Search results for: desigin and decision support system
24851 Towards an Environmental Knowledge System in Water Management
Authors: Mareike Dornhoefer, Madjid Fathi
Abstract:
Water supply and water quality are key problems of mankind at the moment and - due to increasing population - in the future. Management disciplines like water, environment and quality management therefore need to closely interact, to establish a high level of water quality and to guarantee water supply in all parts of the world. Groundwater remediation is one aspect in this process. From a knowledge management perspective it is only possible to solve complex ecological or environmental problems if different factors, expert knowledge of various stakeholders and formal regulations regarding water, waste or chemical management are interconnected in form of a knowledge base. In general knowledge management focuses the processes of gathering and representing existing and new knowledge in a way, which allows for inference or deduction of knowledge for e.g. a situation where a problem solution or decision support are required. A knowledge base is no sole data repository, but a key element in a knowledge based system, thus providing or allowing for inference mechanisms to deduct further knowledge from existing facts. In consequence this knowledge provides decision support. The given paper introduces an environmental knowledge system in water management. The proposed environmental knowledge system is part of a research concept called Green Knowledge Management. It applies semantic technologies or concepts such as ontology or linked open data to interconnect different data and information sources about environmental aspects, in this case, water quality, as well as background material enriching an established knowledge base. Examples for the aforementioned ecological or environmental factors threatening water quality are among others industrial pollution (e.g. leakage of chemicals), environmental changes (e.g. rise in temperature) or floods, where all kinds of waste are merged and transferred into natural water environments. Water quality is usually determined with the help of measuring different indicators (e.g. chemical or biological), which are gathered with the help of laboratory testing, continuous monitoring equipment or other measuring processes. During all of these processes data are gathered and stored in different databases. Meanwhile the knowledge base needs to be established through interconnecting data of these different data sources and enriching its semantics. Experts may add their knowledge or experiences of previous incidents or influencing factors. In consequence querying or inference mechanisms are applied for the deduction of coherence between indicators, predictive developments or environmental threats. Relevant processes or steps of action may be modeled in form of a rule based approach. Overall the environmental knowledge system supports the interconnection of information and adding semantics to create environmental knowledge about water environment, supply chain as well as quality. The proposed concept itself is a holistic approach, which links to associated disciplines like environmental and quality management. Quality indicators and quality management steps need to be considered e.g. for the process and inference layers of the environmental knowledge system, thus integrating the aforementioned management disciplines in one water management application.Keywords: water quality, environmental knowledge system, green knowledge management, semantic technologies, quality management
Procedia PDF Downloads 22024850 Development of a Mobile Image-Based Reminder Application to Support Tuberculosis Treatment in Africa
Authors: Haji Ali Haji, Hussein Suleman, Ulrike Rivett
Abstract:
This paper presents the design, development and evaluation of an application prototype developed to support tuberculosis (TB) patients’ treatment adherence. The system makes use of graphics and voice reminders as opposed to text messaging to encourage patients to follow their medication routine. To evaluate the effect of the prototype applications, participants were given mobile phones on which the reminder system was installed. Thirty-eight people, including TB health workers and patients from Zanzibar, Tanzania, participated in the evaluation exercises. The results indicate that the participants found the mobile graphic-based application is useful to support TB treatment. All participants understood and interpreted the intended meaning of every image correctly. The study findings revealed that the use of a mobile visual-based application may have potential benefit to support TB patients (both literate and illiterate) in their treatment processes.Keywords: ICT4D, mobile technology, tuberculosis, visual-based reminder
Procedia PDF Downloads 43024849 An Integreated Intuitionistic Fuzzy ELECTRE Model for Multi-Criteria Decision-Making
Authors: Babek Erdebilli
Abstract:
The aim of this study is to develop and describe a new methodology for the Multi-Criteria Decision-Making (MCDM) problem using IFE (Elimination Et Choix Traduisant La Realite (ELECTRE) model. The proposed models enable Decision-Makers (DMs) on the assessment and use Intuitionistic Fuzzy Numbers (IFN). A numerical example is provided to demonstrate and clarify the proposed analysis procedure. Also, an empirical experiment is conducted to validation the effectiveness.Keywords: multi-criteria decision-making, IFE, DM’s, fuzzy electre model
Procedia PDF Downloads 65124848 Building an Interactive Web-Based GIS System for Planning of Geological Survey Works
Authors: Wu Defu, Kiefer Chiam, Yang Kin Seng
Abstract:
The planning of geological survey works is an iterative process which involves planner, geologist, civil engineer and other stakeholders, who perform different roles and have different points of view. Traditionally, the team used paper maps or CAD drawings to present the proposal which is not an efficient way to present and share idea on the site investigation proposal such as sitting of borehole location or seismic survey lines. This paper focuses on how a GIS approach can be utilised to develop a web-based system to support decision making process in the planning of geological survey works and also to plan site activities carried out by Singapore Geological Office (SGO). The authors design a framework of building an interactive web-based GIS system, and develop a prototype, which enables the users to obtain rapidly existing geological information and also to plan interactively borehole locations and seismic survey lines via a web browser. This prototype system is used daily by SGO and has shown to be effective in increasing efficiency and productivity as the time taken in the planning of geological survey works is shortened. The prototype system has been developed using the ESRI ArcGIS API 3.7 for Flex which is based on the ArcGIS 10.2.1 platform.Keywords: engineering geology, flex, geological survey planning, geoscience, GIS, site investigation, WebGIS
Procedia PDF Downloads 30724847 The Formulation of Inference Fuzzy System as a Valuation Subsidiary Based Particle Swarm Optimization for Solves the Issue of Decision Making in Middle Size Soccer Robot League
Authors: Zahra Abdolkarimi, Naser Zouri
Abstract:
The actual purpose of RoboCup is creating independent team of robots in 2050 based of FiFa roles to bring the victory in compare of world star team. There is unbelievable growing of Robots created a collection of complex and motivate subject in robotic and intellectual ornate, also it made a mechatronics style base of theoretical and technical way in Robocop. Decision making of robots depends to environment reaction, self-player and rival player with using inductive Fuzzy system valuation subsidiary to solve issue of robots in land game. The measure of selection in compare with other methods depends to amount of victories percentage in the same team that plays accidentally.Keywords: particle swarm optimization, chaos theory, inference fuzzy system, simulation environment rational fuzzy system, mamdani and assilian, deffuzify
Procedia PDF Downloads 38524846 Determining Inventory Replenishment Policy for Major Component in Assembly-to-Order of Cooling System Manufacturing
Authors: Tippawan Nasawan
Abstract:
The objective of this study is to find the replenishment policy in Assembly-to-Order manufacturing (ATO) which some of the major components have lead-time longer than customer lead-time. The variety of products, independent component demand, and long component lead-time are the difficulty that has resulted in the overstock problem. In addition, the ordering cost is trivial when compared to the cost of material of the major component. A conceptual design of the Decision Supporting System (DSS) has introduced to assist the replenishment policy. Component replenishment by using the variable which calls Available to Promise (ATP) for making the decision is one of the keys. The Poisson distribution is adopted to realize demand patterns in order to calculate Safety Stock (SS) at the specified Customer Service Level (CSL). When distribution cannot identify, nonparametric will be applied instead. The test result after comparing the ending inventory between the new policy and the old policy, the overstock has significantly reduced by 46.9 percent or about 469,891.51 US-Dollars for the cost of the major component (material cost only). Besides, the number of the major component inventory is also reduced by about 41 percent which helps to mitigate the chance of damage and keeping stock.Keywords: Assembly-to-Order, Decision Supporting System, Component replenishment , Poisson distribution
Procedia PDF Downloads 12624845 Reduction of Rotor-Bearing-Support Finite Element Model through Substructuring
Authors: Abdur Rosyid, Mohamed El-Madany, Mohanad Alata
Abstract:
Due to simplicity and low cost, rotordynamic system is often modeled by using lumped parameters. Recently, finite elements have been used to model rotordynamic system as it offers higher accuracy. However, it involves high degrees of freedom. In some applications such as control design, this requires higher cost. For this reason, various model reduction methods have been proposed. This work demonstrates the quality of model reduction of rotor-bearing-support system through substructuring. The quality of the model reduction is evaluated by comparing some first natural frequencies, modal damping ratio, critical speeds and response of both the full system and the reduced system. The simulation shows that the substructuring is proven adequate to reduce finite element rotor model in the frequency range of interest as long as the numbers and the locations of master nodes are determined appropriately. However, the reduction is less accurate in an unstable or nearly-unstable system.Keywords: rotordynamic, finite element model, timoshenko beam, 3D solid elements, Guyan reduction method
Procedia PDF Downloads 27224844 Voltage Problem Location Classification Using Performance of Least Squares Support Vector Machine LS-SVM and Learning Vector Quantization LVQ
Authors: M. Khaled Abduesslam, Mohammed Ali, Basher H. Alsdai, Muhammad Nizam Inayati
Abstract:
This paper presents the voltage problem location classification using performance of Least Squares Support Vector Machine (LS-SVM) and Learning Vector Quantization (LVQ) in electrical power system for proper voltage problem location implemented by IEEE 39 bus New-England. The data was collected from the time domain simulation by using Power System Analysis Toolbox (PSAT). Outputs from simulation data such as voltage, phase angle, real power and reactive power were taken as input to estimate voltage stability at particular buses based on Power Transfer Stability Index (PTSI).The simulation data was carried out on the IEEE 39 bus test system by considering load bus increased on the system. To verify of the proposed LS-SVM its performance was compared to Learning Vector Quantization (LVQ). The results showed that LS-SVM is faster and better as compared to LVQ. The results also demonstrated that the LS-SVM was estimated by 0% misclassification whereas LVQ had 7.69% misclassification.Keywords: IEEE 39 bus, least squares support vector machine, learning vector quantization, voltage collapse
Procedia PDF Downloads 44124843 Application of the State of the Art of Hydraulic Models to Manage Coastal Problems, Case Study: The Egyptian Mediterranean Coast Model
Authors: Al. I. Diwedar, Moheb Iskander, Mohamed Yossef, Ahmed ElKut, Noha Fouad, Radwa Fathy, Mustafa M. Almaghraby, Amira Samir, Ahmed Romya, Nourhan Hassan, Asmaa Abo Zed, Bas Reijmerink, Julien Groenenboom
Abstract:
Coastal problems are stressing the coastal environment due to its complexity. The dynamic interaction between the sea and the land results in serious problems that threaten coastal areas worldwide, in addition to human interventions and activities. This makes the coastal environment highly vulnerable to natural processes like flooding, erosion, and the impact of human activities as pollution. Protecting and preserving this vulnerable coastal zone with its valuable ecosystems calls for addressing the coastal problems. This, in the end, will support the sustainability of the coastal communities and maintain the current and future generations. Consequently applying suitable management strategies and sustainable development that consider the unique characteristics of the coastal system is a must. The coastal management philosophy aims to solve the conflicts of interest between human development activities and this dynamic nature. Modeling emerges as a successful tool that provides support to decision-makers, engineers, and researchers for better management practices. Modeling tools proved that it is accurate and reliable in prediction. With its capability to integrate data from various sources such as bathymetric surveys, satellite images, and meteorological data, it offers the possibility for engineers and scientists to understand this complex dynamic system and get in-depth into the interaction between both the natural and human-induced factors. This enables decision-makers to make informed choices and develop effective strategies for sustainable development and risk mitigation of the coastal zone. The application of modeling tools supports the evaluation of various scenarios by affording the possibility to simulate and forecast different coastal processes from the hydrodynamic and wave actions and the resulting flooding and erosion. The state-of-the-art application of modeling tools in coastal management allows for better understanding and predicting coastal processes, optimizing infrastructure planning and design, supporting ecosystem-based approaches, assessing climate change impacts, managing hazards, and finally facilitating stakeholder engagement. This paper emphasizes the role of hydraulic models in enhancing the management of coastal problems by discussing the diverse applications of modeling in coastal management. It highlights the modelling role in understanding complex coastal processes, and predicting outcomes. The importance of informing decision-makers with modeling results which gives technical and scientific support to achieve sustainable coastal development and protection.Keywords: coastal problems, coastal management, hydraulic model, numerical model, physical model
Procedia PDF Downloads 2724842 Cross-Sectional Analysis of Partner Support and Contraceptive Use in Adolescent Females
Authors: Ketan Tamirisa, Kathleen P. Tebb
Abstract:
In the U.S., annually, there are over 1 million pregnancies in teenagers and most (85%) are unintended. The need for proactive prevention measures is imperative to support adolescents with their pregnancy prevention and family planning goals. To date, there is limited research examining the extent to which support from a sexual partner(s) influences contraceptive use. To address this gap, this study assessed the relationship between sexually active adolescents, sex-assigned birth as female, and their perceived support from their sexual partner(s) about their contraceptive use in the last three months. Baseline data from sexually active adolescent females, between 13-19 years who were not currently using a long-acting contraceptive device, were recruited from 32 school-based health centers (SBHCs) in seven states in the U.S. as part of a larger study to evaluate Health-E You/ Salud iTuTM, a web-based contraceptive decision support tool. Fisher’s exact test assessed the cross-sectional association between perceived sexual partner support of contraceptive use in the past three months (felt no support, felt little support, and felt a lot of support), and current use of non-barrier contraception. A total of 91 sexually active adolescent females were eligible and completed the baseline survey. The mean age was 16.7 and nearly half (49.3%) were Hispanic/Latina. Most (85.9%) indicated it was very important to avoid becoming pregnant. A total of 60 participants (65.9%) reported use of non-barrier contraception. Of these, most used birth control pills (n=26), followed by Depo-Provera injection (n=12), patch (n=1), and ring (n=1). Most of the participants (80.2%) indicated that they perceived a lot of support from their partners and 19.8% reported no or little support. Among those reporting a lot of support, 69.9% (51/73) reported current use of non-barrier contraception compared to 50% (9/18) who felt no/little support and reported contraceptive use. This difference approached but did not reach statistical significance (p=0.096). Results from this preliminary data indicate that many adolescents who are coming in for care at SBHCs are at risk of unintended pregnancy. Many participants also reported a lot of support from their sexual partner(s) to use contraception. While the associations only approached significance, this is likely due to the small sample size. This and future research can better understand this association to inform interventions aimed at sexual partners to strengthen education and social support, increase healthcare accessibility, and ultimately reduce rates of unintended pregnancy.Keywords: adolescents, contraception, pregnancy, SBHCs, sexual partners
Procedia PDF Downloads 4424841 Financial Decision-Making among Finance Students: An Empirical Study from the Czech Republic
Authors: Barbora Chmelíková
Abstract:
Making sound financial decisions is an essential skill which can have an impact on life of each consumer of financial products. The aim of this paper is to examine decision-making concerning financial matters and personal finance. The selected target group was university students majoring in finance related fields. The study was conducted in the Czech Republic at Masaryk University in 2015. In order to analyze financial decision-making questions related to basic finance decisions were developed to address the research objective. The results of the study suggest gaps in detecting best solutions to given financial decision-making questions among finance students. The analysis results indicate relation between financial decision-making and own experience with holding and using concrete financial products.Keywords: financial decision-making, financial literacy, personal finance, university students
Procedia PDF Downloads 32624840 Mathematical Model of Corporate Bond Portfolio and Effective Border Preview
Authors: Sergey Podluzhnyy
Abstract:
One of the most important tasks of investment and pension fund management is building decision support system which helps to make right decision on corporate bond portfolio formation. Today there are several basic methods of bond portfolio management. They are duration management, immunization and convexity management. Identified methods have serious disadvantage: they do not take into account credit risk or insolvency risk of issuer. So, identified methods can be applied only for management and evaluation of high-quality sovereign bonds. Applying article proposes mathematical model for building an optimal in case of risk and yield corporate bond portfolio. Proposed model takes into account the default probability in formula of assessment of bonds which results to more correct evaluation of bonds prices. Moreover, applied model provides tools for visualization of the efficient frontier of corporate bonds portfolio taking into account the exposure to credit risk, which will increase the quality of the investment decisions of portfolio managers.Keywords: corporate bond portfolio, default probability, effective boundary, portfolio optimization task
Procedia PDF Downloads 31824839 Optimal Maintenance Policy for a Three-Unit System
Authors: A. Abbou, V. Makis, N. Salari
Abstract:
We study the condition-based maintenance (CBM) problem of a system subject to stochastic deterioration. The system is composed of three units (or modules): (i) Module 1 deterioration follows a Markov process with two operational states and one failure state. The operational states are partially observable through periodic condition monitoring. (ii) Module 2 deterioration follows a Gamma process with a known failure threshold. The deterioration level of this module is fully observable through periodic inspections. (iii) Only the operating age information is available of Module 3. The lifetime of this module has a general distribution. A CBM policy prescribes when to initiate a maintenance intervention and which modules to repair during intervention. Our objective is to determine the optimal CBM policy minimizing the long-run expected average cost of operating the system. This is achieved by formulating a Markov decision process (MDP) and developing the value iteration algorithm for solving the MDP. We provide numerical examples illustrating the cost-effectiveness of the optimal CBM policy through a comparison with heuristic policies commonly found in the literature.Keywords: reliability, maintenance optimization, Markov decision process, heuristics
Procedia PDF Downloads 21924838 A System Dynamics Model for Analyzing Customer Satisfaction in Healthcare Systems
Authors: Mahdi Bastan, Ali Mohammad Ahmadvand, Fatemeh Soltani Khamsehpour
Abstract:
Health organizations’ sustainable development has nowadays become highly affected by customers’ satisfaction due to significant changes made in the business environment of the healthcare system and emerging of Competitiveness paradigm. In case we look at the hospitals and other health organizations as service providers concerning profit issues, the satisfaction of employees as interior customers, and patients as exterior customers would be of significant importance in health business success. Furthermore, satisfaction rate could be considered in performance assessment of healthcare organizations as a perceived quality measure. Several researches have been carried out in identification of effective factors on patients’ satisfaction in health organizations. However, considering a systemic view, the complex causal relations among many components of healthcare system would be an issue that its acquisition and sustainability requires an understanding of the dynamic complexity, an appropriate cognition of different components, and effective relationships among them resulting ultimately in identifying the generative structure of patients’ satisfaction. Hence, the presenting paper applies system dynamics approaches coherently and methodologically to represent the systemic structure of customers’ satisfaction of a health system involving the constituent components and interactions among them. Then, the results of different policies taken on the system are simulated via developing mathematical models, identifying leverage points, and using scenario making technique and then, the best solutions are presented to improve customers’ satisfaction of the services. The presenting approach supports taking advantage of decision support systems. Additionally, relying on understanding of system behavior Dynamics, the effective policies for improving the health system would be recognized.Keywords: customer satisfaction, healthcare, scenario, simulation, system dynamics
Procedia PDF Downloads 41524837 Decision Quality as an Antecedent to Export Performance. Empirical Evidence under a Contingency Theory Lens
Authors: Evagelos Korobilis-Magas, Adekunle Oke
Abstract:
The constantly increasing tendency towards a global economy and the subsequent increase in exporting, as a result, has inevitably led to a growing interest in the topic of export success as well. Numerous studies, particularly in the past three decades, have examined a plethora of determinants to export performance. However, to the authors' best knowledge, no study up to date has ever considered decision quality as a potential antecedent to export success by attempting to test the relationship between decision quality and export performance. This is a surprising deficiency given that the export marketing literature has long ago suggested that quality decisions are regarded as the crucial intervening variable between sound decision–making and export performance. This study integrates the different definitions of decision quality proposed in the literature and the key themes incorporated therein and adapts it to an export context. Apart from laying the conceptual foundations for the delineation of this elusive but very important construct, this study is the first ever to test the relationship between decision quality and export performance. Based on survey data from a sample of 189 British export decision-makers and within a contingency theory framework, the results reveal that there is a direct, positive link between decision quality and export performance. This finding opens significant future research avenues and has very important implications for both theory and practice.Keywords: export performance, decision quality, mixed methods, contingency theory
Procedia PDF Downloads 9424836 Marketing Mix, Motivation and the Tendency of Consumer Decision Making in Buying Condominium
Authors: Bundit Pungnirund
Abstract:
This research aimed to study the relationship between marketing mix attitudes, motivation of buying decision and tendency of consumer decision making in buying the condominiums in Thailand. This study employed by survey and quantitative research. The questionnaire was used to collect the data from 400 sampled of customers who interested in buying condominium in Bangkok. The descriptive statistics and Pearson’s correlation coefficient analysis were used to analyze data. The research found that marketing mixed factors in terms of product and price were related to buying decision making tendency in terms of price and room size. Marketing mixed factors in terms of price, place and promotion were related to buying decision making tendency in term of word of mouth. Consumers’ buying motivation in terms of social acceptance, self-esteemed and self-actualization were related to buying decision making tendency in term of room size. In addition, motivation in self-esteemed was related to buying decision making tendency within a year.Keywords: condominium, marketing mix, motivation, tendency of consumer decision making
Procedia PDF Downloads 30924835 Performance Analysis of Search Medical Imaging Service on Cloud Storage Using Decision Trees
Authors: González A. Julio, Ramírez L. Leonardo, Puerta A. Gabriel
Abstract:
Telemedicine services use a large amount of data, most of which are diagnostic images in Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7) formats. Metadata is generated from each related image to support their identification. This study presents the use of decision trees for the optimization of information search processes for diagnostic images, hosted on the cloud server. To analyze the performance in the server, the following quality of service (QoS) metrics are evaluated: delay, bandwidth, jitter, latency and throughput in five test scenarios for a total of 26 experiments during the loading and downloading of DICOM images, hosted by the telemedicine group server of the Universidad Militar Nueva Granada, Bogotá, Colombia. By applying decision trees as a data mining technique and comparing it with the sequential search, it was possible to evaluate the search times of diagnostic images in the server. The results show that by using the metadata in decision trees, the search times are substantially improved, the computational resources are optimized and the request management of the telemedicine image service is improved. Based on the experiments carried out, search efficiency increased by 45% in relation to the sequential search, given that, when downloading a diagnostic image, false positives are avoided in management and acquisition processes of said information. It is concluded that, for the diagnostic images services in telemedicine, the technique of decision trees guarantees the accessibility and robustness in the acquisition and manipulation of medical images, in improvement of the diagnoses and medical procedures in patients.Keywords: cloud storage, decision trees, diagnostic image, search, telemedicine
Procedia PDF Downloads 20424834 Maintenance Performance Measurement Derived Optimization: A Case Study
Authors: James M. Wakiru, Liliane Pintelon, Peter Muchiri, Stanley Mburu
Abstract:
Maintenance performance measurement (MPM) represents an integrated aspect that considers both operational and maintenance related aspects while evaluating the effectiveness and efficiency of maintenance to ensure assets are working as they should. Three salient issues require to be addressed for an asset-intensive organization to employ an MPM-based framework to optimize maintenance. Firstly, the organization should establish important perfomance metric(s), in this case the maintenance objective(s), which they will be focuss on. The second issue entails aligning the maintenance objective(s) with maintenance optimization. This is achieved by deriving maintenance performance indicators that subsequently form an objective function for the optimization program. Lastly, the objective function is employed in an optimization program to derive maintenance decision support. In this study, we develop a framework that initially identifies the crucial maintenance performance measures, and employs them to derive maintenance decision support. The proposed framework is demonstrated in a case study of a geothermal drilling rig, where the objective function is evaluated utilizing a simulation-based model whose parameters are derived from empirical maintenance data. Availability, reliability and maintenance inventory are depicted as essential objectives requiring further attention. A simulation model is developed mimicking a drilling rig operations and maintenance where the sub-systems are modelled undergoing imperfect maintenance, corrective (CM) and preventive (PM), with the total cost as the primary performance measurement. Moreover, three maintenance spare inventory policies are considered; classical (retaining stocks for a contractual period), vendor-managed inventory with consignment stock and periodic monitoring order-to-stock (s, S) policy. Optimization results infer that the adoption of (s, S) inventory policy, increased PM interval and reduced reliance of CM actions offers improved availability and total costs reduction.Keywords: maintenance, vendor-managed, decision support, performance, optimization
Procedia PDF Downloads 12524833 A Combined Approach Based on Artificial Intelligence and Computer Vision for Qualitative Grading of Rice Grains
Authors: Hemad Zareiforoush, Saeed Minaei, Ahmad Banakar, Mohammad Reza Alizadeh
Abstract:
The quality inspection of rice (Oryza sativa L.) during its various processing stages is very important. In this research, an artificial intelligence-based model coupled with computer vision techniques was developed as a decision support system for qualitative grading of rice grains. For conducting the experiments, first, 25 samples of rice grains with different levels of percentage of broken kernels (PBK) and degree of milling (DOM) were prepared and their qualitative grade was assessed by experienced experts. Then, the quality parameters of the same samples examined by experts were determined using a machine vision system. A grading model was developed based on fuzzy logic theory in MATLAB software for making a relationship between the qualitative characteristics of the product and its quality. Totally, 25 rules were used for qualitative grading based on AND operator and Mamdani inference system. The fuzzy inference system was consisted of two input linguistic variables namely, DOM and PBK, which were obtained by the machine vision system, and one output variable (quality of the product). The model output was finally defuzzified using Center of Maximum (COM) method. In order to evaluate the developed model, the output of the fuzzy system was compared with experts’ assessments. It was revealed that the developed model can estimate the qualitative grade of the product with an accuracy of 95.74%.Keywords: machine vision, fuzzy logic, rice, quality
Procedia PDF Downloads 41924832 A Comparative Analysis Approach Based on Fuzzy AHP, TOPSIS and PROMETHEE for the Selection Problem of GSCM Solutions
Authors: Omar Boutkhoum, Mohamed Hanine, Abdessadek Bendarag
Abstract:
Sustainable economic growth is nowadays driving firms to extend toward the adoption of many green supply chain management (GSCM) solutions. However, the evaluation and selection of these solutions is a matter of concern that needs very serious decisions, involving complexity owing to the presence of various associated factors. To resolve this problem, a comparative analysis approach based on multi-criteria decision-making methods is proposed for adequate evaluation of sustainable supply chain management solutions. In the present paper, we propose an integrated decision-making model based on FAHP (Fuzzy Analytic Hierarchy Process), TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) and PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) to contribute to a better understanding and development of new sustainable strategies for industrial organizations. Due to the varied importance of the selected criteria, FAHP is used to identify the evaluation criteria and assign the importance weights for each criterion, while TOPSIS and PROMETHEE methods employ these weighted criteria as inputs to evaluate and rank the alternatives. The main objective is to provide a comparative analysis based on TOPSIS and PROMETHEE processes to help make sound and reasoned decisions related to the selection problem of GSCM solution.Keywords: GSCM solutions, multi-criteria analysis, decision support system, TOPSIS, FAHP, PROMETHEE
Procedia PDF Downloads 16324831 A Recommender System for Job Seekers to Show up Companies Based on Their Psychometric Preferences and Company Sentiment Scores
Authors: A. Ashraff
Abstract:
The increasing importance of the web as a medium for electronic and business transactions has served as a catalyst or rather a driving force for the introduction and implementation of recommender systems. Recommender Systems play a major role in processing and analyzing thousands of data rows or reviews and help humans make a purchase decision of a product or service. It also has the ability to predict whether a particular user would rate a product or service based on the user’s profile behavioral pattern. At present, Recommender Systems are being used extensively in every domain known to us. They are said to be ubiquitous. However, in the field of recruitment, it’s not being utilized exclusively. Recent statistics show an increase in staff turnover, which has negatively impacted the organization as well as the employee. The reasons being company culture, working flexibility (work from home opportunity), no learning advancements, and pay scale. Further investigations revealed that there are lacking guidance or support, which helps a job seeker find the company that will suit him best, and though there’s information available about companies, job seekers can’t read all the reviews by themselves and get an analytical decision. In this paper, we propose an approach to study the available review data on IT companies (score their reviews based on user review sentiments) and gather information on job seekers, which includes their Psychometric evaluations. Then presents the job seeker with useful information or rather outputs on which company is most suitable for the job seeker. The theoretical approach, Algorithmic approach and the importance of such a system will be discussed in this paper.Keywords: psychometric tests, recommender systems, sentiment analysis, hybrid recommender systems
Procedia PDF Downloads 10624830 Hybrid Risk Assessment Model for Construction Based on Multicriteria Decision Making Methods
Authors: J. Tamosaitiene
Abstract:
The article focuses on the identification and classification of key risk management criteria that represent the most important sustainability aspects of the construction industry. The construction sector is one of the most important sectors in Lithuania. Nowadays, the assessment of the risk level of a construction project is especially important for the quality of construction projects, the growth of enterprises and the sector. To establish the most important criteria for successful growth of the sector, a questionnaire for experts was developed. The analytic hierarchy process (AHP), the expert judgement method and other multicriteria decision making (MCDM) methods were used to develop the hybrid model. The results were used to develop an integrated knowledge system for the measurement of a risk level particular to construction projects. The article presents a practical case that details the developed system, sustainable aspects, and risk assessment.Keywords: risk, system, model, construction
Procedia PDF Downloads 16724829 The Acceptable Roles of Artificial Intelligence in the Judicial Reasoning Process
Authors: Sonia Anand Knowlton
Abstract:
There are some cases where we as a society feel deeply uncomfortable with the use of Artificial Intelligence (AI) tools in the judicial decision-making process, and justifiably so. A perfect example is COMPAS, an algorithmic model that predicts recidivism rates of offenders to assist in the determination of their bail conditions. COMPAS turned out to be extremely racist: it massively overpredicted recidivism rates of Black offenders and underpredicted recidivism rates of white offenders. At the same time, there are certain uses of AI in the judicial decision-making process that many would feel more comfortable with and even support. Take, for example, a “super-breathalyzer,” an (albeit imaginary) tool that uses AI to deliver highly detailed information about the subject of the breathalyzer test to the legal decision-makers analyzing their drunk-driving case. This article evaluates the point at which a judge’s use of AI tools begins to undermine the public’s trust in the administration of justice. It argues that the answer to this question depends on whether the AI tool is in a role in which it must perform a moral evaluation of a human being.Keywords: artificial intelligence, judicial reasoning, morality, technology, algorithm
Procedia PDF Downloads 8124828 Decision Making during the Project Management Life Cycle of Infrastructure Projects
Authors: Karrar Raoof Kareem Kamoona, Enas Fathi Taher AlHares, Zeynep Isik
Abstract:
The various disciplines in the construction industry and the co-existence of the people in the various disciplines are what builds well-developed, closely-knit interpersonal skills at various hierarchical levels thus leading to a varied way of leadership. The varied decision making aspects during the lifecycle of a project include: autocratic, participatory and last but not least, free-rein. We can classify some of the decision makers in the construction industry in a hierarchical manner as follows: project executive, project manager, superintendent, office engineer and finally the field engineer. This survey looked at how decisions are made during the construction period by the key stakeholders in the project. From the paper it is evident that the three decision making aspects can be used at different times or at times together in order to bring out the best leadership decision. A blend of different leadership styles should be used to enhance the success rate during the project lifecycle.Keywords: leadership style, construction, decision-making, built environment
Procedia PDF Downloads 35924827 Upgrades for Hydric Supply in Water System Distribution: Use of the Bayesian Network and Technical Expedients
Authors: Elena Carcano, James Ball
Abstract:
This work details the strategies adopted by the Italian Water Utilities during the distribution of water in emergency conditions which glide from earthquakes and droughts to floods and fires. Several water bureaus located over the national territory have been interviewed, and the collected information has been used in a database of potential interventions to be taken. The work discusses the actions adopted by water utilities. These are generally prioritized in order to minimize the social, temporal, and economic burden that the damaged and nearby areas need to support. Actions are defined relying on the Bayesian Network Approach, which constitutes the hard core of any decision support system. The Bayesian Networks give answers to interventions to real and most likely risky cases. The added value of this research consists in supplying the National Bureau, namely Protezione Civile, in charge of managing havoc and catastrophic situations with a univocal plot outline so as to be able to handle actions uniformly at the expense of different local laws or contradictory customs which squander any recovery conditions, proper technical service, and economic aids. The paper is organized as follows: in section 1, the introduction is stated; section 2 provides a brief discussion of BNNs (Bayesian Networks), section 3 introduces the adopted methodology; and in the last sections, results are presented, and conclusions are drawn.Keywords: hierarchical process, strategic plan, water emergency conditions, water supply
Procedia PDF Downloads 16024826 Service Information Integration Platform as Decision Making Tools for the Service Industry Supply Chain-Indonesia Service Integration Project
Authors: Haikal Achmad Thaha, Pujo Laksono, Dhamma Nibbana Putra
Abstract:
Customer service is one of the core interest in a service sector of a company, whether as the core business or as service part of the operation. Most of the time, the people and the previous research in service industry is focused on finding the best business model solution for the service sector, usually to decide between total in house customer service, outsourcing, or something in between. Conventionally, to take this decision is some important part of the management job, and this is a process that usually takes some time and staff effort, meanwhile market condition and overall company needs may change and cause loss of income and temporary disturbance in the companies operation . However, in this paper we have offer a new concept model to assist decision making process in service industry. This model will featured information platform as central tool to integrate service industry operation. The result is service information model which would ideally increase response time and effectivity of the decision making. it will also help service industry in switching the service solution system quickly through machine learning when the companies growth and the service solution needed are changing.Keywords: service industry, customer service, machine learning, decision making, information platform
Procedia PDF Downloads 62224825 Digital Learning Repositories for Vocational Teaching and Knowledge Sharing
Authors: Prachyanun Nilsook, Panita Wannapiroon
Abstract:
The purpose of this research is to study a Digital Learning Repository System (DLRS) on vocational teachers and teaching in Thailand. The innobpcd.net is a DLRS being utilized by the Office of Vocational Education Commission and operationalized by the Bureau of Personnel Competency Development for vocational education teachers. The aim of the system is to support and enhance the process of vocational teaching and to improve staff development by providing teachers with a variety of network connections and information. The system provides centralized hosting and access to content, and the ability to share digital objects or files, to set permissions and controls for access to content that can be used vocational education teachers for their teaching and for their own development. The elements of DLRS include; Digital learning system, Media Library, Knowledge-based system and Mobile Application. The system aims to link vocational teachers to the most effective emerging technologies available for learning, so they are better resourced to support their vocational students. The initial results from this evaluation indicate that there is a range of services provided by the system being used by vocational teachers and this paper indicates which facilities have the greatest usage and impact on vocational teaching in Thailand.Keywords: digital learning repositories, vocational education, knowledge sharing, learning objects
Procedia PDF Downloads 46624824 Groundwater Utilization and Sustainability: A Case Study of Pydibheemavaram Industrial Area, India
Authors: G. Venkata Rao, R. Srinivasa Rao, B. Neelima Sri Priya
Abstract:
The over extraction of groundwater from the coastal aquifers, result in reduction of groundwater resource and lowering of water level. In general, the depletion of groundwater level enhances the landward migration of saltwater wedge. Now a days the ground water extraction increases by year to year because increased population and industrialization. The ground water is the only source of irrigation, domestic and Industrial purposes at Pydibhimavaram industrial area, which is located in the coastal belt of Srikakulam district, India of Latitudes 18.145N 83.627E and Longitudes 18.099N 83.674E. The present study has been attempted to calculate amount of water getting recharged into this aquifer, status of rainfall pattern for the past two decades and the runoff is calculated by using Khosla’s formula with available rainfall and temperature in the study area. A decision support model has been developed on the basis of Monthly Extractions of the water from the ground through bore wells and the Net Recharge of the aquifer. It is concluded that the amount of extractions is exceeding the amount of recharge from May to October in a given year which will in turn damage the water balance in the subsurface layers.Keywords: aquifer, decision support model, groundwater extraction, run off estimation and rainfall
Procedia PDF Downloads 29924823 Simulation Aided Life Cycle Sustainability Assessment Framework for Manufacturing Design and Management
Authors: Mijoh A. Gbededo, Kapila Liyanage, Ilias Oraifige
Abstract:
Decision making for sustainable manufacturing design and management requires critical considerations due to the complexity and partly conflicting issues of economic, social and environmental factors. Although there are tools capable of assessing the combination of one or two of the sustainability factors, the frameworks have not adequately integrated all the three factors. Case study and review of existing simulation applications also shows the approach lacks integration of the sustainability factors. In this paper we discussed the development of a simulation based framework for support of a holistic assessment of sustainable manufacturing design and management. To achieve this, a strategic approach is introduced to investigate the strengths and weaknesses of the existing decision supporting tools. Investigation reveals that Discrete Event Simulation (DES) can serve as a rock base for other Life Cycle Analysis frameworks. Simio-DES application optimizes systems for both economic and competitive advantage, Granta CES EduPack and SimaPro collate data for Material Flow Analysis and environmental Life Cycle Assessment, while social and stakeholders’ analysis is supported by Analytical Hierarchy Process, a Multi-Criteria Decision Analysis method. Such a common and integrated framework creates a platform for companies to build a computer simulation model of a real system and assess the impact of alternative solutions before implementing a chosen solution.Keywords: discrete event simulation, life cycle sustainability analysis, manufacturing, sustainability
Procedia PDF Downloads 27924822 Optimal Maintenance Policy for a Partially Observable Two-Unit System
Authors: Leila Jafari, Viliam Makis, G. B. Akram Khaleghei
Abstract:
In this paper, we present a maintenance model of a two-unit series system with economic dependence. Unit#1, which is considered to be more expensive and more important, is subject to condition monitoring (CM) at equidistant, discrete time epochs and unit#2, which is not subject to CM, has a general lifetime distribution. The multivariate observation vectors obtained through condition monitoring carry partial information about the hidden state of unit#1, which can be in a healthy or a warning state while operating. Only the failure state is assumed to be observable for both units. The objective is to find an optimal opportunistic maintenance policy minimizing the long-run expected average cost per unit time. The problem is formulated and solved in the partially observable semi-Markov decision process framework. An effective computational algorithm for finding the optimal policy and the minimum average cost is developed and illustrated by a numerical example.Keywords: condition-based maintenance, semi-Markov decision process, multivariate Bayesian control chart, partially observable system, two-unit system
Procedia PDF Downloads 459