Search results for: incompressible navier-stokes equations
1588 A Class of Third Derivative Four-Step Exponential Fitting Numerical Integrator for Stiff Differential Equations
Authors: Cletus Abhulimen, L. A. Ukpebor
Abstract:
In this paper, we construct a class of four-step third derivative exponential fitting integrator of order six for the numerical integration of stiff initial-value problems of the type: y’= f(x,y); y(x₀) =y₀. The implicit method has free parameters which allow it to be fitted automatically to exponential functions. For the purpose of effective implementation of the proposed method, we adopted the techniques of splitting the method into predictor and corrector schemes. The numerical analysis of the stability of the new method was discussed; the results show that the method is A-stable. Finally, numerical examples are presented, to show the efficiency and accuracy of the new method.Keywords: third derivative four-step, exponentially fitted, a-stable, stiff differential equations
Procedia PDF Downloads 2651587 Solution of Some Boundary Value Problems of the Generalized Theory of Thermo-Piezoelectricity
Authors: Manana Chumburidze
Abstract:
We have considered a non-classical model of dynamical problems for a conjugated system of differential equations arising in thermo-piezoelectricity, which was formulated by Toupin – Mindlin. The basic concepts and the general theory of solvability for isotropic homogeneous elastic media is considered. They are worked by using the methods the Laplace integral transform, potential method and singular integral equations. Approximate solutions of mixed boundary value problems for finite domain, bounded by the some closed surface are constructed. They are solved in explicitly by using the generalized Fourier's series method.Keywords: thermo-piezoelectricity, boundary value problems, Fourier's series, isotropic homogeneous elastic media
Procedia PDF Downloads 4651586 Rényi Entropy Correction to Expanding Universe
Authors: Hamidreza Fazlollahi
Abstract:
The Re ́nyi entropy comprises a group of data estimates that sums up the well-known Shannon entropy, acquiring a considerable lot of its properties. It appears as unqualified and restrictive entropy, relative entropy, or common data, and has found numerous applications in information theory. In the Re ́nyi’s argument, the area law of the black hole entropy plays a significant role. However, the total entropy can be modified by some quantum effects, motivated by the randomness of a system. In this note, by employing this modified entropy relation, we have derived corrections to Friedmann equations. Taking this entropy associated with the apparent horizon of the Friedmann-Robertson-Walker Universe and assuming the first law of thermodynamics, dE=T_A (dS)_A+WdV, satisfies the apparent horizon, we have reconsidered expanding Universe. Also, the second thermodynamics law has been examined.Keywords: Friedmann equations, dark energy, first law of thermodynamics, Reyni entropy
Procedia PDF Downloads 941585 New Coordinate System for Countries with Big Territories
Authors: Mohammed Sabri Ali Akresh
Abstract:
The modern technologies and developments in computer and Global Positioning System (GPS) as well as Geographic Information System (GIS) and total station TS. This paper presents a new proposal for coordinates system by a harmonic equations “United projections”, which have five projections (Mercator, Lambert, Russell, Lagrange, and compound of projection) in one zone coordinate system width 14 degrees, also it has one degree for overlap between zones, as well as two standards parallels for zone from 10 S to 45 S. Also this paper presents two cases; first case is to compare distances between a new coordinate system and UTM, second case creating local coordinate system for the city of Sydney to measure the distances directly from rectangular coordinates using projection of Mercator, Lambert and UTM.Keywords: harmonic equations, coordinate system, projections, algorithms, parallels
Procedia PDF Downloads 4721584 Particle and Photon Trajectories near the Black Hole Immersed in the Nonstatic Cosmological Background
Authors: Elena M. Kopteva, Pavlina Jaluvkova, Zdenek Stuchlik
Abstract:
The question of constructing a consistent model of the cosmological black hole remains to be unsolved and still attracts the interest of cosmologists as far as it is important in a wide set of research problems including the problem of the black hole horizon dynamics, the problem of interplay between cosmological expansion and local gravity, the problem of structure formation in the early universe etc. In this work, the model of the cosmological black hole is built on the basis of the exact solution of the Einstein equations for the spherically symmetric inhomogeneous dust distribution in the approach of the mass function use. Possible trajectories for massive particles and photons near the black hole immersed in the nonstatic dust cosmological background are investigated in frame of the obtained model. The reference system of distant galaxy comoving to cosmological expansion combined with curvature coordinates is used, so that the resulting metric becomes nondiagonal and involves both proper ‘cosmological’ time and curvature spatial coordinates. For this metric the geodesic equations are analyzed for the test particles and photons, and the respective trajectories are built.Keywords: exact solutions for Einstein equations, Lemaitre-Tolman-Bondi solution, cosmological black holes, particle and photon trajectories
Procedia PDF Downloads 3391583 Pre-Service Teachers’ Reasoning and Sense Making of Variables
Authors: Olteanu Constanta, Olteanu Lucian
Abstract:
Researchers note that algebraic reasoning and sense making is essential for building conceptual knowledge in school mathematics. Consequently, pre-service teachers’ own reasoning and sense making are useful in fostering and developing students’ algebraic reasoning and sense making. This article explores the forms of reasoning and sense making that pre-service mathematics teachers exhibit and use in the process of analysing problem-posing tasks with a focus on first-degree equations. Our research question concerns the characteristics of the problem-posing tasks used for reasoning and sense making of first-degree equations as well as the characteristics of pre-service teachers’ reasoning and sense making in problem-posing tasks. The analyses are grounded in a post-structuralist philosophical perspective and variation theory. Sixty-six pre-service primary teachers participated in the study. The results show that the characteristics of reasoning in problem-posing tasks and of pre-service teachers are selecting, exploring, reconfiguring, encoding, abstracting and connecting. The characteristics of sense making in problem-posing tasks and of pre-service teachers are recognition, relationships, profiling, comparing, laddering and verifying. Beside this, the connection between reasoning and sense making is rich in line of flight in problem-posing tasks, while the connection is rich in line of rupture for pre-service teachers.Keywords: first-degree equations, problem posing, reasoning, rhizomatic assemblage, sense-making, variation theory
Procedia PDF Downloads 1131582 Contributions at the Define of the Vortex Plane Cyclic Motion
Authors: Petre Stan, Marinica Stan
Abstract:
In this paper, a new way to define the vortex plane cyclic motion is exposed, starting from the physical cause of reacting the vortex. The Navier-Stokes equations are used in cylindrical coordinates for viscous fluids in laminar motion, and are integrated in case of a infinite long revolving cylinder which rotates around a pintle in a viscous fluid that occupies the entire space up to infinite. In this way, a revolving field of velocities in fluid is obtained, having the shape of a vortex in which the intensity is obtained objectively, being given by the physical phenomenon that generates this vortex.Keywords: cylindrical coordinates, Navier-Stokes equations, viscous fluid, vortex plane
Procedia PDF Downloads 1311581 Capture Zone of a Well Field in an Aquifer Bounded by Two Parallel Streams
Authors: S. Nagheli, N. Samani, D. A. Barry
Abstract:
In this paper, the velocity potential and stream function of capture zone for a well field in an aquifer bounded by two parallel streams with or without a uniform regional flow of any directions are presented. The well field includes any number of extraction or injection wells or a combination of both types with any pumping rates. To delineate the capture envelope, the potential and streamlines equations are derived by conformal mapping method. This method can help us to release constrains of other methods. The equations can be applied as useful tools to design in-situ groundwater remediation systems, to evaluate the surface–subsurface water interaction and to manage the water resources.Keywords: complex potential, conformal mapping, image well theory, Laplace’s equation, superposition principle
Procedia PDF Downloads 4321580 From Equations to Structures: Linking Abstract Algebra and High-School Algebra for Secondary School Teachers
Authors: J. Shamash
Abstract:
The high-school curriculum in algebra deals mainly with the solution of different types of equations. However, modern algebra has a completely different viewpoint and is concerned with algebraic structures and operations. A question then arises: What might be the relevance and contribution of an abstract algebra course for developing expertise and mathematical perspective in secondary school mathematics instruction? This is the focus of this paper. The course Algebra: From Equations to Structures is a carefully designed abstract algebra course for Israeli secondary school mathematics teachers. The course provides an introduction to algebraic structures and modern abstract algebra, and links abstract algebra to the high-school curriculum in algebra. It follows the historical attempts of mathematicians to solve polynomial equations of higher degrees, attempts which resulted in the development of group theory and field theory by Galois and Abel. In other words, algebraic structures grew out of a need to solve certain problems, and proved to be a much more fruitful way of viewing them. This theorems in both group theory and field theory. Along the historical ‘journey’, many other major results in algebra in the past 150 years are introduced, and recent directions that current research in algebra is taking are highlighted. This course is part of a unique master’s program – the Rothschild-Weizmann Program – offered by the Weizmann Institute of Science, especially designed for practicing Israeli secondary school teachers. A major component of the program comprises mathematical studies tailored for the students at the program. The rationale and structure of the course Algebra: From Equations to Structures are described, and its relevance to teaching school algebra is examined by analyzing three kinds of data sources. The first are position papers written by the participating teachers regarding the relevance of advanced mathematics studies to expertise in classroom instruction. The second data source are didactic materials designed by the participating teachers in which they connected the mathematics learned in the mathematics courses to the school curriculum and teaching. The third date source are final projects carried out by the teachers based on material learned in the course.Keywords: abstract algebra , linking abstract algebra and school mathematics, school algebra, secondary school mathematics, teacher professional development
Procedia PDF Downloads 1461579 Simulation of I–V Characteristics of Lateral PIN Diode on Polysilicon Films
Authors: Abdelaziz Rabhi, Mohamed Amrani, Abderrazek Ziane, Nabil Belkadi, Abdelraouf Hocini
Abstract:
In this paper, a bedimensional simulation program of the electric characteristics of reverse biased lateral polysilicon PIN diode is presented. In this case we have numerically solved the system of partial differential equations formed by Poisson's equation and both continuity equations that take into account the effect of impact ionization. Therefore we will obtain the current-voltage characteristics (I-V) of the reverse-biased structure which may include the effect of breakdown.The geometrical model assumes that the polysilicon layer is composed by a succession of defined mean grain size crystallites, separated by lateral grain boundaries which are parallel to the metallurgic junction.Keywords: breakdown, polycrystalline silicon, PIN, grain, impact ionization
Procedia PDF Downloads 3801578 Periodicity of Solutions of a Nonlinear Impulsive Differential Equation with Piecewise Constant Arguments
Authors: Mehtap Lafcı
Abstract:
In recent years, oscillation, periodicity and convergence of solutions of linear differential equations with piecewise constant arguments have been significantly considered but there are only a few papers for impulsive differential equations with piecewise constant arguments. In this paper, a first order nonlinear impulsive differential equation with piecewise constant arguments is studied and the existence of solutions and periodic solutions of this equation are investigated by using Carvalho’s method. Finally, an example is given to illustrate these results.Keywords: Carvalho's method, impulsive differential equation, periodic solution, piecewise constant arguments
Procedia PDF Downloads 5151577 Dual Solutions in Mixed Convection Boundary Layer Flow: A Stability Analysis
Authors: Anuar Ishak
Abstract:
The mixed convection stagnation point flow toward a vertical plate is investigated. The external flow impinges normal to the heated plate and the surface temperature is assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the mixed convection parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.Keywords: dual solutions, heat transfer, mixed convection, stability analysis
Procedia PDF Downloads 3901576 An Alternative Framework of Multi-Resolution Nested Weighted Essentially Non-Oscillatory Schemes for Solving Euler Equations with Adaptive Order
Authors: Zhenming Wang, Jun Zhu, Yuchen Yang, Ning Zhao
Abstract:
In the present paper, an alternative framework is proposed to construct a class of finite difference multi-resolution nested weighted essentially non-oscillatory (WENO) schemes with an increasingly higher order of accuracy for solving inviscid Euler equations. These WENO schemes firstly obtain a set of reconstruction polynomials by a hierarchy of nested central spatial stencils, and then recursively achieve a higher order approximation through the lower-order precision WENO schemes. The linear weights of such WENO schemes can be set as any positive numbers with a requirement that their sum equals one and they will not pollute the optimal order of accuracy in smooth regions and could simultaneously suppress spurious oscillations near discontinuities. Numerical results obtained indicate that these alternative finite-difference multi-resolution nested WENO schemes with different accuracies are very robust with low dissipation and use as few reconstruction stencils as possible while maintaining the same efficiency, achieving the high-resolution property without any equivalent multi-resolution representation. Besides, its finite volume form is easier to implement in unstructured grids.Keywords: finite-difference, WENO schemes, high order, inviscid Euler equations, multi-resolution
Procedia PDF Downloads 1451575 Multi-Scale Modelling of Thermal Wrinkling of Thin Membranes
Authors: Salim Belouettar, Kodjo Attipou
Abstract:
The thermal wrinkling behavior of thin membranes is investigated. The Fourier double scale series are used to deduce the macroscopic membrane wrinkling equations. The obtained equations account for the global and local wrinkling modes. Numerical examples are conducted to assess the validity of the approach developed. Compared to the finite element full model, the present model needs only few degrees of freedom to recover accurately the bifurcation curves and wrinkling paths. Different parameters such as membrane’s aspect ratio, wave number, pre-stressed membranes are discussed from a numerical point of view and the properties of the wrinkles (critical load, wavelength, size and location) are presented.Keywords: wrinkling, thermal stresses, Fourier series, thin membranes
Procedia PDF Downloads 3911574 CFD Simulation of the Pressure Distribution in the Upper Airway of an Obstructive Sleep Apnea Patient
Authors: Christina Hagen, Pragathi Kamale Gurmurthy, Thorsten M. Buzug
Abstract:
CFD simulations are performed in the upper airway of a patient suffering from obstructive sleep apnea (OSA) that is a sleep related breathing disorder characterized by repetitive partial or complete closures of the upper airways. The simulations are aimed at getting a better understanding of the pathophysiological flow patterns in an OSA patient. The simulation is compared to medical data of a sleep endoscopic examination under sedation. A digital model consisting of surface triangles of the upper airway is extracted from the MR images by a region growing segmentation process and is followed by a careful manual refinement. The computational domain includes the nasal cavity with the nostrils as the inlet areas and the pharyngeal volume with an outlet underneath the larynx. At the nostrils a flat inflow velocity profile is prescribed by choosing the velocity such that a volume flow rate of 150 ml/s is reached. Behind the larynx at the outlet a pressure of -10 Pa is prescribed. The stationary incompressible Navier-Stokes equations are numerically solved using finite elements. A grid convergence study has been performed. The results show an amplification of the maximal velocity of about 2.5 times the inlet velocity at a constriction of the pharyngeal volume in the area of the tongue. It is the same region that also shows the highest pressure drop from about 5 Pa. This is in agreement with the sleep endoscopic examinations of the same patient under sedation showing complete contractions in the area of the tongue. CFD simulations can become a useful tool in the diagnosis and therapy of obstructive sleep apnea by giving insight into the patient’s individual fluid dynamical situation in the upper airways giving a better understanding of the disease where experimental measurements are not feasible. Within this study, it could been shown on one hand that constriction areas within the upper airway lead to a significant pressure drop and on the other hand a good agreement of the area of pressure drop and the area of contraction could be shown.Keywords: biomedical engineering, obstructive sleep apnea, pharynx, upper airways
Procedia PDF Downloads 3061573 Stability Analysis for an Extended Model of the Hypothalamus-Pituitary-Thyroid Axis
Authors: Beata Jackowska-Zduniak
Abstract:
We formulate and analyze a mathematical model describing dynamics of the hypothalamus-pituitary-thyroid homoeostatic mechanism in endocrine system. We introduce to this system two types of couplings and delay. In our model, feedback controls the secretion of thyroid hormones and delay reflects time lags required for transportation of the hormones. The influence of delayed feedback on the stability behaviour of the system is discussed. Analytical results are illustrated by numerical examples of the model dynamics. This system of equations describes normal activity of the thyroid and also a couple of types of malfunctions (e.g. hyperthyroidism).Keywords: mathematical modeling, ordinary differential equations, endocrine system, delay differential equation
Procedia PDF Downloads 3361572 Numerical Study of Entropy Generation Due to Hybrid Nano-Fluid Flow through Coaxial Porous Disks
Authors: Muhammad Bilal Ameen, M. Zubair Akbar Qureshi
Abstract:
The current investigation of two-dimensional hybrid nanofluid flows with two coaxial parallel disks has been presented. Consider the hybrid nanofluid has been taken as steady-state. Consider the coaxial disks that have been porous. Consider the heat equation to examine joule heating and viscous dissipation effects. Nonlinear partial differential equations have been solved numerically. For shear stress and heat transfer, results are tabulated. Hybrid nanoparticles and Eckert numbers are increasing for heat transfer. Entropy generation is expanded with radiation parameters Eckert, Reynold, Prandtl, and Peclet numbers. A set of ordinary differential equations is obtained to utilize the capable transformation variables. The numerical solution of the continuity, momentum, energy, and entropy generation equations is obtaining using the command bvp4c of Matlab as a solver. To explore the impact of main parameters like suction/infusion, Prandtl, Reynold, Eckert, Peclet number, and volume fraction parameters, various graphs have been plotted and examined. It is concluded that a convectional nanofluid is highly compared by entropy generation with the boundary layer of hybrid nanofluid.Keywords: entropy generation, hybrid nano fluid, heat transfer, porous disks
Procedia PDF Downloads 1491571 Hypergeometric Solutions to Linear Nonhomogeneous Fractional Equations with Spherical Bessel Functions of the First Kind
Authors: Pablo Martin, Jorge Olivares, Fernando Maass
Abstract:
The use of fractional derivatives to different problems in Engineering and Physics has been increasing in the last decade. For this reason, we have here considered partial derivatives when the integral is a spherical Bessel function of the first kind in both regular and modified ones simple initial conditions have been also considered. In this way, the solution has been found as a combination of hypergeometric functions. The case of a general rational value for α of the fractional derivative α has been solved in a general way for alpha between zero and two. The modified spherical Bessel functions of the first kind have been also considered and how to go from the regular case to the modified one will be also shown.Keywords: caputo fractional derivatives, hypergeometric functions, linear differential equations, spherical Bessel functions
Procedia PDF Downloads 3251570 Influence of Convective Boundary Condition on Chemically Reacting Micropolar Fluid Flow over a Truncated Cone Embedded in Porous Medium
Authors: Pradeepa Teegala, Ramreddy Chitteti
Abstract:
This article analyzes the mixed convection flow of chemically reacting micropolar fluid over a truncated cone embedded in non-Darcy porous medium with convective boundary condition. In addition, heat generation/absorption and Joule heating effects are taken into consideration. The similarity solution does not exist for this complex fluid flow problem, and hence non-similarity transformations are used to convert the governing fluid flow equations along with related boundary conditions into a set of nondimensional partial differential equations. Many authors have been applied the spectral quasi-linearization method to solve the ordinary differential equations, but here the resulting nonlinear partial differential equations are solved for non-similarity solution by using a recently developed method called the spectral quasi-linearization method (SQLM). Comparison with previously published work on special cases of the problem is performed and found to be in excellent agreement. The effect of pertinent parameters namely, Biot number, mixed convection parameter, heat generation/absorption, Joule heating, Forchheimer number, chemical reaction, micropolar and magnetic field on physical quantities of the flow are displayed through graphs and the salient features are explored in detail. Further, the results are analyzed by comparing with two special cases, namely, vertical plate and full cone wherever possible.Keywords: chemical reaction, convective boundary condition, joule heating, micropolar fluid, mixed convection, spectral quasi-linearization method
Procedia PDF Downloads 2771569 Trajectory Tracking of a Redundant Hybrid Manipulator Using a Switching Control Method
Authors: Atilla Bayram
Abstract:
This paper presents the trajectory tracking control of a spatial redundant hybrid manipulator. This manipulator consists of two parallel manipulators which are a variable geometry truss (VGT) module. In fact, each VGT module with 3-degress of freedom (DOF) is a planar parallel manipulator and their operational planes of these VGT modules are arranged to be orthogonal to each other. Also, the manipulator contains a twist motion part attached to the top of the second VGT module to supply the missing orientation of the endeffector. These three modules constitute totally 7-DOF hybrid (parallel-parallel) redundant spatial manipulator. The forward kinematics equations of this manipulator are obtained, then, according to these equations, the inverse kinematics is solved based on an optimization with the joint limit avoidance. The dynamic equations are formed by using virtual work method. In order to test the performance of the redundant manipulator and the controllers presented, two different desired trajectories are followed by using the computed force control method and a switching control method. The switching control method is combined with the computed force control method and genetic algorithm. In the switching control method, the genetic algorithm is only used for fine tuning in the compensation of the trajectory tracking errors.Keywords: computed force method, genetic algorithm, hybrid manipulator, inverse kinematics of redundant manipulators, variable geometry truss
Procedia PDF Downloads 3471568 Peridynamic Modeling of an Isotropic Plate under Tensile and Flexural Loading
Authors: Eda Gök
Abstract:
Peridynamics is a new modeling concept of non-local interactions for solid structures. The formulations of Peridynamic (PD) theory are based on integral equations rather than differential equations. Through, undefined equations of associated problems are avoided. PD theory might be defined as continuum version of molecular dynamics. The medium is usually modeled with mass particles bonded together. Particles interact with each other directly across finite distances through central forces named as bonds. The main assumption of this theory is that the body is composed of material points which interact with other material points within a finite distance. Although, PD theory developed for discontinuities, it gives good results for structures which have no discontinuities. In this paper, displacement control of the isotropic plate under the effect of tensile and bending loading has been investigated by means of PD theory. A MATLAB code is generated to create PD bonds and corresponding surface correction factors. Using generated MATLAB code the geometry of the specimen is generated, and the code is implemented in Finite Element Software. The results obtained from non-local continuum theory are compared with the Finite Element Analysis results and analytical solution. The results show good agreement.Keywords: non-local continuum mechanics, peridynamic theory, solid structures, tensile loading, flexural loading
Procedia PDF Downloads 1211567 Designing a Robust Controller for a 6 Linkage Robot
Authors: G. Khamooshian
Abstract:
One of the main points of application of the mechanisms of the series and parallel is the subject of managing them. The control of this mechanism and similar mechanisms is one that has always been the intention of the scholars. On the other hand, modeling the behavior of the system is difficult due to the large number of its parameters, and it leads to complex equations that are difficult to solve and eventually difficult to control. In this paper, a six-linkage robot has been presented that could be used in different areas such as medical robots. Using these robots needs a robust control. In this paper, the system equations are first found, and then the system conversion function is written. A new controller has been designed for this robot which could be used in other parallel robots and could be very useful. Parallel robots are so important in robotics because of their stability, so methods for control of them are important and the robust controller, especially in parallel robots, makes a sense.Keywords: 3-RRS, 6 linkage, parallel robot, control
Procedia PDF Downloads 1581566 Exciting Voltage Control for Efficiency Maximization for 2-D Omni-Directional Wireless Power Transfer Systems
Authors: Masato Sasaki, Masayoshi Yamamoto
Abstract:
The majority of wireless power transfer (WPT) systems transfer power in a directional manner. This paper describes a discrete exciting voltage control technique for WPT via magnetic resonant coupling with two orthogonal transmitter coils (2D omni-directional WPT system) which can maximize the power transfer efficiency in response to the change of coupling status. The theory allows the equations of the efficiency of the system to be determined at all the rate of the mutual inductance. The calculated results are included to confirm the advantage to one directional WPT system and the validity of the theory and the equations.Keywords: wireless power transfer, omni-directional, orthogonal, efficiency
Procedia PDF Downloads 3171565 Magnetohydrodynamic 3D Maxwell Fluid Flow Towards a Horizontal Stretched Surface with Convective Boundary Conditions
Authors: M. Y. Malika, Farzana, Abdul Rehman
Abstract:
The study deals with the steady, 3D MHD boundary layer flow of a non-Newtonian Maxwell fluid flow due to a horizontal surface stretched exponentially in two lateral directions. The temperature at the boundary is assumed to be distributed exponentially and possesses convective boundary conditions. The governing nonlinear system of partial differential equations along with associated boundary conditions is simplified using a suitable transformation and the obtained set of ordinary differential equations is solved through numerical techniques. The effects of important involved parameters associated with fluid flow and heat flux are shown through graphs.Keywords: boundary layer flow, exponentially stretched surface, Maxwell fluid, numerical solution
Procedia PDF Downloads 5881564 On Algebraic Structure of Improved Gauss-Seide Iteration
Authors: O. M. Bamigbola, A. A. Ibrahim
Abstract:
Analysis of real life problems often results in linear systems of equations for which solutions are sought. The method to employ depends, to some extent, on the properties of the coefficient matrix. It is not always feasible to solve linear systems of equations by direct methods, as such the need to use an iterative method becomes imperative. Before an iterative method can be employed to solve a linear system of equations there must be a guaranty that the process of solution will converge. This guaranty, which must be determined a priori, involve the use of some criterion expressible in terms of the entries of the coefficient matrix. It is, therefore, logical that the convergence criterion should depend implicitly on the algebraic structure of such a method. However, in deference to this view is the practice of conducting convergence analysis for Gauss-Seidel iteration on a criterion formulated based on the algebraic structure of Jacobi iteration. To remedy this anomaly, the Gauss-Seidel iteration was studied for its algebraic structure and contrary to the usual assumption, it was discovered that some property of the iteration matrix of Gauss-Seidel method is only diagonally dominant in its first row while the other rows do not satisfy diagonal dominance. With the aid of this structure we herein fashion out an improved version of Gauss-Seidel iteration with the prospect of enhancing convergence and robustness of the method. A numerical section is included to demonstrate the validity of the theoretical results obtained for the improved Gauss-Seidel method.Keywords: linear algebraic system, Gauss-Seidel iteration, algebraic structure, convergence
Procedia PDF Downloads 4641563 Time and Kinematics of Moving Bodies
Authors: Muhammad Omer Farooq Saeed
Abstract:
The purpose of the proposal is to find out what time actually is! And to understand the natural phenomenon of the behavior of time and light corresponding to the motion of the bodies at relatively high speeds. The utmost concern of the paper is to deal with the possible demerits in the equations of relativity, thereby providing some valuable extensions in those equations and concepts. The idea used develops the most basic conception of the relative motion of the body with respect to space and a real understanding of time and the variation of energy of the body in different frames of reference. The results show the development of a completely new understanding of time, relative motion and energy, along with some extensions in the equations of special relativity most importantly the time dilation and the mass-energy relationship that will explain all frames of a body, all in one go. The proposal also raises serious questions on the validity of the “Principle of Equivalence” on which the General Relativity is based, most importantly a serious case of the bending light that eventually goes against its own governing concepts of space-time being proposed in the theory. The results also predict the existence of a completely new field that explains the fact just how and why bodies acquire energy in space-time. This field explains the production of gravitational waves based on time. All in all, this proposal challenges the formulas and conceptions of Special and General Relativity, respectively.Keywords: time, relative motion, energy, speed, frame of reference, photon, curvature, space-time, time –differentials
Procedia PDF Downloads 691562 Application of Lattice Boltzmann Method to Different Boundary Conditions in a Two Dimensional Enclosure
Authors: Jean Yves Trepanier, Sami Ammar, Sagnik Banik
Abstract:
Lattice Boltzmann Method has been advantageous in simulating complex boundary conditions and solving for fluid flow parameters by streaming and collision processes. This paper includes the study of three different test cases in a confined domain using the method of the Lattice Boltzmann model. 1. An SRT (Single Relaxation Time) approach in the Lattice Boltzmann model is used to simulate Lid Driven Cavity flow for different Reynolds Number (100, 400 and 1000) with a domain aspect ratio of 1, i.e., square cavity. A moment-based boundary condition is used for more accurate results. 2. A Thermal Lattice BGK (Bhatnagar-Gross-Krook) Model is developed for the Rayleigh Benard convection for both test cases - Horizontal and Vertical Temperature difference, considered separately for a Boussinesq incompressible fluid. The Rayleigh number is varied for both the test cases (10^3 ≤ Ra ≤ 10^6) keeping the Prandtl number at 0.71. A stability criteria with a precise forcing scheme is used for a greater level of accuracy. 3. The phase change problem governed by the heat-conduction equation is studied using the enthalpy based Lattice Boltzmann Model with a single iteration for each time step, thus reducing the computational time. A double distribution function approach with D2Q9 (density) model and D2Q5 (temperature) model are used for two different test cases-the conduction dominated melting and the convection dominated melting. The solidification process is also simulated using the enthalpy based method with a single distribution function using the D2Q5 model to provide a better understanding of the heat transport phenomenon. The domain for the test cases has an aspect ratio of 2 with some exceptions for a square cavity. An approximate velocity scale is chosen to ensure that the simulations are within the incompressible regime. Different parameters like velocities, temperature, Nusselt number, etc. are calculated for a comparative study with the existing works of literature. The simulated results demonstrate excellent agreement with the existing benchmark solution within an error limit of ± 0.05 implicates the viability of this method for complex fluid flow problems.Keywords: BGK, Nusselt, Prandtl, Rayleigh, SRT
Procedia PDF Downloads 1281561 Implementation of Fuzzy Version of Block Backward Differentiation Formulas for Solving Fuzzy Differential Equations
Authors: Z. B. Ibrahim, N. Ismail, K. I. Othman
Abstract:
Fuzzy Differential Equations (FDEs) play an important role in modelling many real life phenomena. The FDEs are used to model the behaviour of the problems that are subjected to uncertainty, vague or imprecise information that constantly arise in mathematical models in various branches of science and engineering. These uncertainties have to be taken into account in order to obtain a more realistic model and many of these models are often difficult and sometimes impossible to obtain the analytic solutions. Thus, many authors have attempted to extend or modified the existing numerical methods developed for solving Ordinary Differential Equations (ODEs) into fuzzy version in order to suit for solving the FDEs. Therefore, in this paper, we proposed the development of a fuzzy version of three-point block method based on Block Backward Differentiation Formulas (FBBDF) for the numerical solution of first order FDEs. The three-point block FBBDF method are implemented in uniform step size produces three new approximations simultaneously at each integration step using the same back values. Newton iteration of the FBBDF is formulated and the implementation is based on the predictor and corrector formulas in the PECE mode. For greater efficiency of the block method, the coefficients of the FBBDF are stored at the start of the program. The proposed FBBDF is validated through numerical results on some standard problems found in the literature and comparisons are made with the existing fuzzy version of the Modified Simpson and Euler methods in terms of the accuracy of the approximated solutions. The numerical results show that the FBBDF method performs better in terms of accuracy when compared to the Euler method when solving the FDEs.Keywords: block, backward differentiation formulas, first order, fuzzy differential equations
Procedia PDF Downloads 3181560 Effects of Variable Properties and Double Dispersion on Magnetohydrodynamic (MHD) Mixed Convection in a Power-Law Fluid Saturated Non-Darcy Porous Medium
Authors: Pranitha Janapatla, Venkata Suman Gontla
Abstract:
The present paper investigates the effects of MHD, double dispersion and variable properties on mixed convection flow from a vertical surface in a power-law fluid saturated non-Darcy porous medium. The governing non-linear partial differential equations are reduced to a system of ordinary differential equations by using a special form of Lie group transformations viz. scaling group of transformations. These ordinary differential equations are solved numerically by using Shooting technique. The influence of relevant parameters on the non-dimensional velocity, temperature, concentration for pseudo-plastic fluid, Newtonian and dilatant fluid are discussed and displayed graphically. The behavior of heat and mass transfer coefficients are shown in tabular form. Comparisons with the published works are performed and are found to be in very good agreement. From this analysis, it is observed that an increase in variable viscosity causes to decrease in velocity profile and increase the temperature and concentration distributions. It is also concluded that increase in the solutal dispersion decreases the velocity and concentration but raises the temperature profile.Keywords: power-law fluid, thermal conductivity, thermal dispersion, solutal dispersion, variable viscosity
Procedia PDF Downloads 2311559 A Study on Approximate Controllability of Impulsive Integrodifferential Systems with Non Local Conditions
Authors: Anandhi Santhosh
Abstract:
In order to describe various real-world problems in physical and engineering sciences subject to abrupt changes at certain instants during the evolution process, impulsive differential equations has been used to describe the system model. In this article, the problem of approximate controllability for nonlinear impulsive integrodifferential equations with state-dependent delay is investigated. We study the approximate controllability for nonlinear impulsive integrodifferential system under the assumption that the corresponding linear control system is approximately controllable. Using methods of functional analysis and semigroup theory, sufficient conditions are formulated and proved. Finally, an example is provided to illustrate the proposed theory.Keywords: approximate controllability, impulsive differential system, fixed point theorem, state-dependent delay
Procedia PDF Downloads 383