achieve a very fast perfect wheel slip tracking during hard braking condition and eliminate chattering with improved transient and steady state performance, while shortening the stopping distance using effective braking torque less than maximum allowable torque to bring a braking vehicle to a stop. The dynamic of a vehicle braking with a braking velocity of 30 ms⁻¹ on a straight line was determined and modelled in MATLAB/Simulink environment to represent a conventional ABS system without a controller. Simulation results indicated that system without a controller was not able to track desired wheel slip and the stopping distance was 135.2 m. Hence, an intelligent control based on fuzzy logic controller (FLC) was designed with a variable zero lag compensator (VZLC) added to enhance the performance of FLC control variable by eliminating steady state error, provide improve bandwidth to eliminate the effect of high frequency noise such as chattering during braking. The simulation results showed that FLC- VZLC provided fast tracking of desired wheel slip, eliminate chattering, and reduced stopping distance by 70.5% (39.92 m), 63.3% (49.59 m), 57.6% (57.35 m) and 50% (69.13 m) on dry, wet, cobblestone and snow road surface conditions respectively. Generally, the proposed system used effective braking torque that is less than the maximum allowable braking torque to achieve efficient wheel slip tracking and overall robust control performance on different road surfaces.Keywords: ABS, fuzzy logic controller, variable zero lag compensator, wheel slip tracking
Procedia PDF Downloads 14723365 Using Eye-Tracking Technology to Understand Consumers’ Comprehension of Multimedia Health Information
Authors: Samiullah Paracha, Sania Jehanzeb, M. H. Gharanai, A. R. Ahmadi, H.Sokout, Toshiro Takahara
Abstract:
The purpose of this study is to examine how health consumers utilize pictures when developing an understanding of multimedia health documents, and whether attentional processes, measured by eye-tracking, relate to differences in health-related cognitive resources and passage comprehension. To investigate these issues, we will present health-related text-picture passages to elders and collect eye movement data to measure readers’ looking behaviors.Keywords: multimedia, eye-tracking, consumer health informatics, human-computer interaction
Procedia PDF Downloads 33723364 Exploring the Energy Saving Benefits of Solar Power and Hot Water Systems: A Case Study of a Hospital in Central Taiwan
Authors: Ming-Chan Chung, Wen-Ming Huang, Yi-Chu Liu, Li-Hui Yang, Ming-Jyh Chen
Abstract:
introduction: Hospital buildings require considerable energy, including air conditioning, lighting, elevators, heating, and medical equipment. Energy consumption in hospitals is expected to increase significantly due to innovative equipment and continuous development plans. Consequently, the environment and climate will be adversely affected. Hospitals should therefore consider transforming from their traditional role of saving lives to being at the forefront of global efforts to reduce carbon dioxide emissions. As healthcare providers, it is our responsibility to provide a high-quality environment while using as little energy as possible. Purpose / Methods: Compare the energy-saving benefits of solar photovoltaic systems and solar hot water systems. The proportion of electricity consumption effectively reduced after the installation of solar photovoltaic systems. To comprehensively assess the potential benefits of utilizing solar energy for both photovoltaic (PV) and solar thermal applications in hospitals, a solar PV system was installed covering a total area of 28.95 square meters in 2021. Approval was obtained from the Taiwan Power Company to integrate the system into the hospital's electrical infrastructure for self-use. To measure the performance of the system, a dedicated meter was installed to track monthly power generation, which was then converted into area output using an electric energy conversion factor. This research aims to compare the energy efficiency of solar PV systems and solar thermal systems. Results: Using the conversion formula between electrical and thermal energy, we can compare the energy output of solar heating systems and solar photovoltaic systems. The comparative study draws upon data from February 2021 to February 2023, wherein the solar heating system generated an average of 2.54 kWh of energy per panel per day, while the solar photovoltaic system produced 1.17 kWh of energy per panel per day, resulting in a difference of approximately 2.17 times between the two systems. Conclusions: After conducting statistical analysis and comparisons, it was found that solar thermal heating systems offer higher energy and greater benefits than solar photovoltaic systems. Furthermore, an examination of literature data and simulations of the energy and economic benefits of solar thermal water systems and solar-assisted heat pump systems revealed that solar thermal water systems have higher energy density values, shorter recovery periods, and lower power consumption than solar-assisted heat pump systems. Through monitoring and empirical research in this study, it has been concluded that a heat pump-assisted solar thermal water system represents a relatively superior energy-saving and carbon-reducing solution for medical institutions. Not only can this system help reduce overall electricity consumption and the use of fossil fuels, but it can also provide more effective heating solutions.Keywords: sustainable development, energy conservation, carbon reduction, renewable energy, heat pump system
Procedia PDF Downloads 8123363 Position and Speed Tracking of DC Motor Based on Experimental Analysis in LabVIEW
Authors: Muhammad Ilyas, Awais Khan, Syed Ali Raza Shah
Abstract:
DC motors are widely used in industries to provide mechanical power in speed and torque. The position and speed control of DC motors is getting the interest of the scientific community in robotics, especially in the robotic arm, a flexible joint manipulator. The current research work is based on position control of DC motors using experimental investigations in LabVIEW. The linear control strategy is applied to track the position and speed of the DC motor with comparative analysis in the LabVIEW platform and simulation analysis in MATLAB. The tracking error in hardware setup based on LabVIEW programming is slightly greater than simulation analysis in MATLAB due to the inertial load of the motor during steady-state conditions. The controller output shows the input voltage applied to the dc motor varies between 0-8V to ensure minimal steady error while tracking the position and speed of the DC motor.Keywords: DC motor, labview, proportional integral derivative control, position tracking, speed tracking
Procedia PDF Downloads 10623362 Energy Matrices of Partially Covered Photovoltaic Thermal Flat Plate Water Collectors
Authors: Shyam, G. N. Tiwari
Abstract:
Energy matrices of flate plate water collectors partially covered by PV module have been estimated in the present study. Photovoltaic thermal (PVT) water collector assembly is consisting of 5 water collectors having 2 m^2 area which are partially covered by photovoltaic module at its lower portion (inlet) and connected in series. The annual overall thermal energy and exergy are computed by using climatic data of New Delhi provided by Indian Meteorological Department (IMD) Pune, India. The Energy payback time on overall thermal and exergy basis are found to be 1.6 years and 17.8 years respectively. For 25 years of life time of system the energy production factor and life cycle conversion efficiency are estimated to be 15.8 and 0.04 respectively on overall thermal energy basis whereas for the same life time the energy production factor and life cycle conversion efficiency on exergy basis are obtained as 1.4 and 0.001.Keywords: overall thermal energy, exergy, energy payback time, PVT water collectors
Procedia PDF Downloads 37423361 Synthesis and Characterisation of Starch-PVP as Encapsulation Material for Drug Delivery System
Authors: Nungki Rositaningsih, Emil Budianto
Abstract:
Starch has been widely used as an encapsulation material for drug delivery system. However, starch hydrogel is very easily degraded during metabolism in human stomach. Modification of this material is needed to improve the encapsulation process in drug delivery system, especially for gastrointestinal drug. In this research, three modified starch-based hydrogels are synthesized i.e. Crosslinked starch hydrogel, Semi- and Full- Interpenetrating Polymer Network (IPN) starch hydrogel using Poly(N-Vinyl-Pyrrolidone). Non-modified starch hydrogel was also synthesized as a control. All of those samples were compared as biomaterials, floating drug delivery, and their ability in loading drug test. Biomaterial characterizations were swelling test, stereomicroscopy observation, Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared Spectroscopy (FTIR). Buoyancy test and stereomicroscopy scanning were done for floating drug delivery characterizations. Lastly, amoxicillin was used as test drug, and characterized with UV-Vis spectroscopy for loading drug observation. Preliminary observation showed that Full-IPN has the most dense and elastic texture, followed by Semi-IPN, Crosslinked, and Non-modified in the last position. Semi-IPN and Crosslinked starch hydrogel have the most ideal properties and will not be degraded easily during metabolism. Therefore, both hydrogels could be considered as promising candidates for encapsulation material. Further analysis and issues will be discussed in the paper.Keywords: biomaterial, drug delivery system, interpenetrating polymer network, poly(N-vinyl-pyrrolidone), starch hydrogel
Procedia PDF Downloads 25123360 Dual Active Bridge Converter with Photovoltaic Arrays for DC Microgrids: Design and Analysis
Authors: Ahmed Atef, Mohamed Alhasheem, Eman Beshr
Abstract:
In this paper, an enhanced DC microgrid design is proposed using the DAB converter as a conversion unit in order to harvest the maximum power from the PV array. Each connected DAB converter is controlled with an enhanced control strategy. The controller is based on the artificial intelligence (AI) technique to regulate the terminal PV voltage through the phase shift angle of each DAB converter. In this manner, no need for a Maximum Power Point Tracking (MPPT) unit to set the reference of the PV terminal voltage. This strategy overcomes the stability issues of the DC microgrid as the response of converters is superior compared to the conventional strategies. The proposed PV interface system is modelled and simulated using MATLAB/SIMULINK. The simulation results reveal an accurate and fast response of the proposed design in case of irradiance changes.Keywords: DC microgrid, DAB converter, parallel operation, artificial intelligence, fast response
Procedia PDF Downloads 79023359 Enhancing Transit Trade, Facilitation System and Supply Chain Security for Local, Regional and an International Corridor
Authors: Moh’d A. AL-Shboul
Abstract:
Recently, and due to Arab spring and terrorism around the globe, pushing and driving most governments potentially to harmonize their border measures particularly the regional and an international transit trade within and among Customs Unions. The main purpose of this study is to investigate and provide an insight for monitoring and controlling the trade supply chain within and among different countries by using technological advancement (i.e. an electronic tracking system, etc.); furthermore, facilitate the local and intra-regional trade among countries through reviewing the recent trends and practical implementation of an electronic transit traffic and cargo that related to customs measures by introducing and supporting some case studies of several international and landlocked transit trade countries. The research methodology employed in this study was described as qualitative by conducting few interviews with managers, transit truck drivers, and traders and reviewing the related literature to collect qualitative data from secondary sources such as statistical reports, previous studies, etc. The results in this study show that Jordan and other countries around the globe that used an electronic tracking system for monitoring transit trade has led to a significant reduction in cost, effort and time in physical movement of goods internally and crossing through other countries. Therefore, there is no need to escort transit trucks by customs staff; hence, the rate of escort transit trucks is reduced by more than ninety percent, except the bulky and high duty goods. Electronic transit traffic has been increased; the average transit time journey has been reduced by more than seventy percent and has led to decrease in rates of smuggling up to fifty percent. The researcher recommends considering Jordan as regional and international office for tracking electronically and monitoring the transit trade for many considerations.Keywords: electronic tracking system, facilitation system, regional and international corridor, supply chain security, transit trade
Procedia PDF Downloads 50323358 Thermal Performance of the Extensive Wetland Green Roofs in Winter in Humid Subtropical Climate
Authors: Yi-Yu Huang, Chien-Kuo Wang, Sreerag Chota Veettil, Hang Zhang, Hu Yike
Abstract:
Regarding the pressing issue of reducing energy consumption and carbon footprint of buildings, past research has focused more on analyzing the thermal performance of the extensive terrestrial green roofs with sedum plants in summer. However, the disadvantages of this type of green roof are relatively limited thermal performance, low extreme weather adaptability, relatively higher demands in maintenance, and lower added value in healing landscape. In view of this, this research aims to develop the extensive wetland green roofs with higher thermal performance, high extreme weather adaptability, low demands in maintenance, and high added value in healing landscape, and to measure its thermal performance for buildings in winter. The following factors are considered including the type and mixing formula of growth medium (light weight soil, akadama, creek gravel, pure water) and the type of aquatic plants. The research adopts a four-stage field experiment conducting on the rooftop of a building in a humid subtropical climate. The results found that emergent (Roundleaf rotala), submerged (Ribbon weed), floating-leaved (Water lily) wetland green roofs had similar thermal performance, and superior over wetland green roof without plant, traditional terrestrial green roof (without plant), and pure water green roof (without plant, nighttime only) in terms of overall passive cooling (8.00C) and thermal insulation (4.50C) effects as well as a reduction in heat amplitude (77-85%) in winter in a humid subtropical climate. The thermal performance of the free-floating (Water hyacinth) wetland green roof is inferior to that of the other three types of wetland green roofs, whether in daytime or nighttime.Keywords: thermal performance, extensive wetland green roof, Aquatic plant, Winter , Humid subtropical climate
Procedia PDF Downloads 17923357 Water Heating System with Solar Energy from Solar Panel as Absorber to Reduce the Reduction of Efficiency Solar Panel Use
Authors: Mas Aji Rizki Widjayanto, Rizka Yunita
Abstract:
The building which has an efficient and low-energy today followed by the developers. It’s not because trends on the building nowaday, but rather because of its positive effects in the long term, where the cost of energy per month to be much cheaper, along with the high price of electricity. The use of solar power (Photovoltaic System) becomes one source of electrical energy for the apartment so that will efficiently use energy, water, and other resources in the operations of the apartment. However, more than 80% of the solar radiation is not converted into electrical energy, but reflected and converted into heat energy. This causes an increase on the working temperature of solar panels and consequently decrease the efficiency of conversion to electrical energy. The high temperature solar panels work caused by solar radiation can be used as medium heat exchanger or heating water for the apartments, so that the working temperature of the solar panel can be lowered to reduce the reduction on the efficiency of conversion to electrical energy.Keywords: photovoltaic system, efficient, heat energy, heat exchanger, efficiency of conversion
Procedia PDF Downloads 35023356 The Stability Study of Large-Scale Grid-Tied Photovoltaic System Containing Different Types of Inverter
Authors: Chen Zheng, Lin Zhou, Bao Xie, Xiao Du, Nianbin Shao
Abstract:
Power generated by large-scale photovoltaic plants (LSPVPs) is usually transmitted to the grid through several transformers and long distance overhead lines. Impedance of transformers and transmission lines results in complex interactions between the plant and the grid and among different inverters. In accordance with the topological structure of LSPV in reality, an equivalent model containing different inverters was built and then interactions between the plant and the grid and among different inverters were studied. Based on the vector composition principle of voltage at the point of common coupling (PCC), the mathematic function of PCC voltage in regard to the total power and grid impedance was deduced, from which the uttermost total power to guarantee the system stable is obtained. Taking the influence of different inverters numbers and the length of transmission lines to the system stability into account, the stability criterion of LSPV containing different inverters was derived. The result of simulation validated the theory analysis in the paper.Keywords: LSPVPs, stability analysis, grid impedance, different types of inverter, PCC voltage
Procedia PDF Downloads 30823355 Performance Evaluation of Different Technologies of PV Modules in Algeria
Authors: Amira Balaska, Ali Tahri, Amine Boudghene Stambouli, Takashi Oozeki
Abstract:
This paper is dealing with the evaluation of photovoltaic modules as part of the Sahara Solar Breeder project (SSB), five different photovoltaic module technologies which are: m-si, CIS, HIT, Back Contact, a-si_μc -si and a weather station recently installed at the University of Saida (Tahar Moulay) in Saida city located at the gate of the great southern Algeria’s Sahara. The objective of the present work is the study of solar photovoltaic capacity and performance parameters of each PV module technology. The goal of the study is to compare the five different PV technologies in order to find which technologies are suitable for the climate conditions of Algeria’s desert. Measurements of various parameters as irradiance, temperature, humidity and so on by the weather station and I-V curves were performed outdoors at the location without shadow. Finally performance parameters as performance ratio, energy yield and temperature losses are given and analyzed.Keywords: photovoltaic modules, performance ratio, energy yield, sahara solar breeder, outdoor conditions
Procedia PDF Downloads 66223354 Multiple-Lump-Type Solutions of the 2D Toda Equation
Authors: Jian-Ping Yu, Wen-Xiu Ma, Yong-Li Sun, Chaudry Masood Khalique
Abstract:
In this paper, a 2d Toda equation is studied, which is a classical integrable system and plays a vital role in mathematics, physics and other areas. New lump-type solution is constructed by using the Hirota bilinear method. One interesting feature of this research is that this lump-type solutions possesses two types of multiple-lump-type waves, which are one- and two-lump-type waves. Moreover, the corresponding 3d plots, density plots and contour plots are given to show the dynamical features of the obtained multiple-lump-type solutions.Keywords: 2d Toda equation, Hirota bilinear method, Lump-type solution, multiple-lump-type solution
Procedia PDF Downloads 22223353 Theoretical Study on the Forced Vibration of One Degree of Freedom System, Equipped with Inerter, under Load-Type or Displacement-Type Excitation
Authors: Barenten Suciu
Abstract:
In this paper, a theoretical study on the forced vibration of one degree of freedom system equipped with inerter, working under load-type or displacement-type excitation, is presented. Differential equations of movement are solved under cosinusoidal excitation, and explicit relations for the magnitude, resonant magnitude, phase angle, resonant frequency, and critical frequency are obtained. Influence of the inertance and damping on these dynamic characteristics is clarified. From the obtained results, one concludes that the inerter increases the magnitude of vibration and the phase angle of the damped mechanical system. Moreover, the magnitude ratio and difference of phase angles are not depending on the actual type of excitation. Consequently, such kind of similitude allows for the comparison of various theoretical and experimental results, which can be broadly found in the literature.Keywords: displacement-type excitation, inerter, load-type excitation, one degree of freedom vibration, parallel connection
Procedia PDF Downloads 21623352 Optimal Placement and Sizing of Energy Storage System in Distribution Network with Photovoltaic Based Distributed Generation Using Improved Firefly Algorithms
Authors: Ling Ai Wong, Hussain Shareef, Azah Mohamed, Ahmad Asrul Ibrahim
Abstract:
The installation of photovoltaic based distributed generation (PVDG) in active distribution system can lead to voltage fluctuation due to the intermittent and unpredictable PVDG output power. This paper presented a method in mitigating the voltage rise by optimally locating and sizing the battery energy storage system (BESS) in PVDG integrated distribution network. The improved firefly algorithm is used to perform optimal placement and sizing. Three objective functions are presented considering the voltage deviation and BESS off-time with state of charge as the constraint. The performance of the proposed method is compared with another optimization method such as the original firefly algorithm and gravitational search algorithm. Simulation results show that the proposed optimum BESS location and size improve the voltage stability.Keywords: BESS, firefly algorithm, PVDG, voltage fluctuation
Procedia PDF Downloads 321