Search results for: differential fault analysis (DFA)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28217

Search results for: differential fault analysis (DFA)

27917 Speeding up Nonlinear Time History Analysis of Base-Isolated Structures Using a Nonlinear Exponential Model

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

The nonlinear time history analysis of seismically base-isolated structures can require a significant computational effort when the behavior of each seismic isolator is predicted by adopting the widely used differential equation Bouc-Wen model. In this paper, a nonlinear exponential model, able to simulate the response of seismic isolation bearings within a relatively large displacements range, is described and adopted in order to reduce the numerical computations and speed up the nonlinear dynamic analysis. Compared to the Bouc-Wen model, the proposed one does not require the numerical solution of a nonlinear differential equation for each time step of the analysis. The seismic response of a 3d base-isolated structure with a lead rubber bearing system subjected to harmonic earthquake excitation is simulated by modeling each isolator using the proposed analytical model. The comparison of the numerical results and computational time with those obtained by modeling the lead rubber bearings using the Bouc-Wen model demonstrates the good accuracy of the proposed model and its capability to reduce significantly the computational effort of the analysis.

Keywords: base isolation, computational efficiency, nonlinear exponential model, nonlinear time history analysis

Procedia PDF Downloads 358
27916 Stator Short-Circuits Fault Diagnosis in Induction Motors

Authors: K. Yahia, M. Sahraoui, A. Guettaf

Abstract:

This paper deals with the problem of stator faults diagnosis in induction motors. Using the discrete wavelet transform (DWT) for the current Park’s vector modulus (CPVM) analysis, the inter-turn short-circuit faults diagnosis can be achieved. This method is based on the decomposition of the CPVM signal, where wavelet approximation and detail coefficients of this signal have been extracted. The energy evaluation of a known bandwidth detail permits to define a fault severity factor (FSF). This method has been tested through the simulation of an induction motor using a mathematical model based on the winding-function approach. Simulation, as well as experimental results, show the effectiveness of the used method.

Keywords: induction motors (IMs), inter-turn short-circuits diagnosis, discrete wavelet transform (DWT), Current Park’s Vector Modulus (CPVM)

Procedia PDF Downloads 433
27915 Realistic Testing Procedure of Power Swing Blocking Function in Distance Relay

Authors: Farzad Razavi, Behrooz Taheri, Mohammad Parpaei, Mehdi Mohammadi Ghalesefidi, Siamak Zarei

Abstract:

As one of the major problems in protecting large-dimension power systems, power swing and its effect on distance have caused a lot of damages to energy transfer systems in many parts of the world. Therefore, power swing has gained attentions of many researchers, which has led to invention of different methods for power swing detection. Power swing detection algorithm is highly important in distance relay, but protection relays should have general requirements such as correct fault detection, response rate, and minimization of disturbances in a power system. To ensure meeting the requirements, protection relays need different tests during development, setup, maintenance, configuration, and troubleshooting steps. This paper covers power swing scheme of the modern numerical relay protection, 7sa522 to address the effect of the different fault types on the function of the power swing blocking. In this study, it was shown that the different fault types during power swing cause different time for unblocking distance relay.

Keywords: power swing, distance relay, power system protection, relay test, transient in power system

Procedia PDF Downloads 347
27914 Geothermal Prospect Prediction at Mt. Ciremai Using Fault and Fracture Density Method

Authors: Rifqi Alfadhillah Sentosa, Hasbi Fikru Syabi, Stephen

Abstract:

West Java is a province in Indonesia which has a number of volcanoes. One of those volcanoes is Mt. Ciremai, located administratively at Kuningan and Majalengka District, and is known for its significant geothermal potential in Java Island. This research aims to assume geothermal prospects at Mt. Ciremai using Fault and Fracture Density (FFD) Method, which is correlated to the geochemistry of geothermal manifestations around the mountain. This FFD method is using SRTM data to draw lineaments, which are assumed associated with fractures and faults in the research area. These faults and fractures were assumed as the paths for reservoir fluids to reached surface as geothermal manifestations. The goal of this method is to analyze the density of those lineaments found in the research area. Based on this FFD Method, it is known that area with high density of lineaments located on Mt. Kromong at the northern side of Mt. Ciremai. This prospect area is proven by its higher geothermometer values compared to geothermometer values calculated at the south area of Mt. Ciremai.

Keywords: geothermal prospect, fault and fracture density, Mt. Ciremai, surface manifestation

Procedia PDF Downloads 329
27913 Quintic Spline Method for Variable Coefficient Fourth-Order Parabolic Partial Differential Equations

Authors: Reza Mohammadi, Mahdieh Sahebi

Abstract:

We develop a method based on polynomial quintic spline for numerical solution of fourth-order non-homogeneous parabolic partial differential equation with variable coefficient. By using polynomial quintic spline in off-step points in space and finite difference in time directions, we obtained two three level implicit methods. Stability analysis of the presented method has been carried out. We solve four test problems numerically to validate the proposed derived method. Numerical comparison with other existence methods shows the superiority of our presented scheme.

Keywords: fourth-order parabolic equation, variable coefficient, polynomial quintic spline, off-step points, stability analysis

Procedia PDF Downloads 335
27912 Recycling of Polymers in the Presence of Nanocatalysts: A Green Approach towards Sustainable Environment

Authors: Beena Sethi

Abstract:

This work involves the degradation of plastic waste in the presence of three different nanocatalysts. A thin film of LLDPE was formed with all three nanocatalysts separately in the solvent. Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetric (DSC) analysis of polymers suggest that the presence of these catalysts lowers the degradation temperature and the change mechanism of degradation. Gas chromatographic analysis was carried out for two films. In gas chromatography (GC) analysis, it was found that degradation of pure polymer produces only 32% C3/C4 hydrocarbons and 67.6% C5/C9 hydrocarbons. In the presence of these catalysts, more than 80% of polymer by weight was converted into either liquid or gaseous hydrocarbons. Change in the mechanism of degradation of polymer was observed therefore more C3/C4 hydrocarbons along with valuable feedstock are produced. Adjustment of dose of nanocatalyst, use of nano-admixtures and recycling of catalyst can make this catalytic feedstock recycling method a good tool to get sustainable environment. The obtained products can be utilized as fuel or can be transformed into other useful products. In accordance with the principles of sustainable development, chemical recycling i.e. tertiary recycling of polymers along with the reuse (zero order recycling) of plastics can be the most appropriate and promising method in this direction. The tertiary recycling is attracting much attention from the viewpoint of the energy resource.

Keywords: degradation, differential scanning calorimetry, feedstock recycling, gas chromatography, thermogravimetric analysis

Procedia PDF Downloads 399
27911 The Dynamics of Unsteady Squeezing Flow between Parallel Plates (Two-Dimensional)

Authors: Jiya Mohammed, Ibrahim Ismail Giwa

Abstract:

Unsteady squeezing flow of a viscous fluid between parallel plates is considered. The two plates are considered to be approaching each other symmetrically, causing the squeezing flow. Two-dimensional rectangular Cartesian coordinate is considered. The Navier-Stokes equation was reduced using similarity transformation to a single fourth order non-linear ordinary differential equation. The energy equation was transformed to a second order coupled differential equation. We obtained solution to the resulting ordinary differential equations via Homotopy Perturbation Method (HPM). HPM deforms a differential problem into a set of problem that are easier to solve and it produces analytic approximate expression in the form of an infinite power series by using only sixth and fifth terms for the velocity and temperature respectively. The results reveal that the proposed method is very effective and simple. Comparisons among present and existing solutions were provided and it is shown that the proposed method is in good agreement with Variation of Parameter Method (VPM). The effects of appropriate dimensionless parameters on the velocity profiles and temperature field are demonstrated with the aid of comprehensive graphs and tables.

Keywords: coupled differential equation, Homotopy Perturbation Method, plates, squeezing flow

Procedia PDF Downloads 445
27910 Design of a Fuzzy Luenberger Observer for Fault Nonlinear System

Authors: Mounir Bekaik, Messaoud Ramdani

Abstract:

We present in this work a new technique of stabilization for fault nonlinear systems. The approach we adopt focus on a fuzzy Luenverger observer. The T-S approximation of the nonlinear observer is based on fuzzy C-Means clustering algorithm to find local linear subsystems. The MOESP identification approach was applied to design an empirical model describing the subsystems state variables. The gain of the observer is given by the minimization of the estimation error through Lyapunov-krasovskii functional and LMI approach. We consider a three tank hydraulic system for an illustrative example.

Keywords: nonlinear system, fuzzy, faults, TS, Lyapunov-Krasovskii, observer

Procedia PDF Downloads 305
27909 Negative Sequence-Based Protection Techniques for Microgrid Connected Power Systems

Authors: Isabelle Snyder, Travis Smith

Abstract:

Microgrid protection presents challenges to conventional protection techniques due to the low-induced fault current. Protection relays present in microgrid applications require a combination of settings groups to adjust based on the architecture of the microgrid in islanded and grid-connected modes. In a radial system where the microgrid is at the other end of the feeder, directional elements can be used to identify the direction of the fault current and switch settings groups accordingly (grid-connected or microgrid-connected). However, with multiple microgrid connections, this concept becomes more challenging, and the direction of the current alone is not sufficient to identify the source of the fault current contribution. ORNL has previously developed adaptive relaying schemes through other DOE-funded research projects that will be evaluated and used as a baseline for this research. The four protection techniques in this study are labeled as follows: (1) Adaptive Current only Protection System (ACPS), Intentional (2) Unbalanced Control for Protection Control (IUCPC), (3) Adaptive Protection System with Communication Controller (APSCC) (4) Adaptive Model-Driven Protective Relay (AMDPR).

Keywords: adaptive relaying, microgrid protection, sequence components, islanding detection

Procedia PDF Downloads 46
27908 Survey: Topology Hiding in Multipath Routing Protocol in MANET

Authors: Akshay Suhas Phalke, Manohar S. Chaudhari

Abstract:

In this paper, we have discussed the multipath routing with its variants. Our purpose is to discuss the different types of the multipath routing mechanism. Here we also put the taxonomy of the multipath routing. Multipath routing is used for the alternate path routing, reliable transmission of data and for better utilization of network resources. We also discussed the multipath routing for topology hiding such as TOHIP. In multipath routing, different parameters such as energy efficiency, packet delivery ratio, shortest path routing, fault tolerance play an important role. We have discussed a number of multipath routing protocol based on different parameters lastly.

Keywords: multi-path routing, WSN, topology, fault detection, trust

Procedia PDF Downloads 323
27907 The Application of Data Mining Technology in Building Energy Consumption Data Analysis

Authors: Liang Zhao, Jili Zhang, Chongquan Zhong

Abstract:

Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.

Keywords: data mining, data analysis, prediction, optimization, building operational performance

Procedia PDF Downloads 825
27906 Disaster Mitigation from an Analysis of a Condemned Building Erected over Collapsible Clay Soil in Brazil

Authors: Marcelo Jesus Kato Avila, Joao Da Costa Pantoja

Abstract:

Differential settlement of foundations is a serious pathology in buildings that put at risk lives and property. A common reason for the occurrence of this specific pathology in central Brazil is the presence of collapsible clay, a typical soil in the region. In this study, the foundation of a condemned building erected above this soil is analyzed. The aim is to prevent problems in new constructions, to predict which buildings may be subjected to damages, and to make possible a more precise treatment in less advanced differential settlements observed in the buildings of the vicinity, which includes a hospital, a Military School, an indoor sporting arena, the Police Academy, and the Military Police Headquarters. The methodology consists of visual inspection, photographic report of the main pathologies, analysis of the existing foundations, determination of the soil properties, the study of the cracking level and assessment of structural failure risk of the building. The findings show that the presence of water weaken the soil structure on which the foundation rest, being the main cause of the pathologic settlement, indicating that even in a one store building it was necessary to consider deeper digging, other categories of foundations, and more elaborated and detailed foundation plans when the soil presents this behavior.

Keywords: building cracks, collapsible clay, differential settlement, structural failure risk

Procedia PDF Downloads 230
27905 General Mathematical Framework for Analysis of Cattle Farm System

Authors: Krzysztof Pomorski

Abstract:

In the given work we present universal mathematical framework for modeling of cattle farm system that can set and validate various hypothesis that can be tested against experimental data. The presented work is preliminary but it is expected to be valid tool for future deeper analysis that can result in new class of prediction methods allowing early detection of cow dieseaes as well as cow performance. Therefore the presented work shall have its meaning in agriculture models and in machine learning as well. It also opens the possibilities for incorporation of certain class of biological models necessary in modeling of cow behavior and farm performance that might include the impact of environment on the farm system. Particular attention is paid to the model of coupled oscillators that it the basic building hypothesis that can construct the model showing certain periodic or quasiperiodic behavior.

Keywords: coupled ordinary differential equations, cattle farm system, numerical methods, stochastic differential equations

Procedia PDF Downloads 123
27904 Fruiting Body Specific Sc4 Hydrophobin Gene Plays a Role in Schizophyllum Commune Hyphal Attachment to Structured Glass Surfaces

Authors: Evans Iyamu

Abstract:

Genes encoding hydrophobins play distinct roles at different stages of the life cycle of fungi, and they foster hyphal attachment to surfaces. The hydrophobin Sc4 is known to provide a hydrophobic membrane lining of the gas channels within Schizophyllum commune fruiting bodies. Here, we cultivated non-fruiting, monokaryotic S. commune 12-43 on glass surfaces that could be verified by micrography. Differential gene expression profiling of nine hydrophobin genes and the hydrophobin-like sc15 gene by quantitative PCR showed significant up-regulation of sc4 when S. commune was attached to glass surfaces, also confirmed with RNA-Seq data analysis. Another silicate, namely quartz sand, was investigated, and induction of sc4 was seen as well. The up-regulation of the hydrophobin gene sc4 may indicate involvement in S. commune hyphal attachment to glass as well as quartz surfaces. We propose that the covering of hyphae by Sc4 allows for direct interaction with the hydrophobic surfaces of silicates and that differential functions of specific hydrophobin genes depend on the surface interface involved. This study could help with the clarification of the biological functions of hydrophobins in natural surroundings, including hydrophobic surface attachment. Therefore, the analysis of growth on glass serves as a basis for understanding S. commune interaction with glass surfaces while providing the possibility to visualize the interaction microscopically.

Keywords: hydrophobin, structured glass surfaces, differential gene expression, quartz sand

Procedia PDF Downloads 85
27903 Feature Extraction and Classification Based on the Bayes Test for Minimum Error

Authors: Nasar Aldian Ambark Shashoa

Abstract:

Classification with a dimension reduction based on Bayesian approach is proposed in this paper . The first step is to generate a sample (parameter) of fault-free mode class and faulty mode class. The second, in order to obtain good classification performance, a selection of important features is done with the discrete karhunen-loeve expansion. Next, the Bayes test for minimum error is used to classify the classes. Finally, the results for simulated data demonstrate the capabilities of the proposed procedure.

Keywords: analytical redundancy, fault detection, feature extraction, Bayesian approach

Procedia PDF Downloads 503
27902 Vibration Analysis of Pendulum in a Viscous Fluid by Analytical Methods

Authors: Arash Jafari, Mehdi Taghaddosi, Azin Parvin

Abstract:

In this study, a vibrational differential equation governing on swinging single-degree-of-freedom pendulum in a viscous fluid has been investigated. The damping process is characterized according to two different regimes: at first, damping in stationary viscous fluid, in the second, damping in flowing viscous fluid with constant velocity. Our purpose is to enhance the ability of solving the mentioned nonlinear differential equation with a simple and innovative approach. Comparisons are made between new method and Numerical Method (rkf45). The results show that this method is very effective and simple and can be applied for other nonlinear problems.

Keywords: oscillating systems, angular frequency and damping ratio, pendulum at fluid, locus of maximum

Procedia PDF Downloads 319
27901 The Role of the Injured Party's Fault in the Apportionment of Damages in Tort Law: A Comparative-Historical Study between Common Law and Islamic Law

Authors: Alireza Tavakoli Nia

Abstract:

In order to understand the role of the injured party's fault in dividing liability, we studied its historical background. In common law, the traditional contributory negligence rule was a complete defense. Then the legislature and judicial procedure modified that rule to one of apportionment. In Islamic law, too, the Action rule was at first used when the injured party was the sole cause, but jurists expanded the scope of this rule, so this rule was used in cases where both the injured party's fault and that of the other party are involved. There are some popular approaches for apportionment of damages. Some common law countries like Britain had chosen ‘the causal potency approach’ and ‘fixed apportionment’. Islamic countries like Iran have chosen both ‘the relative blameworthiness’ and ‘equal apportionment’ approaches. The article concludes that both common law and Islamic law believe in the division of responsibility between a wrongdoer claimant and the defendant. In contrast, in the apportionment of responsibility, Islamic law mostly believes in equal apportionment that is way easier and saves time and money, but common law legal systems have chosen the causal potency approach, which is more complicated than the rival approach but is fairer.

Keywords: contributory negligence, tort law, damage apportionment, common law, Islamic law

Procedia PDF Downloads 120
27900 Intelligent Path Tracking Hybrid Fuzzy Controller for a Unicycle-Type Differential Drive Robot

Authors: Abdullah M. Almeshal, Mohammad R. Alenezi, Muhammad Moaz

Abstract:

In this paper, we discuss the performance of applying hybrid spiral dynamic bacterial chemotaxis (HSDBC) optimisation algorithm on an intelligent controller for a differential drive robot. A unicycle class of differential drive robot is utilised to serve as a basis application to evaluate the performance of the HSDBC algorithm. A hybrid fuzzy logic controller is developed and implemented for the unicycle robot to follow a predefined trajectory. Trajectories of various frictional profiles and levels were simulated to evaluate the performance of the robot at different operating conditions. Controller gains and scaling factors were optimised using HSDBC and the performance is evaluated in comparison to previously adopted optimisation algorithms. The HSDBC has proven its feasibility in achieving a faster convergence toward the optimal gains and resulted in a superior performance.

Keywords: differential drive robot, hybrid fuzzy controller, optimization, path tracking, unicycle robot

Procedia PDF Downloads 440
27899 Exact and Approximate Controllability of Nuclear Dynamics Using Bilinear Controls

Authors: Ramdas Sonawane, Mahaveer Gadiya

Abstract:

The control problem associated with nuclear dynamics is represented by nonlinear integro-differential equation with additive controls. To control chain reaction, certain amount of neutrons is added into (or withdrawn out of) chamber as and when required. It is not realistic. So, we can think of controlling the reactor dynamics by bilinear control, which enters the system as coefficient of state. In this paper, we study the approximate and exact controllability of parabolic integro-differential equation controlled by bilinear control with non-homogeneous boundary conditions in bounded domain. We prove the existence of control and propose an explicit control strategy.

Keywords: approximate control, exact control, bilinear control, nuclear dynamics, integro-differential equations

Procedia PDF Downloads 413
27898 Seismic Behavior of Steel Moment-Resisting Frames for Uplift Permitted in Near-Fault Regions

Authors: M. Tehranizadeh, E. Shoushtari Rezvani

Abstract:

Seismic performance of steel moment-resisting frame structures is investigated considering nonlinear soil-structure interaction (SSI) effects. 10-, 15-, and 20-story planar building frames with aspect ratio of 3 are designed in accordance with current building codes. Inelastic seismic demands of the superstructure are considered using concentrated plasticity model. The raft foundation system is designed for different soil types. Beam-on-nonlinear Winkler foundation (BNWF) is used to represent dynamic impedance of the underlying soil. Two sets of pulse-like as well as no-pulse near-fault earthquakes are used as input ground motions. The results show that the reduction in drift demands due to nonlinear SSI is characterized by a more uniform distribution pattern along the height when compared to the fixed-base and linear SSI condition. It is also concluded that beneficial effects of nonlinear SSI on displacement demands is more significant in case of pulse-like ground motions and performance level of the steel moment-resisting frames can be enhanced.

Keywords: soil-structure interaction, uplifting, soil plasticity, near-fault earthquake, tall building

Procedia PDF Downloads 531
27897 Solving Stochastic Eigenvalue Problem of Wick Type

Authors: Hassan Manouzi, Taous-Meriem Laleg-Kirati

Abstract:

In this paper we study mathematically the eigenvalue problem for stochastic elliptic partial differential equation of Wick type. Using the Wick-product and the Wiener-Ito chaos expansion, the stochastic eigenvalue problem is reformulated as a system of an eigenvalue problem for a deterministic partial differential equation and elliptic partial differential equations by using the Fredholm alternative. To reduce the computational complexity of this system, we shall use a decomposition-coordination method. Once this approximation is performed, the statistics of the numerical solution can be easily evaluated.

Keywords: eigenvalue problem, Wick product, SPDEs, finite element, Wiener-Ito chaos expansion

Procedia PDF Downloads 331
27896 A Sliding Model Control for a Hybrid Hyperbolic Dynamic System

Authors: Xuezhang Hou

Abstract:

In the present paper, a hybrid hyperbolic dynamic system formulated by partial differential equations with initial and boundary conditions is considered. First, the system is transformed to an abstract evolution system in an appropriate Hilbert space, and spectral analysis and semigroup generation of the system operator is discussed. Subsequently, a sliding model control problem is proposed and investigated, and an equivalent control method is introduced and applied to the system. Finally, a significant result that the state of the system can be approximated by an ideal sliding mode under control in any accuracy is derived and examined.

Keywords: hyperbolic dynamic system, sliding model control, semigroup of linear operators, partial differential equations

Procedia PDF Downloads 103
27895 Transcriptomic Analyses of Kappaphycus alvarezii under Different Wavelengths of Light

Authors: Vun Yee Thien, Kenneth Francis Rodrigues, Clemente Michael Vui Ling Wong, Wilson Thau Lym Yong

Abstract:

Transcriptomes associated with the process of photosynthesis have offered insights into the mechanism of gene regulation in terrestrial plants; however, limited information is available as far as macroalgae are concerned. This investigation aims to decipher the underlying mechanisms associated with photosynthesis in the red alga, Kappaphycus alvarezii, by performing a differential expression analysis on a de novo assembled transcriptomes. Comparative analysis of gene expression was designed to examine the alteration of light qualities and its effect on physiological mechanisms in the red alga. High-throughput paired-end RNA-sequencing was applied to profile the transcriptome of K. alvarezii irradiated with different wavelengths of light (blue 492-455 nm, green 577-492 nm and red 780-622 nm) as compared to the full light spectrum, resulted in more than 60 million reads individually and assembled using Trinity and SOAPdenovo-Trans. The transcripts were annotated in the NCBI non-redundant (nr) protein, SwissProt, KEGG and COG databases with a cutoff E-value of 1e-5 and nearly 30% of transcripts were assigned to functional annotation by Blast searches. Differential expression analysis was performed using edgeR. The DEGs were designated to six categories: BL (blue light) regulated, GL (green light) regulated, RL (red light) regulated, BL or GL regulated, BL or RL regulated, GL or RL regulated, and either BL, GL or RL regulated. These DEGs were mapped to terms in KEGG database and compared with the whole transcriptome background to search for genes that regulated by light quality. The outcomes of this study will enhance our understanding of molecular mechanisms underlying light-induced responses in red algae.

Keywords: de novo transcriptome sequencing, differential gene expression, Kappaphycus alvareziired, red alga

Procedia PDF Downloads 490
27894 Design of Reconfigurable Supernumerary Robotic Limb Based on Differential Actuated Joints

Authors: Qinghua Zhang, Yanhe Zhu, Xiang Zhao, Yeqin Yang, Hongwei Jing, Guoan Zhang, Jie Zhao

Abstract:

This paper presents a wearable reconfigurable supernumerary robotic limb with differential actuated joints, which is lightweight, compact and comfortable for the wearers. Compared to the existing supernumerary robotic limbs which mostly adopted series structure with large movement space but poor carrying capacity, a prototype with the series-parallel configuration to better adapt to different task requirements has been developed in this design. To achieve a compact structure, two kinds of cable-driven mechanical structures based on guide pulleys and differential actuated joints were designed. Moreover, two different tension devices were also designed to ensure the reliability and accuracy of the cable-driven transmission. The proposed device also employed self-designed bearings which greatly simplified the structure and reduced the cost.

Keywords: cable-driven, differential actuated joints, reconfigurable, supernumerary robotic limb

Procedia PDF Downloads 188
27893 An Efficient Collocation Method for Solving the Variable-Order Time-Fractional Partial Differential Equations Arising from the Physical Phenomenon

Authors: Haniye Dehestani, Yadollah Ordokhani

Abstract:

In this work, we present an efficient approach for solving variable-order time-fractional partial differential equations, which are based on Legendre and Laguerre polynomials. First, we introduced the pseudo-operational matrices of integer and variable fractional order of integration by use of some properties of Riemann-Liouville fractional integral. Then, applied together with collocation method and Legendre-Laguerre functions for solving variable-order time-fractional partial differential equations. Also, an estimation of the error is presented. At last, we investigate numerical examples which arise in physics to demonstrate the accuracy of the present method. In comparison results obtained by the present method with the exact solution and the other methods reveals that the method is very effective.

Keywords: collocation method, fractional partial differential equations, legendre-laguerre functions, pseudo-operational matrix of integration

Procedia PDF Downloads 142
27892 A Family of Second Derivative Methods for Numerical Integration of Stiff Initial Value Problems in Ordinary Differential Equations

Authors: Luke Ukpebor, C. E. Abhulimen

Abstract:

Stiff initial value problems in ordinary differential equations are problems for which a typical solution is rapidly decaying exponentially, and their numerical investigations are very tedious. Conventional numerical integration solvers cannot cope effectively with stiff problems as they lack adequate stability characteristics. In this article, we developed a new family of four-step second derivative exponentially fitted method of order six for the numerical integration of stiff initial value problem of general first order differential equations. In deriving our method, we employed the idea of breaking down the general multi-derivative multistep method into predator and corrector schemes which possess free parameters that allow for automatic fitting into exponential functions. The stability analysis of the method was discussed and the method was implemented with numerical examples. The result shows that the method is A-stable and competes favorably with existing methods in terms of efficiency and accuracy.

Keywords: A-stable, exponentially fitted, four step, predator-corrector, second derivative, stiff initial value problems

Procedia PDF Downloads 231
27891 Optimal Control of Volterra Integro-Differential Systems Based on Legendre Wavelets and Collocation Method

Authors: Khosrow Maleknejad, Asyieh Ebrahimzadeh

Abstract:

In this paper, the numerical solution of optimal control problem (OCP) for systems governed by Volterra integro-differential (VID) equation is considered. The method is developed by means of the Legendre wavelet approximation and collocation method. The properties of Legendre wavelet accompany with Gaussian integration method are utilized to reduce the problem to the solution of nonlinear programming one. Some numerical examples are given to confirm the accuracy and ease of implementation of the method.

Keywords: collocation method, Legendre wavelet, optimal control, Volterra integro-differential equation

Procedia PDF Downloads 365
27890 Numerical Regularization of Ill-Posed Problems via Hybrid Feedback Controls

Authors: Eugene Stepanov, Arkadi Ponossov

Abstract:

Many mathematical models used in biological and other applications are ill-posed. The reason for that is the nature of differential equations, where the nonlinearities are assumed to be step functions, which is done to simplify the analysis. Prominent examples are switched systems arising from gene regulatory networks and neural field equations. This simplification leads, however, to theoretical and numerical complications. In the presentation, it is proposed to apply the theory of hybrid feedback controls to regularize the problem. Roughly speaking, one attaches a finite state control (‘automaton’), which follows the trajectories of the original system and governs its dynamics at the points of ill-posedness. The construction of the automaton is based on the classification of the attractors of the specially designed adjoint dynamical system. This ‘hybridization’ is shown to regularize the original switched system and gives rise to efficient hybrid numerical schemes. Several examples are provided in the presentation, which supports the suggested analysis. The method can be of interest in other applied fields, where differential equations contain step-like nonlinearities.

Keywords: hybrid feedback control, ill-posed problems, singular perturbation analysis, step-like nonlinearities

Procedia PDF Downloads 219
27889 Modelling Structural Breaks in Stock Price Time Series Using Stochastic Differential Equations

Authors: Daniil Karzanov

Abstract:

This paper studies the effect of quarterly earnings reports on the stock price. The profitability of the stock is modeled by geometric Brownian diffusion and the Constant Elasticity of Variance model. We fit several variations of stochastic differential equations to the pre-and after-report period using the Maximum Likelihood Estimation and Grid Search of parameters method. By examining the change in the model parameters after reports’ publication, the study reveals that the reports have enough evidence to be a structural breakpoint, meaning that all the forecast models exploited are not applicable for forecasting and should be refitted shortly.

Keywords: stock market, earnings reports, financial time series, structural breaks, stochastic differential equations

Procedia PDF Downloads 169
27888 Application of Wavelet Based Approximation for the Solution of Partial Integro-Differential Equation Arising from Viscoelasticity

Authors: Somveer Singh, Vineet Kumar Singh

Abstract:

This work contributes a numerical method based on Legendre wavelet approximation for the treatment of partial integro-differential equation (PIDE). Operational matrices of Legendre wavelets reduce the solution of PIDE into the system of algebraic equations. Some useful results concerning the computational order of convergence and error estimates associated to the suggested scheme are presented. Illustrative examples are provided to show the effectiveness and accuracy of proposed numerical method.

Keywords: legendre wavelets, operational matrices, partial integro-differential equation, viscoelasticity

Procedia PDF Downloads 409