Search results for: oxidation reactions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1776

Search results for: oxidation reactions

1476 Ultrasonic Treatment of Baker’s Yeast Effluent

Authors: Emine Yılmaz, Serap Fındık

Abstract:

Baker’s yeast industry uses molasses as a raw material. Molasses is end product of sugar industry. Wastewater from molasses processing presents large amount of coloured substances that give dark brown color and high organic load to the effluents. The main coloured compounds are known as melanoidins. Melanoidins are product of Maillard reaction between amino acid and carbonyl groups in molasses. Dark colour prevents sunlight penetration and reduces photosynthetic activity and dissolved oxygen level of surface waters. Various methods like biological processes (aerobic and anaerobic), ozonation, wet air oxidation, coagulation/flocculation are used to treatment of baker’s yeast effluent. Before effluent is discharged adequate treatment is imperative. In addition to this, increasingly stringent environmental regulations are forcing distilleries to improve existing treatment and also to find alternative methods of effluent management or combination of treatment methods. Sonochemical oxidation is one of the alternative methods. Sonochemical oxidation employs ultrasound resulting in cavitation phenomena. In this study, decolorization of baker’s yeast effluent was investigated by using ultrasound. Baker’s yeast effluent was supplied from a factory which is located in the north of Turkey. An ultrasonic homogenizator used for this study. Its operating frequency is 20 kHz. TiO2-ZnO catalyst has been used as sonocatalyst. The effects of molar proportion of TiO2-ZnO, calcination temperature and time, catalyst amount were investigated on the decolorization of baker’s yeast effluent. The results showed that prepared composite TiO2-ZnO with 4:1 molar proportion treated at 700°C for 90 min provides better result. Initial decolorization rate at 15 min is 3% without catalyst, 14,5% with catalyst treated at 700°C for 90 min respectively.

Keywords: baker’s yeast effluent, decolorization, sonocatalyst, ultrasound

Procedia PDF Downloads 447
1475 Bodybuilding, Gender and Age: A Qualitative Exploration of the Perspectives of Older Canadian Females

Authors: Amy Matharu

Abstract:

Existing literature on older athletes in competitive sports is often male-dominated and limited. This study explores how age and gender impact the experiences of older female bodybuilders in Canada using the social theories of deviance and intersectionality. Qualitative, semi-structured interviews were conducted with 11 Canadian female bodybuilders over the age of 45. Interviews were transcribed, coded, and thematically analysed. This study was approached from a phenomenological perspective. The participants deviated from their perceived social norms of women their age. They exhibited deviance with their actions, such as prioritising themselves and following extreme dieting practices, and with their aesthetics, such as maintaining a muscular appearance. Participants received both positive and negative reactions from society resulting in both admiration and stigmatisation. These reactions varied based on the environment, audience, and context of the situation. Overall, the intersection of age and gender results in a unique position for older female bodybuilders within society and within the sport.

Keywords: age, bodybuilding, gender, females

Procedia PDF Downloads 99
1474 Manifestation of Behavioral and Emotional Disturbances and Perceived Coping Strategies of Earthquake Survived Children

Authors: Mahwish Rabia, Najma Najam

Abstract:

The present study was conducted to identify emotional and behavioral disturbances among earthquake survived children and the perceived coping strategies of affected children. In the present study, a sample of 50 children (6-16 years) belonging to badly affected areas (earthquake) was selected from different camps in Islamabad. Child Behavioral Checklist (CBCL) and Rotter Incomplete Sentence Blank (RISB) interpretations were used to assess variety of emotional and behavioral patterns, and Child Coping Strategies Checklist (CCSC) was used to assess the perceived coping strategies of affected children. Results showed that some of the frequent emotional/behavioral reactions exhibited by children like withdrawal, anxiety\depression, aggression and attention seeking behavior. Whereas gender-based comparisons indicated that female children showed more internalizing behavioral patterns (withdrawn, somatic complaints) as compared to male children who exhibited more externalizing emotions (aggression, delinquent behavior).Coping strategies in which male children tried to adopt Positive Cognitive Restructuring and for distracting attention they used distraction strategies of coping. It is concluded that significant negative emotional and behavioral reactions are exhibited by the earthquake affected children. Male children adopt coping strategies more as compared to female children. The study identifies the negative emotional and behavioral reactions towards trauma, which can be helpful for identifying the problematic area for counseling and therapeutic interventions for these children.

Keywords: behavioural disturbances, emotional disturbances, coping strategies, earthquake, children

Procedia PDF Downloads 456
1473 Evaluation of the Effect of Lactose Derived Monosaccharide on Galactooligosaccharides Production by β-Galactosidase

Authors: Yenny Paola Morales Cortés, Fabián Rico Rodríguez, Juan Carlos Serrato Bermúdez, Carlos Arturo Martínez Riascos

Abstract:

Numerous benefits of galactooligosaccharides (GOS) as prebiotics have motivated the study of enzymatic processes for their production. These processes have special complexities due to several factors that make difficult high productivity, such as enzyme type, reaction medium pH, substrate concentrations and presence of inhibitors, among others. In the present work the production of galactooligosaccharides (with different degrees of polymerization: two, three and four) from lactose was studied. The study considers the formulation of a mathematical model that predicts the production of GOS from lactose using the enzyme β-galactosidase. The effect of pH in the reaction was studied. For that, phosphate buffer was used and with this was evaluated three pH values (6.0.6.5 and 7.0). Thus it was observed that at pH 6.0 the enzymatic activity insignificant. On the other hand, at pH 7.0 the enzymatic activity was approximately 27 times greater than at 6.5. The last result differs from previously reported results. Therefore, pH 7.0 was chosen as working pH. Additionally, the enzyme concentration was analyzed, which allowed observing that the effect of the concentration depends on the pH and the concentration was set for the following studies in 0.272 mM. Afterwards, experiments were performed varying the lactose concentration to evaluate its effects on the process and to generate the data for the adjustment of the mathematical model parameters. The mathematical model considers the reactions of lactose hydrolysis and transgalactosylation for the production of disaccharides and trisaccharides, with their inverse reactions. The production of tetrasaccharides was negligible and, because of that, it was not included in the model. The reaction was monitored by HPLC and for the quantitative analysis of the experimental data the Matlab programming language was used, including solvers for differential equations systems integration (ode15s) and nonlinear problems optimization (fminunc). The results confirm that the transgalactosylation and hydrolysis reactions are reversible, additionally inhibition by glucose and galactose is observed on the production of GOS. In relation to the production process of galactooligosaccharides, the results show that it is necessary to have high initial concentrations of lactose considering that favors the transgalactosylation reaction, while low concentrations favor hydrolysis reactions.

Keywords: β-galactosidase, galactooligosaccharides, inhibition, lactose, Matlab, modeling

Procedia PDF Downloads 328
1472 Kinetic Study of C₃N₄/CuWO₄: Photocatalyst towards Solar Light Inactivation of Mixed Populated Bacteria

Authors: Rimzhim Gupta, Bhanupriya Boruah, Jayant M. Modak, Giridhar Madras

Abstract:

Microbial contamination is one of the major concerns in the field of water treatment. AOP (advanced oxidation processes) is well-established method to resolve the issue of removal of contaminants in water. A Z-scheme composite g-C₃N₄/CuWO₄ was synthesized by sol-gel method for the photocatalytic inactivation of a mixed population of Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli). The photoinactivation was observed for different types of bacteria in the same medium together and individually in the absence of the nutrients. The lattice structures and phase purities were determined by X-ray diffraction. For morphological and topographical features, scanning electron microscopy and transmission electron microscopy analyses were carried out. The band edges of the semiconductor (valence band and conduction band) were determined by ultraviolet photoelectron microscopy. The lifetime of the charge carriers and band gap of the semiconductors were determined by time resolved florescence spectroscopy and diffused reflectance spectroscopy, respectively. The effect of weight ratio of C₃N₄ and CuWO₄ was observed by performing photocatalytic experiments. To investigate the exact mechanism and major responsible radicals for photocatalysis, scavenger studies were performed. The rate constants and order of the inactivation reactions were obtained by power law kinetics. For E. coli and S. aureus, the order of reaction and rate constants are 1.15, 0.9 and 1.39 ± 0.03 (CFU/mL)⁻⁰.¹⁵ h⁻¹, 47.95 ± 1.2 (CFU/mL)⁰.¹ h⁻¹, respectively.

Keywords: z-scheme, E. coli, S. aureus, sol-gel

Procedia PDF Downloads 128
1471 Synthesis and Theoretical Calculations of Carbazole Substituted Pyridopyrimidine Urea/Thioure Derivatives and Studies Their PPO Enzyme Activity

Authors: Arleta Rifati Nixha, Mustafa Arslan, Adem Ergün, Nahit Gencer

Abstract:

Polyphenol oxidase (PPO), sometimes referred to as phenol oxidase, catecholase, phenolase, catechol oxidase, or even tyrosinase, is considered to be an o-dipenol. PPO (EC 1.14.18.1), a multifunctional copper containing enzyme, is widely distributed in nature. It catalyzes two distinct reactions of melanin synthesis: a hydroxylation of monophenols to o-diphenols (monophenolase activity) and an oxidation of o-diphenols to o-quinones (diphenolase activity), both using molecular oxygen. Additionaly, investigation demonstrated that various dermatological disorders, such as age spots and freckle, were caused by the accumulation of an excessive level of epidermal pigmentation. Tyrosinase has also been linked to Parkinson’s and other neurodegenerative diseases. Nitrogen heterocycles have received a great deal of attention in the literature because of biological properties. Especially, among these heterocyclic systems, pyridine containing compounds have been the subject of expanding research efforts in heteroaromatic and biological chemistry. The pyrido [2,3-d] pyrimidine heterocycles, which are those annelated to a pyrimidine ring, are important because of their wide range of biological and pharmaceutical applications (i.e., bronchodilators, vasodilators) and their anti-allergic, cardiotonic, antihypertensive, and hepatoprotective activities. In this study series of 12 new carbazole substituted pyridopyrimidine urea(thiourea) derivatives were synthesized and evaluated effect on PPO. Additionally, we presented structure-activity relationship analyses and theoretical calculations of the compounds.

Keywords: carbazole, pyridopyrimidine, urea, thiourea, tyrosinase inhibitors

Procedia PDF Downloads 411
1470 Immobilization of β-Galactosidase from Kluyveromyces Lactis on Polyethylenimine-Agarose for Production of Lactulose

Authors: Carlos A. C. G. Neto, Natan C. G. Silva, Thais O. Costa, Luciana R. B. Goncalves, Maria v. P. Rocha

Abstract:

Galactosidases are enzymes responsible for catalyzing lactose hydrolysis reactions and also favoring transgalactosylation reactions for the production of prebiotics, among which lactulose stands out. These enzymes, when immobilized, can have some enzymatic characteristics substantially improved, and the coating of supports with multifunctional polymers in immobilization processes is a promising alternative in order to extend the useful life of the biocatalysts, for example, the coating with polyethyleneimine (PEI). PEI is a flexible polymer that suits the structure of the enzyme, giving greater stability, especially for multimeric enzymes such as β-galactosidases and also protects it from environmental variations, for example, pH and temperature. In addition, it can substantially improve the immobilization parameters and also the efficiency of enzymatic reactions. In this context, the aim of the present work was first to develop biocatalysts of β-galactosidase from Kluyveromyces lactis immobilized on PEI coated agarose, determining the immobilization parameters, its operational and thermal stability, and then to apply it in the hydrolysis of lactose and synthesis of lactulose, using whey as a substrate. This immobilization strategy was chosen in order to improve the catalytic efficiency of the enzyme in the transgalactosylation reaction for the production of prebiotics, and there are few studies with β-galactosidase from this strain. The immobilization of β-galactosidase in agarose previously functionalized with 48% (w/v) glycidol and then coated with 10% (w/v) PEI solution was evaluated using an enzymatic load of 10 mg/g of protein. Subsequently, the hydrolysis and transgalactosylation reactions were conducted at 50 °C, 120 RPM for 20 minutes, using whey (66.7 g/L of lactose) supplemented with 133.3 g/L fructose at a ratio of 1:2 (lactose/fructose). Operational stability studies were performed in the same conditions for 10 cycles. Thermal stabilities of biocatalysts were conducted at 50 ºC in 50 mM phosphate buffer, pH 6.6, with 0.1 mM MnCl2. The biocatalysts whose supports were coated were named AGA_GLY_PEI_GAL, and those that were not coated were named AGA_GLY_GAL. The coating of the support with PEI considerably improved immobilization yield (2.6-fold), the biocatalyst activity (1.4-fold), and efficiency (2.2-fold). The biocatalyst AGA_GLY_PEI_GAL was better than AGA_GLY_GAL in hydrolysis and transgalactosylation reactions, converting 88.92% of lactose at 5 min of reaction and obtaining a residual concentration of 5.24 g/L. Besides that, it was produced 13.90 g/L lactulose in the same time interval. AGA_GLY_PEI_GAL biocatalyst was stable during the 10 cycles evaluated, converting approximately 80% of lactose and producing 10.95 g/L of lactulose even after the tenth cycle. However, the thermal stability of AGA_GLY_GAL biocatalyst was superior, with a half-life time 5 times higher, probably because the enzyme was immobilized by covalent bonding, which is stronger than adsorption (AGA_GLY_PEI_GAL). Therefore, the strategy of coating the supports with PEI has proven to be effective for the immobilization of β-galactosidase from K. lactis, considerably improving the immobilization parameters, as well as the enzyme, catalyzed reactions. In addition, the use of whey as a raw material for lactulose production has proved to be an industrially advantageous alternative.

Keywords: β-galactosidase, immobilization, lactulose, polyethylenimine, whey

Procedia PDF Downloads 100
1469 Use of Natural Fibers in Landfill Leachate Treatment

Authors: Araujo J. F. Marina, Araujo F. Marcus Vinicius, Mulinari R. Daniella

Abstract:

Due to the resultant leachate from waste decomposition in landfills has polluter potential hundred times greater than domestic sewage, this is considered a problem related to the depreciation of environment requiring pre-disposal treatment. In seeking to improve this situation, this project proposes the treatment of landfill leachate using natural fibers intercropped with advanced oxidation processes. The selected natural fibers were palm, coconut and banana fiber. These materials give sustainability to the project because, besides having adsorbent capacity, are often part of waste discarded. The study was conducted in laboratory scale. In trials, the effluents were characterized as Chemical Oxygen Demand (COD), Turbidity and Color. The results indicate that is technically promising since that there were extremely oxidative conditions, the use of certain natural fibers in the reduction of pollutants in leachate have been obtained results of COD removals between 67.9% and 90.9%, Turbidity between 88.0% and 99.7% and Color between 67.4% and 90.4%. The expectation generated is to continue evaluating the association of efficiency of other natural fibers with other landfill leachate treatment processes.

Keywords: lndfill leachate, chemical treatment, natural fibers, advanced oxidation processes

Procedia PDF Downloads 335
1468 Calcined Tertiaries Hydrotalcites as Supports of Cobalt-Molybdenum Based Catalysts for the Hydrodesulfurization Reaction of Dibenzothiophene

Authors: Edwin Oviedo, Carlos Linares, Philippe Ayrault, Sylvette Brunet

Abstract:

Nowadays, light conventional crude oils are going down. Therefore, the exploitation of heavy crude oils has been increasing. Hence, a major quantity of refractory sulfur compounds such as dibenzothiophene (DBT) should be removed. Many efforts have been carried out to modify hydrotreatment typical supports in order to increase hydrodesulfurization (HDS) reactions. The present work shows the synthesis of tertiaries MgFeAl(0.16), MgFeAl(0.32), CoFeAl, ZnFeAl hydrotalcites, as supports of CoMo based catalysts, where 0.16 and 0.32 are the Fe3+/Al3+ molar ratio. Solids were characterized by different techniques (XRD, CO2-TPD, H2-TPR, FT-IR, BET, Chemical Analysis and HRTEM) and tested in the DBT HDS reaction. The reactions conditions were: Temp=325°C, P=40 Bar, H2/feed=475. Results show that the catalysts CoMo/MgFeAl(0.16) and CoMo/MgFeAl(0.32), which were the most basics, reduced the sulfur content from 500ppm to less than 1 ppm, increasing the cyclohexylbenzene content, i.e. presented a higher selective toward the HYD pathway than reference catalyst CoMo/γ- Al2O3. This is suitable for improving the fuel quality due to the increase of the cetane number. These catalysts were also more active to the HDS reaction increasing the direct desulfurization (DDS) way and presented a good stability. It is advantageous when the gas oil centane number should be improved. Cobalt, iron or zinc species inside support could avoid the Co and Mo dispersion or form spinel species which could be less active to hydrodesulfuration reactions, while hydrotalcites containing Mg increases the HDS activity probably due to improved Co/Mo ratio.

Keywords: catalyst, cetane number, dibenzothiophene, diesel, hydrodesulfurization, hydrotreatment, MoS2

Procedia PDF Downloads 138
1467 Organic Contaminant Degradation Using H₂O₂ Activated Biochar with Enhanced Persistent Free Radicals

Authors: Kalyani Mer

Abstract:

Hydrogen peroxide (H₂O₂) is one of the most efficient and commonly used oxidants in in-situ chemical oxidation (ISCO) of organic contaminants. In the present study, we investigated the activation of H₂O₂ by heavy metal (nickel and lead metal ions) loaded biochar for phenol degradation in an aqueous solution (concentration = 100 mg/L). It was found that H₂O₂ can be effectively activated by biochar, which produces hydroxyl (•OH) radicals owing to an increase in the formation of persistent free radicals (PFRs) on biochar surface. Ultrasound treated (30s duration) biochar, chemically activated by 30% phosphoric acid and functionalized by diethanolamine (DEA) was used for the adsorption of heavy metal ions from aqueous solutions. It was found that modified biochar could remove almost 60% of nickel in eight hours; however, for lead, the removal efficiency reached up to 95% for the same time duration. The heavy metal loaded biochar was further used for the degradation of phenol in the absence and presence of H₂O₂ (20 mM), within 4 hours of reaction time. The removal efficiency values for phenol in the presence of H₂O₂ were 80.3% and 61.9%, respectively, by modified biochar loaded with nickel and lead metal ions. These results suggested that the biochar loaded with nickel exhibits a better removal capacity towards phenol than the lead loaded biochar when used in H₂O₂ based oxidation systems. Meanwhile, control experiments were set in the absence of any activating biochar, and the removal efficiency was found to be 19.1% when only H₂O₂ was added in the reaction solution. Overall, the proposed approach serves a dual purpose of using biochar for heavy metal ion removal and treatment of organic contaminants by further using the metal loaded biochar for H₂O₂ activation in ISCO processes.

Keywords: biochar, ultrasound, heavy metals, in-situ chemical oxidation, chemical activation

Procedia PDF Downloads 108
1466 Microwave-Assisted 3D Porous Graphene for Its Multi-Functionalities

Authors: Jung-Hwan Oh, Rajesh Kumar, Il-Kwon Oh

Abstract:

Porous graphene has extensive potential applications in variety of fields such as hydrogen storage, CO oxidation, gas separation, supercapacitors, fuel cells, nanoelectronics, oil adsorption, and so on. However, the generation of some carbon atoms vacancies for precise small holes have been not extensively studied to prevent the agglomerates of graphene sheets and to obtain porous graphene with high surface area. Recently, many research efforts have been presented to develop physical and chemical synthetic approaches for porous graphene. But physical method has very high cost of manufacture and chemical method consumes so many hours for porous graphene. Herein, we propose a porous graphene contained holes with atomic scale precision by embedding metal nano-particles through microwave irradiation for hydrogen storage and CO oxidation multi- functionalities. This proposed synthetic method is appropriate for fast and convenient production of three dimensional nanostructures, which have nanoholes on the graphene surface in consequence of microwave irradiation. The metal nanoparticles are dispersed quickly on the graphene surface and generated uniform nanoholes on the graphene nanosheets. The morphological and structural characterization of the porous graphene were examined by scanning electron microscopy (SEM), transmission scanning electron microscopy (TEM) and RAMAN spectroscopy, respectively. The metal nanoparticle-embedded porous graphene exhibits a microporous volume of 2.586cm3g-1 with an average pore radius of 0.75 nm. HR-TEM analysis was carried out to further characterize the microstructures. By investigating the RAMAN spectra, we can understand the structural changes of graphene. The results of this work demonstrate a possibility to produce a new class of porous graphene. Furthermore, the newly acquired knowledge for the diffusion into graphene can provide useful guidance for the development of the growth of nanostructure.

Keywords: CO oxidation, hydrogen storage, nanocomposites, porous graphene

Procedia PDF Downloads 355
1465 Comparative Study of Fenton and Activated Carbon Treatment for Dyeing Waste Water

Authors: Prem Mohan, Namrata Jariwala

Abstract:

In recent years 10000 dyes are approximately used by dying industry which makes dyeing wastewater more complex in nature. It is very difficult to treat dyeing wastewater by conventional methods. Here an attempt has been made to treat dyeing wastewater by the conventional and advanced method for removal of COD. Fenton process is the advanced method and activated carbon treatment is the conventional method. Experiments have been done on synthetic wastewater prepared from three different dyes; acidic, disperse and reactive. Experiments have also been conducted on real effluent obtained from industry. The optimum dose of catalyst and hydrogen peroxide in Fenton process and optimum activated carbon dose for each of these wastewaters were obtained. In Fenton treatment, COD removal was obtained up to 95% whereas 70% removal was obtained with activated carbon treatment.

Keywords: activated carbon, advanced oxidation process, dyeing waste water, fenton oxidation process

Procedia PDF Downloads 186
1464 Portfolio Restructuring of Banks: The Impact on Performance and Risk

Authors: Hannes Koester

Abstract:

Driven by difficult market conditions and increasing regulations, many banks are making the strategic decision to restructure their portfolio by divesting several business segments. Using a unique dataset of 727 portfolio restructuring announcements by 161 international listed banks over the period 1999 to 2015, we investigate the impact of restructuring measurements on the stock performance as well as on the banks’ profitability and risk. Employing the event study methodology, we detect positive stock market reactions on the announcement of restructuring measurements. These positive stock market reactions indicate that shareholders reward banks’ specialization activities. However, the results of the system GMM regressions show a negative relation between restructuring measurements and banks’ return on assets and a positive relation towards the individual and systemic risk of banks. These empirical results indicate that there is no guarantee that portfolio restructurings will result in a more profitable and less risky institution.

Keywords: bank performance, bank risk, divestiture, restructuring, systemic risk

Procedia PDF Downloads 290
1463 Sonication as a Versatile Tool for Photocatalysts’ Synthesis and Intensification of Flow Photocatalytic Processes Within the Lignocellulose Valorization Concept

Authors: J. C. Colmenares, M. Paszkiewicz-Gawron, D. Lomot, S. R. Pradhan, A. Qayyum

Abstract:

This work is a report of recent selected experiments of photocatalysis intensification using flow microphotoreactors (fabricated by an ultrasound-based technique) for photocatalytic selective oxidation of benzyl alcohol (BnOH) to benzaldehyde (PhCHO) (in the frame of the concept of lignin valorization), and the proof of concept of intensifying a flow selective photocatalytic oxidation process by acoustic cavitation. The synthesized photocatalysts were characterized by using different techniques such as UV-Vis diffuse reflectance spectroscopy, X-ray diffraction, nitrogen sorption, thermal gravimetric analysis, and transmission electron microscopy. More specifically, the work will be on: a Design and development of metal-containing TiO₂ coated microflow reactor for photocatalytic partial oxidation of benzyl alcohol: The current work introduces an efficient ultrasound-based metal (Fe, Cu, Co)-containing TiO₂ deposition on the inner walls of a perfluoroalkoxy alkanes (PFA) microtube under mild conditions. The experiments were carried out using commercial TiO₂ and sol-gel synthesized TiO₂. The rough surface formed during sonication is the site for the deposition of these nanoparticles in the inner walls of the microtube. The photocatalytic activities of these semiconductor coated fluoropolymer based microreactors were evaluated for the selective oxidation of BnOH to PhCHO in the liquid flow phase. The analysis of the results showed that various features/parameters are crucial, and by tuning them, it is feasible to improve the conversion of benzyl alcohol and benzaldehyde selectivity. Among all the metal-containing TiO₂ samples, the 0.5 at% Fe/TiO₂ (both, iron and titanium, as cheap, safe, and abundant metals) photocatalyst exhibited the highest BnOH conversion under visible light (515 nm) in a microflow system. This could be explained by the higher crystallite size, high porosity, and flake-like morphology. b. Designing/fabricating photocatalysts by a sonochemical approach and testing them in the appropriate flow sonophotoreactor towards sustainable selective oxidation of key organic model compounds of lignin: Ultrasonication (US)-assitedprecipitaion and US-assitedhydrosolvothermal methods were used for the synthesis of metal-oxide-based and metal-free-carbon-based photocatalysts, respectively. Additionally, we report selected experiments of intensification of a flow photocatalytic selective oxidation through the use of ultrasonic waves. The effort of our research is focused on the utilization of flow sonophotocatalysis for the selective transformation of lignin-based model molecules by nanostructured metal oxides (e.g., TiO₂), and metal-free carbocatalysts. A plethora of parameters that affects the acoustic cavitation phenomena, and as a result the potential of sonication were investigated (e.g. ultrasound frequency and power). Various important photocatalytic parameters such as the wavelength and intensity of the irradiated light, photocatalyst loading, type of solvent, mixture of solvents, and solution pH were also optimized.

Keywords: heterogeneous photo-catalysis, metal-free carbonaceous materials, selective redox flow sonophotocatalysis, titanium dioxide

Procedia PDF Downloads 71
1462 Extraction, Synthesis, Characterization and Antioxidant Properties of Oxidized Starch from an Abundant Source in Nigeria

Authors: Okafor E. Ijeoma, Isimi C. Yetunde, Okoh E. Judith, Kunle O. Olobayo, Emeje O. Martins

Abstract:

Starch has gained interest as a renewable and environmentally compatible polymer due to the increase in its use. However, starch by itself could not be satisfactorily applied in industrial processes due to some inherent disadvantages such as its hydrophilic character, poor mechanical properties, its inability to withstand processing conditions such as extreme temperatures, diverse pH, high shear rate, freeze-thaw variation and dimensional stability. The range of physical properties of parent starch can be enlarged by chemical modification which invariably enhances their use in a number of applications found in industrial processes and food manufacture. In this study, Manihot esculentus starch was subjected to modification by oxidation. Fourier Transmittance Infra- Red (FTIR) and Raman spectroscopies were used to confirm the synthesis while Scanning Electron Microscopy (SEM) and X- Ray Diffraction (XRD) were used to characterize the new polymer. DPPH (2, 2-diphenyl-1-picryl-hydrazyl-hydrate) free radical assay was used to determine the antioxidant property of the oxidized starch. Our results show that the modification had no significant effect on the foaming capacity as well as on the emulsion capacity. Scanning electron microscopy revealed that oxidation did not alter the predominantly circular-shaped starch granules, while the X-ray pattern of both starch, native and modified were similar. FTIR results revealed a new band at 3007 and 3283cm-1. Differential scanning calorimetry returned two new endothermic peaks in the oxidized starch with an improved gelation capacity and increased enthalpy of gelatinization. The IC50 of oxidized starch was notably higher than that of the reference standard, ascorbic acid.

Keywords: antioxidant activity, DPPH, M. esculentus, oxidation, starch

Procedia PDF Downloads 272
1461 Fenton Sludge's Catalytic Ability with Synergistic Effects During Reuse for Landfill Leachate Treatment

Authors: Mohd Salim Mahtab, Izharul Haq Farooqi, Anwar Khursheed

Abstract:

Advanced oxidation processes (AOPs) based on Fenton are versatile options for treating complex wastewaters containing refractory compounds. However, the classical Fenton process (CFP) has limitations, such as high sludge production and reagent dosage, which limit its broad use and result in secondary contamination. As a result, long-term solutions are required for process intensification and the removal of these impediments. This study shows that Fenton sludge could serve as a catalyst in the Fe³⁺/Fe²⁺ reductive pathway, allowing non-regenerated sludge to be reused for complex wastewater treatment, such as landfill leachate treatment, even in the absence of Fenton's reagents. Experiments with and without pH adjustments in stages I and II demonstrated that an acidic pH is desirable. Humic compounds in leachate could improve the cycle of Fe³⁺/Fe²⁺ under optimal conditions, and the chemical oxygen demand (COD) removal efficiency was 22±2% and 62±2%% in stages I and II, respectively. Furthermore, excellent total suspended solids (TSS) removal (> 95%) and color removal (> 80%) were obtained in stage II. The processes underlying synergistic (oxidation/coagulation/adsorption) effects were addressed. The design of the experiment (DOE) is growing increasingly popular and has thus been implemented in the chemical, water, and environmental domains. The relevance of the statistical model for the desired response was validated using the explicitly stated optimal conditions. The operational factors, characteristics of reused sludge, toxicity analysis, cost calculation, and future research objectives were also discussed. Reusing non-regenerated Fenton sludge, according to the study's findings, can minimize hazardous solid toxic emissions and total treatment costs.

Keywords: advanced oxidation processes, catalysis, Fe³⁺/Fe²⁺ cycle, fenton sludge

Procedia PDF Downloads 66
1460 Influence of Gold Nanoparticles on NiAlZr Type Layered Double Hydroxide for the Catalytic Transfer Oxidation of Biomass Derived Aldehydes

Authors: Nihel Dib, Redouane Bachir, Ghezlane Berrahou, Chaima Zoulikha Tabet Zatla, Sumeya Bedrane, Ginessa Blanco Montilla, Jose Juan Calvino Gamez

Abstract:

In recent decades, the world’s population has rapidly increased annually, resulting in the consumption of huge amounts of conventional non-renewable petroleum-based resources at an alarming rate. The scarcity of such resources will shut down the corresponding industries and consequently have negative effects on the well-being of humanity. Accordingly, to combat the forthcoming crises and to serve the ever-growing demands, seeking potentially sustainable resources such as geothermal, wind, solar, and biomass has become an active field of study. Currently, lignocellulosic biomass, one of the world’s most plentiful resources, is acknowledged as a cost-effective material that has drawn great interest from many researchers since it has substantial energy potential as well as containing useful C5 and C6 sugars. These C5 and C6 sugars are the key reactants for the production of the valuable 16-platform chemicals such as 5-hydroxymethyl furfural, furfural, levulinic acid, succinic acid, and fumaric acid, all of which are crucial intermediates for synthesizing high-value bio-based chemicals and polymers. Succinic acid (SA) has been predicted to make a significant contribution to the global bio-based economy soon since it serves as a C4 building block that is used in a wide spectrum of industries, including biopolymers, solvents, and pharmaceuticals. In the present work, we modify the HDL MgAl with Zr to try to create acid sites on the supports and deposit gold by deposition precipitation with urea with a low gold content (0.25%). The catalyst was used to produce succinic acid by selective oxidation of furfuraldehyde with hydrogen peroxide under mild reaction conditions.

Keywords: hydrotalcite, catalysis, gold, biomass, furfural, oxidation

Procedia PDF Downloads 49
1459 Reuse of Spent Lithium Battery for the Production of Environmental Catalysts

Authors: Jyh-Cherng Chen, Chih-Shiang You, Jie-Shian Cheng

Abstract:

This study aims to recycle and reuse of spent lithium-cobalt battery and lithium-iron battery in the production of environmental catalysts. The characteristics and catalytic activities of synthesized catalysts for different air pollutants are analyzed and tested. The results show that the major metals in spent lithium-cobalt batteries are lithium 5%, cobalt 50%, nickel 3%, manganese 3% and the major metals in spent lithium-iron batteries are lithium 4%, iron 27%, and copper 4%. The catalytic activities of metal powders in the anode of spent lithium batteries are bad. With using the precipitation-oxidation method to prepare the lithium-cobalt catalysts from spent lithium-cobalt batteries, their catalytic activities for propane decomposition, CO oxidation, and NO reduction are well improved and excellent. The conversion efficiencies of the regenerated lithium-cobalt catalysts for those three gas pollutants are all above 99% even at low temperatures 200-300 °C. However, the catalytic activities of regenerated lithium-iron catalysts from spent lithium-iron batteries are unsatisfied.

Keywords: catalyst, lithium-cobalt battery, lithium-iron battery, recycle and reuse

Procedia PDF Downloads 228
1458 The Preparation of 2H-Indazolo [2, 1-b] Phthalazinetriones by One-Pot 4,4ʹ-Bipyridinium Dichloride Ordered Mesoporous Silica

Authors: Aigin Bashti

Abstract:

Preparation of multicomponent reactions (MCRs) via a simple one-pot strategy is considered a novel procedure which has attracted a lot of interest from organic and medicinal chemists. Due to the great importance of phthalazide triones, it was decided to introduce a novel and cost-effective green procedure for the preparation of these derivatives. In this methodology, an efficient 4,4ʹ-Bipyridinium Dichloride Ordered Mesoporous Silica functionalized catalyst (BP-SBA-15) was utilized. The catalyst was characterized by X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermo-gravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FT-IR) analysis. In conclusion, it should be mentioned that this methodology has some advantages, including short reaction time, high yield of the products, recyclable catalyst, green procedure, and facile work-up procedure. The catalyst was successfully utilized for the one-pot preparation of various phthalazinetrione derivatives.

Keywords: dimedone, green procedure, multicomponent reactions, phthalhydrazide

Procedia PDF Downloads 69
1457 LaMn₁₋ₓNiₓO₃ Perovskites as Oxygen Carriers for Chemical Looping Partial Oxidation of Methane

Authors: Xianglei Yin, Shen Wang, Baoyi Wang, Laihong Shen

Abstract:

Chemical looping partial oxidation of methane (CLPOM) is a novel technology to produce high-quality syngas with an auto-thermic process and low equipment investment. The development of oxygen carriers is important for the improvement of the CLPOM performance. In this work, the effect of the nickel-substitution proportion on the performance of LaMn₁₋ᵧNiᵧO₃₊δ perovskites for CLPOM was studied in the aspect of reactivity, syngas selectivity, resistance towards carbon deposition and thermal stability in cyclic redox process. The LaMn₁₋ₓNiₓO₃ perovskite oxides with x = 0, 0.1, 0.2 were prepared by the sol-gel method. The performance of LaMn₁₋ᵧNiᵧO₃₊δ perovskites for CLPOM was investigated through the characterization of XRD, H₂-TPR, XPS, and fixed-bed experiments. The characterization and test results suggest that the doping of nickel enhances the generation rate of syngas, leading to high syngas yield, methane conversion, and syngas selectivity. This is attributed to the that the introduction of nickel provides active sites to promote the methane activation on the surface and causes the addition of oxygen vacancies to accelerate the migration of oxygen anion in the bulk of oxygen carrier particles. On the other hand, the introduction of nickel causes carbon deposition to occur earlier. The best substitution proportion of nickel is y=0.1 and LaMn₀.₉Ni₀.₁O₃₊δ could produce high-quality syngas with a yield of 3.54 mmol·g⁻¹, methane conversion of 80.7%, and CO selectivity of 84.8% at 850℃. In addition, the LaMn₀.₉Ni₀.₁O₃₊δ oxygen carrier exhibits superior and stable performance in the cyclic redox process.

Keywords: chemical looping partial oxidation of methane, LaMnO₃₊δ, Ni doping, syngas, carbon deposition

Procedia PDF Downloads 75
1456 Clinical and Chemokine Profile in Leprosy Patients During Multidrug Therapy (MDT) and Their Healthy Contacts: A Randomized Control Trial

Authors: Rohit Kothari

Abstract:

Background: Leprosyis a chronic granulomatous diseasecaused by Mycobacterium leprae (M. Lepra). Reactions may interrupt its usual chronic course.Type-1 (T1R)and type-2 lepra reaction(T2R) are acute events and signifytype-IV and type-III hypersensitivity responses, respectively. Various chemokines like CCL3, 5, 11, and CCL24 may be increased during the course of leprosy or during reactions and may serve as markers of early diagnosis, response to therapy, and prognosis. Objective: To find correlation of CCL3, 5, 11, and CCL24 in leprosy patients on multidrug therapy and their family contacts after ruling out active disease during leprosy treatment and during periods of lepra reactions. Methodology: This randomized control trial was conducted in 50 clinico-histopathologically diagnosed cases of leprosy in a tertiary care hospital in Bengaluru, India. 50 of their family contacts were adequately examined and investigated should the need be to rule out active disease. The two study-groups comprised of leprosy cases, and the age, sex, and area of residence matched healthy contactswho were given single-dose rifampicin prophylaxis, respectively. Blood samples were taken at baseline, six months, and after one yearin both the groups (on completion of MDT in leprosy cases)and also during periods of reaction if occurred in leprosy cases. Results: Our study found that at baseline, CCL5, 11, and 24 were higher in leprosy cases as compared to the healthy contacts, and the difference was statistically significant.CCL3 was also found to be higherat baseline in leprosy cases, however, the difference was not statistically significant. At six months and one year, the levels of CCL 5, 11, and 24 reduced, and the difference was statistically significant in leprosy cases, whereas it remained almost static in all the healthy contacts. Twenty patients of leprosy developed lepra reaction during the course of one year, and during reaction, the increase in CCL11 and 24 was statistically significant from baseline, whereas CCL3 and 5 did not rise significantly. One of the healthy contacts developed signs of leprosy in the form of hypopigmented numb patch and was clinico-histopathologically, and CCL11 and 24 were found to be higher with a statistically significant difference from the baseline values. Conclusion: CCL5, 11, and 24 are sensitive markers of diagnosing leprosy, response to MDT, and prognosis and are not increased in healthy contacts. CCL11 and 24 are sensitive markers of lepra reactions and may serve as one of the early diagnostic modalities for identifying lepra reaction and also leprosy in healthy contacts. To the best of our knowledge, this is the first study to evaluate these biomarkers in leprosy cases and their healthy contacts with a follow-up of upto one year with one of them developing the disease, and the same was confirmed based on these biomarkers as well.

Keywords: chemokine profile, healthy contacts, leprosy, lepra reactions

Procedia PDF Downloads 110
1455 A Homogeneous Catalytic System for Decolorization of a Mixture of Orange G Acid and Naphthol Blue-Black Dye Based on Hydrogen Peroxide and a Recyclable DAWSON Type Heteropolyanion

Authors: Ouahiba Bechiri, Mostefa Abbessi

Abstract:

The color removal from industrial effluents is a major concern in wastewater treatment. The main objective of this work was to study the decolorization of a mixture of Orange G acid (OG) and naphthol blue black dye (NBB) in aqueous solution by hydrogen peroxide using [H1,5Fe1,5P2W12Mo6O61,23H2O] as catalyst. [H1,5Fe1,5P2 W12Mo6O61,23H2O] is a recyclable DAWSON type heteropolyanion. Effects of various experimental parameters of the oxidation reaction of the dye were investigated. The studied parameters were: the initial pH, H2O2 concentration, the catalyst mass and the temperature. The optimum conditions had been determined, and it was found that efficiency of degradation obtained after 15 minutes of reaction was about 100%. The optimal parameters were: initial pH = 3; [H2O2]0 = 0.08 mM; catalyst mass = 0.05g; for a concentration of dyes = 30mg/L.

Keywords: Dawson type heteropolyanion, naphthol blue-black, dye degradation, orange G acid, oxidation, hydrogen peroxide

Procedia PDF Downloads 335
1454 Epidemiological and Clinical Study of Childhood Hansens in a Tertiary Care Hospital

Authors: M. Shahana

Abstract:

Introduction: Leprosy (Hansens) is one of the major health problems in the developing countries. Sixty percent of the world leprosy cases are in India. According to the 2006 census India has about 54% of the total new cases detected globally. The National Leprosy Elimination Programme in 2012 has reported 9.7% of childhood leprosy. There are only few studies related to paediatric leprosy. Aim: To study the epidemiology and various clinical presentations of leprosy in the paediatric age group. Material and Methods: A 4-year prospective study was done in the out-patient department of dermatology in a tertiary care hospital. All the patients were screened for leprosy and children with a confirmed diagnosis of leprosy were taken up for the study. Results: Total of 321 cases of Hansens were recorded during this period out of which 41 were children. The male to female ratio was 2.72:1. A positive family history was found in 18%. Most of them presented with single hypopigmented hypoanesthetic patch. Conclusions: Children presented with more of Borderline tuberculoid type and reactions or deformities were less common.

Keywords: Hansens, hypoaneasthetic patch, leprosy, reactions

Procedia PDF Downloads 170
1453 Entropically Favoured Through Space Charge Transfer ‘Lighted’ Photosensitizing Assemblies for ‘Metal Free’ Regulated Photooxidation of Alcohols and Aldehydes

Authors: Gurpreet Kaur, Manoj Kumar, Vandana Bhalla

Abstract:

Strong acceptor-weak acceptor system FN-TPy has been designed and synthesized which undergoes solvent dependent self-assembly in mixed aqueous media to generate through space intermolecular charge transfer assemblies. The as prepared entropically favoured assemblies of FN-TPy exhibit excellent photostability and photosensitizing properties in the assembled state to activate aerial oxygen for efficient generation of reactive oxygen species (ROS) through Type-I and Type-II pathways. The FN-TPy assemblies exhibit excellent potential for regulated oxidation of alcohols and aldehydes under mild reaction conditions (visible light irradiation, aqueous media, room temperature) using aerial oxygen as the ‘oxidant’. The present study demonstrates the potential of FN-TPy assemblies to catalyze controlled oxidation of benzyl alcohol to benzaldehyde and to corresponding benzoic acid.

Keywords: oxidations, photosensitizer, reactive oxygen species, supramolecular assemblies, through space charge transfer.

Procedia PDF Downloads 91
1452 Direct Palladium-Catalyzed Selective N-Allylation of 2,3-Disubstituted Indoles with Allylic Alcohols in Water

Authors: Bai-Jing Peng, Shyh-Chyun Yang

Abstract:

Organic reactions in water have recently attracted much attention, not only because unique reactivity is often observed in water but also because water is a safe and economical substitute for conventional organic solvents. Thus, development of environmental safe, atom-economical reactions in water is one of the most important goals of synthetic chemistry. The recent paper has documented renewed interest in the use of allylic substrates in the synthesis of new C−C, C−N, and C−O bonds. We have reported our attempts and some successful applications of a process involving the C-O bond cleavage catalyzed by palladium or platinum complexes in water. Because of the importance of heterocycle indole derivatives, much effort has been directed toward the development of methods for functionalization of the indole nucleus at N1 site. In our research, the palladium-catalyzed 2,3-disubstitued indoles with allylic alcohols was investigated under different conditions. Herein, we will establish a simple, convenient, and efficient method, which affords high yields of allylated indoles.

Keywords: palladium-catalyzed, allylic alcohols, indoles, water, allylation

Procedia PDF Downloads 213
1451 Analyses of Adverse Drug Reactions Reported of Hospital in Taiwan

Authors: Yu-Hong Lin

Abstract:

Background: An adverse drug reaction (ADR) reported is an injury which caused by taking medicines. Sometimes the severity of ADR reported may be minor, but sometimes it could be a life-threatening situation. In order to provide healthcare professionals as a better reference in clinical practice, we do data collection and analysis from our hospital. Methods: This was a retrospective study of ADRs reported performed from 2014 to 2015 in our hospital in Taiwan. We collected assessment items of ADRs reported, which contain gender and age, occurring sources, Anatomical Therapeutic Chemical (ATC) classification of suspected drugs, types of adverse reactions, Naranjo score calculating by Naranjo Adverse Drug Reaction Probability Scale and so on. Results: The investigation included two hundred and seven ADRs reported. Most of ADRs reported were occurring in outpatient department (92%). The average age of ADRs reported was 65.3 years. Less than 65 years of age were in the majority in this study (54%). Majority of all ADRs reported were males (51%). According to ATC classification system, the major classification of suspected drugs was cardiovascular system (19%) and antiinfectives for systemic use (18%) respectively. Among the adverse reactions, Dermatologic Effects (35%) were the major type of ADRs. Also, the major Naranjo scores of all ADRs reported ranged from 1 to 4 points (91%), which represents a possible correlation between ADRs reported and suspected drugs. Conclusions: Definitely, ADRs reported is still an extremely important information for healthcare professionals. For that reason, we put all information of ADRs reported into our hospital's computer system, and it will improve the safety of medication use. By hospital's computer system, it can remind prescribers to think of information about patient's ADRs reported. No drugs are administered without risk. Therefore, all healthcare professionals should have a responsibility to their patients, who themselves are becoming more aware of problems associated with drug therapy.

Keywords: adverse drug reaction, Taiwan, healthcare professionals, safe use of medicines

Procedia PDF Downloads 208
1450 Modification Effect of CeO2 on Pt-Pd Nano Sized Catalysts for Formic Acid Oxidation

Authors: Ateeq Ur Rehman

Abstract:

This article deals with the promotional effects of CeO2 on PtPd/CeO2-OMC electrocatalysts. The synthesized catalysts are characterized using different physicochemical techniques and evaluated in a formic acid oxidation fuel cell. N2 adsorption/desorption analysis shows that CeO2 modification increases the surface area of OMC from 1005 m2/g to 1119 m2/g. SEM, XRD and TEM analysis reveal that the presence of CeO2 enhances the active metal(s) dispersion on the CeO2-OMC surface. The average particle size of the dispersed metal decreases with the increase of Pt/Pd ratio on CeO2-OMC support. Cyclic voltametry measurement of Pd/CeO2-OMC gives 12 % higher anodic current activity with 83 mV negative shift of the peak potential as compared to unmodified Pd/OMC. In bimetallic catalysts, the addition of Pt improves the activity and stability of the catalysts significantly. Among the bimetallic samples, Pd3Pt1/CeO2-OMC displays superior current density (74.6 mA/cm2), which is 28.3 times higher than that of Pt/CeO2-OMC. It also shows higher stability in extended period of runs with least indication of CO poisoning effects.

Keywords: CeO2, ordered mesoporous carbon (OMC), nano particles, formic acid fuel cell

Procedia PDF Downloads 292
1449 Patients Reactions to Medical Errors in Hospitals: The Need for Social Workers in Nigeria

Authors: Emmanuel Temitope Adaranijo

Abstract:

Medical error is on the increase in many nations and like many developing nations, Nigeria is not excluded and more importantly, Lafia, Nasarawa state, where the study was carried. The study was undertaken to explore Patients' knowledge and their reactions to medical errors in hospitals in Lafia Local Government Area; therefore, five objectives were formulated to guide the study. The survey research design was employed and triangulation of quantitative and qualitative instruments was used to collect data. The total population for the study was 330,712 and the sample size was 400; however, only 343 patients and three doctors responded to the quantitative and qualitative study, respectively. Frequency distribution, simple percentage, and r test were used to analyze the data obtained from respondents. The findings revealed that medical errors are prevalent in hospitals in Lafia and the patients are neither aware nor willing to report such occurrence. The study recommends that social workers, hospital management, and governments should take up their roles in reducing the occurrence of medical errors.

Keywords: health, hospital, medical errors, social work

Procedia PDF Downloads 108
1448 Earnings-Related Information, Cognitive Bias, and the Disposition Effect

Authors: Chih-Hsiang Chang, Pei-Shan Kao

Abstract:

This paper discusses the reaction of investors in the Taiwan stock market to the most probable unknown earnings-related information and the most probable known earnings-related information. As compared with the previous literature regarding the effect of an official announcement of earnings forecast revision, this paper further analyzes investors’ cognitive bias toward the unknown and known earnings-related information, and the role of media during the investors' reactions to the foresaid information shocks. The empirical results show that both the unknown and known earnings-related information provides useful information content for a stock market. In addition, cognitive bias and disposition effect are the behavioral pitfalls that commonly occur in the process of the investors' reactions to the earnings-related information. Finally, media coverage has a remarkable influence upon the investors' trading decisions.

Keywords: cognitive bias, role of media, disposition effect, earnings-related information, behavioral pitfall

Procedia PDF Downloads 201
1447 Adsorption of Atmospheric Gases Using Atomic Clusters

Authors: Vidula Shevade, B. J. Nagare, Sajeev Chacko

Abstract:

First principles simulation, meaning density functional theory (DFT) calculations with plane waves and pseudopotential, has become a prized technique in condensed matter theory. Nanoparticles (NP) have been known to possess good catalytic activities, especially for molecules such as CO, O₂, etc. Among the metal NPs, Aluminium based NPs are also widely known for their catalytic properties. Aluminium metal is a lightweight, excellent electrical, and thermal abundant chemical element in the earth’s crust. Aluminium NPs, when added to solid rocket fuel, help improve the combustion speed and considerably increase combustion heat and combustion stability. Adding aluminium NPs into normal Al/Al₂O₃ powder improves the sintering processes of the ceramics, with high heat transfer performance, increased density, and enhanced thermal conductivity of the sinter. We used VASP and Gaussian 0₃ package to compute the geometries, electronic structure, and bonding properties of Al₁₂Ni as well as its interaction with O₂ and CO molecules. Several MD simulations were carried out using VASP at various temperatures from which hundreds of structures were optimized, leading to 24 unique structures. These structures were then further optimized through a Gaussian package. The lowest energy structure of Al₁₂Ni has been reported to be a singlet. However, through our extensive search, we found a triplet state to be lower in energy. In our structure, the Ni atom is found to be on the surface, which gives the non-zero magnetic moment. Incidentally, O2 and CO molecules are also triplet in nature, due to which the Al₁₂-Ni cluster is likely to facilitate the oxidation process of the CO molecule. Our results show that the most favourable site for the CO molecule is the Ni atom and that for the O₂ molecule is the Al atom that is nearest to the Ni atom. Al₁₂Ni-O₂ and Al₁₂-Ni-CO structures we extracted using VMD. Al₁₂Ni nanocluster, due to in triplet electronic structure configuration, indicates it to be a potential candidate as a catalyst for oxidation of CO molecules.

Keywords: catalyst, gaussian, nanoparticles, oxidation

Procedia PDF Downloads 72