Search results for: language learning strategies
10845 A Comparative Study of the Challenges of E-Learning in Nigerian Universities
Authors: J. N. Anene, A. A. Bello, C. C. Anene
Abstract:
The paper carried out a comparative study of the challenges of e-learning in Nigerian universities. The purpose of the study was to determine if there was a significant difference in the challenges faced by students in e-learning in Nigerian Universities. A total of two hundred and twenty-eight students from nine universities constituted the sample for the study. A simple random sampling technique was employed in selecting thirty–two students from one of each university in the six geo-political zones of Nigeria. The questionnaire based on 'yes or no' and column charts constituted the instrument employed in the study. Percentages were used to analyse 'yes or no' while column charts were used to compare responds of the students. The finding of the study revealed that majority of students in all the universities under study claimed that their universities lacked appropriate software, that good quality educational content online was lacking, they also agreed that sustainability of e-learning was not prioritized, that they had no access to appropriate content for ICT-enhanced learning and training and that they had access to affordable and reliable computers. For lecturers, the computer certification should be the first on the list of promotion requirements. The finding of the study revealed that students from seven out of nine universities confirmed that their universities lack of appropriate software whereas the other two claimed that they have appropriate software. Also, out of nine universities, two disagreed to the fact that good quality educational content online lacked, whereas seven agreed that they lacked good quality educational content online. The finding of the study also revealed that most of the respondents in almost all the university under study agreed that sustainability of e-learning was not prioritized. The study recommended among other that the Nigerian Government should make concerted effort to provide the enablement for all lecturers and students to become computer literate. This should be done within a time frame, and at the end of the computer course, certificates should be issued, and no student should graduate in his or her field of study without passing the computer course.Keywords: e-learning, developing countries, computer literacy, ICT
Procedia PDF Downloads 34010844 Integrating Machine Learning and Rule-Based Decision Models for Enhanced B2B Sales Forecasting and Customer Prioritization
Authors: Wenqi Liu, Reginald Bailey
Abstract:
This study proposes a comprehensive and effective approach to business-to-business (B2B) sales forecasting by integrating advanced machine learning models with a rule-based decision-making framework. The methodology addresses the critical challenge of optimizing sales pipeline performance and improving conversion rates through predictive analytics and actionable insights. The first component involves developing a classification model to predict the likelihood of conversion, aiming to outperform traditional methods such as logistic regression in terms of accuracy, precision, recall, and F1 score. Feature importance analysis highlights key predictive factors, such as client revenue size and sales velocity, providing valuable insights into conversion dynamics. The second component focuses on forecasting sales value using a regression model, designed to achieve superior performance compared to linear regression by minimizing mean absolute error (MAE), mean squared error (MSE), and maximizing R-squared metrics. The regression analysis identifies primary drivers of sales value, further informing data-driven strategies. To bridge the gap between predictive modeling and actionable outcomes, a rule-based decision framework is introduced. This model categorizes leads into high, medium, and low priorities based on thresholds for conversion probability and predicted sales value. By combining classification and regression outputs, this framework enables sales teams to allocate resources effectively, focus on high-value opportunities, and streamline lead management processes. The integrated approach significantly enhances lead prioritization, increases conversion rates, and drives revenue generation, offering a robust solution to the declining pipeline conversion rates faced by many B2B organizations. Our findings demonstrate the practical benefits of blending machine learning with decision-making frameworks, providing a scalable, data-driven solution for strategic sales optimization. This study underscores the potential of predictive analytics to transform B2B sales operations, enabling more informed decision-making and improved organizational outcomes in competitive markets.Keywords: machine learning, XGBoost, regression, decision making framework, system engineering
Procedia PDF Downloads 2610843 Predictive Analytics Algorithms: Mitigating Elementary School Drop Out Rates
Authors: Bongs Lainjo
Abstract:
Educational institutions and authorities that are mandated to run education systems in various countries need to implement a curriculum that considers the possibility and existence of elementary school dropouts. This research focuses on elementary school dropout rates and the ability to replicate various predictive models carried out globally on selected Elementary Schools. The study was carried out by comparing the classical case studies in Africa, North America, South America, Asia and Europe. Some of the reasons put forward for children dropping out include the notion of being successful in life without necessarily going through the education process. Such mentality is coupled with a tough curriculum that does not take care of all students. The system has completely led to poor school attendance - truancy which continuously leads to dropouts. In this study, the focus is on developing a model that can systematically be implemented by school administrations to prevent possible dropout scenarios. At the elementary level, especially the lower grades, a child's perception of education can be easily changed so that they focus on the better future that their parents desire. To deal effectively with the elementary school dropout problem, strategies that are put in place need to be studied and predictive models are installed in every educational system with a view to helping prevent an imminent school dropout just before it happens. In a competency-based curriculum that most advanced nations are trying to implement, the education systems have wholesome ideas of learning that reduce the rate of dropout.Keywords: elementary school, predictive models, machine learning, risk factors, data mining, classifiers, dropout rates, education system, competency-based curriculum
Procedia PDF Downloads 17610842 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller
Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni
Abstract:
With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning
Procedia PDF Downloads 23110841 Understanding Rural Teachers’ Perceived Intention of Using Play in ECCE Mathematics Classroom: Strength-Based Approach
Authors: Nyamela M. ‘Masekhohola, Khanare P. Fumane
Abstract:
The Lesotho downward trend in mathematics attainment at all levels is compounded by the absence of innovative approaches to teaching and learning in Early Childhood. However, studies have shown that play pedagogy can be used to mitigate the challenges of mathematics education. Despite the benefits of play pedagogy to rural learners, its full potential has not been realized in early childhood care and education classrooms to improve children’s performance in mathematics because the adoption of play pedagogy depends on a strength-based approach. The study explores the potential of play pedagogy to improve mathematics education in early childhood care and education in Lesotho. Strength-based approach is known for its advocacy of recognizing and utilizing children’s strengths, capacities and interests. However, this approach and its promisingattributes is not well-known in Lesotho. In particular, little is known about the attributes of play pedagogy that are essential to improve mathematic education in ECCE programs in Lesotho. To identify such attributes and strengthen mathematics education, this systematic review examines evidence published on the strengths of play pedagogy that supports the teaching and learning of mathematics education in ECCE. The purpose of this review is, therefore, to identify and define the strengths of play pedagogy that supports mathematics education. Moreover, the study intends to understand the rural teachers’ perceived intention of using play in ECCE math classrooms through a strength-based approach. Eight key strengths were found (cues for reflection, edutainment, mathematics language development, creativity and imagination, cognitive promotion, exploration, classification, and skills development). This study is the first to identify and define the strength-based attributes of play pedagogy to improve the teaching and learning of mathematics in ECCE centers in Lesotho. The findings reveal which opportunities teachers find important for improving the teaching of mathematics as early as in ECCE programs. We conclude by discussing the implications of the literature for stimulating dialogues towards formulating strength-based approaches to teaching mathematics, as well as reflecting on the broader contributions of play pedagogy as an asset to improve mathematics in Lesotho and beyond.Keywords: early childhood education, mathematics education, lesotho, play pedagogy, strength-based approach.
Procedia PDF Downloads 14610840 Effects of Exposing Learners to Speech Acts in the German Teaching Material Schritte International: The Case of Requests
Authors: Wan-Lin Tsai
Abstract:
Speech act of requests is an important issue in the field of language learning and teaching because we cannot avoid making requesting in our daily life. This study examined whether or not the subjects who were freshmen and majored in German at Wenzao University of Languages were able to use the linguistic forms which they had learned from their course book Schritte International to make appropriate requests through dialogue completed tasks (DCT). The results revealed that the majority of the subjects were unable to use the forms to make appropriate requests in German due to the lack of explicit instructions. Furthermore, Chinese interference was observed in students' productions. Explicit instructions in speech acts are strongly recommended.Keywords: Chinese interference, German pragmatics, German teaching, make appropriate requests in German, speech act of requesting
Procedia PDF Downloads 46610839 Digital Design and Practice of The Problem Based Learning in College of Medicine, Qassim University, Saudi Arabia
Authors: Ahmed Elzainy, Abir El Sadik, Waleed Al Abdulmonem, Ahmad Alamro, Homaidan Al-Homaidan
Abstract:
Problem-based learning (PBL) is an educational modality which stimulates critical and creative thinking. PBL has been practiced in the college of medicine, Qassim University, Saudi Arabia, since the 2002s with offline face to face activities. Therefore, crucial technological changes in paperless work were needed. The aim of the present study was to design and implement the digitalization of the PBL activities and to evaluate its impact on students' and tutors’ performance. This approach promoted the involvement of all stakeholders after their awareness of the techniques of using online tools. IT support, learning resources facilities, and required multimedia were prepared. Students’ and staff perception surveys reflected their satisfaction with these remarkable changes. The students were interested in the new digitalized materials and educational design, which facilitated the conduction of PBL sessions and provided sufficient time for discussion and peer sharing of knowledge. It enhanced the tutors for supervision and tracking students’ activities on the Learning Management System. It could be concluded that introducing of digitalization of the PBL activities promoted the students’ performance, engagement and enabled a better evaluation of PBL materials and getting prompt students as well as staff feedback. These positive findings encouraged the college to implement the digitalization approach in other educational activities, such as Team-Based Learning, as an additional opportunity for further development.Keywords: multimedia in PBL, online PBL, problem-based learning, PBL digitalization
Procedia PDF Downloads 12110838 Towards Appreciating Knowing Body in the Future Schools: Developing Methods for School Teachers to Understand the Role of the Body in Teaching and Learning
Authors: Johanna Aromaa
Abstract:
This paper presents a development project aimed at enhancing student-teachers' awareness of the role of the body in teaching and learning. In this project, theory and practice are brought into dialogue through workshops of body work that utilize art-based and somatic methods. They are carried out in a special course for educating teachers in a Finnish University. Expected results from the project include: 1) the participants become aware of the multiple roles that the body has in educational encounters, and with it, develop a more holistic approach to teaching and learning, 2) the participants gain access to and learn to form bodily knowledge, 3) a working model on enhancing student-teachers' awareness of the role of bodily knowledge in teacher’s work is developed. Innovative methods as well as a radical rethinking of the nature of teaching and learning are needed if we are to appreciate knowing body in the future schools.Keywords: bodily knowledge, the body, somatic methods, teacher education
Procedia PDF Downloads 43910837 Assessment of Online Web-Based Learning for Enhancing Student Grades in Chemistry
Authors: Ian Marc Gealon Cabugsa, Eleanor Pastrano Corcino, Gina Lapaza Montalan
Abstract:
This study focused on the effect of Online Web-Learning (OWL) in the performance of the freshmen Civil Engineering Students of Ateneo de Davao University in their Chem 12 subject. The grades of the students that were required to use OWL were compared to students without OWL. The result of the study suggests promising result for the use of OWL in increasing the performance rate of students taking up Chem 12. Furthermore, there was a positive correlation between the final grade and OWL grade of the students that had OWL. While the majority of the students find OWL to be helpful in supporting their chemistry knowledge needs, most of them still prefer to learn using the traditional face-to-face instruction.Keywords: chemistry education, enhanced performance, engineering chemistry, online web-based learning
Procedia PDF Downloads 37510836 Approaches to Tsunami Mitigation and Prevention: Explaining Architectural Strategies for Reducing Urban Risk
Authors: Hedyeh Gamini, Hadi Abdus
Abstract:
Tsunami, as a natural disaster, is composed of waves that are usually caused by severe movements at the sea floor. Although tsunami and its consequences cannot be prevented in any way, by examining past tsunamis and extracting key points on how to deal with this incident and learning from it, a positive step can be taken to reduce the vulnerability of human settlements and reduce the risk of this phenomenon in architecture and urbanism. The method is reviewing and has examined the documents written and valid internet sites related to managing and reducing the vulnerability of human settlements in face of tsunami. This paper has explored the tsunamis in Indonesia (2004), Sri Lanka (2004) and Japan (2011), and of the study objectives has been understanding how they dealt with tsunami and extracting key points, and the lessons from them in terms of reduction of vulnerability of human settlements in dealing with the tsunami. Finally, strategies to prevent and reduce the vulnerability of communities at risk of tsunamis have been offered in terms of architecture and urban planning. According to what is obtained from the study of the recent tsunamis, the authorities' quality of dealing with them, how to manage the crisis and the manner of their construction, it can be concluded that to reduce the vulnerability of human settlements against tsunami, there are generally four ways that are: 1-Construction of tall buildings with opening on the first floor so that water can flow easily under and the direction of the building should be in a way that water passes easily from the side. 2- The construction of multi-purpose centers, which could be used as vertical evacuation during accidents. 3- Constructing buildings in core forms with diagonal orientation of the coastline, 4- Building physical barriers (natural and synthetic) such as water dams, mounds of earth, sea walls and creating forestsKeywords: tsunami, architecture, reducing vulnerability, human settlements, urbanism
Procedia PDF Downloads 39710835 Cultural Awareness, Intercultural Communication Competence and Academic Performance of Foreign Students Towards an Education ASEAN Integration in Global Education
Authors: Rizalito B. Javier
Abstract:
Research has shown that foreign students with higher levels of cultural awareness and intercultural communication competence tend to have better academic performance outcomes. This study aimed to find out the cultural awareness, intercultural communication competence, and academic performance of foreign students and its relationships among variables. Methods used were descriptive-comparative and correlational research design, quota purposive sampling technique while frequency counts and percentages, mean and standard deviation, T, and F-test and chi-square were utilized to analyze the data. The results revealed that the majority of the respondents were under the age bracket of 21-25 years old, mostly males, all single, and mostly citizens of Papua New Guinea, Angolan, Vanuatu, Tanzanian, Nigerian, Korean, Rwanda, and Myanmar. Most language spoken was English, many of them were born again Christians, the majority took BS business management degree program, their studies mainly supported by their parents, they had stayed in the Philippines for 3-4 years, and most of them attended five to six times of cultural awareness/competence workshop-seminars, majority of their parent’s occupations were family own business, and had been earning a family monthly income of P61,0000 and above. The respondents were highly aware of their culture in terms of clients’ issues. The intercultural communication competence of the respondents was slightly aware in terms of intercultural awareness, while the foreign students performed good remarks in their average academic performance. However, the profiles of the participants in terms of age, gender, civil status, nationality, course/degree program taken, support to the study, length of stay, workshop attended, and parents’ occupation have significant differences in the academic performance except for the type of family, language spoken, religion and family monthly income. Moreover, cultural awareness was significantly related to intercultural communication competence, and both were not related to academic performance. It is recommended that foreign students be provided with cultural orientation programs, offered language support services, promoted intercultural exchange activities, and implemented inclusive teaching practices to allow students to effectively navigate and interact with people from different cultural backgrounds, fostering a more inclusive and collaborative learning environment.Keywords: cultural competence, communication competence, intercultural competence, and culture-academic performance.
Procedia PDF Downloads 2310834 The Role of Instruction in Knowledge Construction in Online Learning
Authors: Soo Hyung Kim
Abstract:
Two different learning approaches were suggested: focusing on factual knowledge or focusing on the embedded meaning in the statements. Each way of learning has positive effects on different question categories, where factual knowledge helps more with simple fact questions, and searching for meaning in given information helps learn causal relationship and the embedded meaning. To test this belief, two groups of learners (12 male and 39 female adults aged 18-37) watched a ten-minute long Youtube video about various factual events of American history, their meaning, and the causal relations of the events. The fact group was asked to focus on factual knowledge in the video, and the meaning group was asked to focus on the embedded meaning in the video. After watching the video, both groups took multiple-choice questions, which consisted of 10 questions asking the factual knowledge addressed in the video and 10 questions asking embedded meaning in the video, such as the causal relationship between historical events and the significance of the event. From ANCOVA analysis, it was found that the factual knowledge showed higher performance on the factual questions than the meaning group, although there was no group difference on the questions about the meaning between the two groups. The finding suggests that teacher instruction plays an important role in learners constructing a different type of knowledge in online learning.Keywords: factual knowledge, instruction, meaning-based knowledge, online learning
Procedia PDF Downloads 13610833 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions
Authors: Oscar E. Cariceo, Claudia V. Casal
Abstract:
Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.Keywords: cyberbullying, evidence based practice, machine learning, social work research
Procedia PDF Downloads 17010832 Predictors, Barriers, and Facilitators to Refugee Women’s Employment and Economic Inclusion: A Mixed Methods Systematic Review
Authors: Areej Al-Hamad, Yasin Yasin, Kateryna Metersky
Abstract:
This mixed-method systematic review and meta-analysis provide an encompassing understanding of the barriers, facilitators, and predictors of refugee women's employment and economic inclusion. The study sheds light on the complex interplay of sociocultural, personal, political, and environmental factors influencing these outcomes, underlining the urgent need for a multifaceted, tailored approach to devising strategies, policies, and interventions aimed at boosting refugee women's economic empowerment. Our findings suggest that sociocultural factors, including gender norms, societal attitudes, language proficiency, and social networks, profoundly shape refugee women's access to and participation in the labor market. Personal factors such as age, educational attainment, health status, skills, and previous work experience also play significant roles. Political factors like immigration policies, regulations, and rights to work, alongside environmental factors like labor market conditions, availability of employment opportunities, and access to resources and support services, further contribute to the complex dynamics influencing refugee women's economic inclusion. The significant variability observed in the impacts of these factors across different contexts underscores the necessity of adopting population and region-specific strategies. A one-size-fits-all approach may prove to be ineffective due to the diversity and unique circumstances of refugee women across different geographical, cultural, and political contexts. The study's findings have profound implications for policy-making, practice, education, and research. The insights garnered a call for coordinated efforts across these domains to bolster refugee women's economic participation. In policy-making, the findings necessitate a reassessment of current immigration and labor market policies to ensure they adequately support refugee women's employment and economic integration. In practice, they highlight the need for comprehensive, tailored employment services and interventions that address the specific barriers and leverage the facilitators identified. In education, they underline the importance of language and skills training programs that cater to the unique needs and circumstances of refugee women. Lastly, in research, they emphasize the need for ongoing investigations into the multifaceted factors influencing refugee women's employment experiences, allowing for continuous refinement of our understanding and interventions. Through this comprehensive exploration, the study contributes to ongoing efforts aimed at creating more inclusive, equitable societies. By continually refining our understanding of the complex factors influencing refugee women's employment experiences, we can pave the way toward enhanced economic empowerment for this vulnerable population.Keywords: refugee women, employment barriers, systematic review, employment facilitators
Procedia PDF Downloads 8310831 Preserving Urban Cultural Heritage with Deep Learning: Color Planning for Japanese Merchant Towns
Authors: Dongqi Li, Yunjia Huang, Tomo Inoue, Kohei Inoue
Abstract:
With urbanization, urban cultural heritage is facing the impact and destruction of modernization and urbanization. Many historical areas are losing their historical information and regional cultural characteristics, so it is necessary to carry out systematic color planning for historical areas in conservation. As an early focus on urban color planning, Japan has a systematic approach to urban color planning. Hence, this paper selects five merchant towns from the category of important traditional building preservation areas in Japan as the subject of this study to explore the color structure and emotion of this type of historic area. First, the image semantic segmentation method identifies the buildings, roads, and landscape environments. Their color data were extracted for color composition and emotion analysis to summarize their common features. Second, the obtained Internet evaluations were extracted by natural language processing for keyword extraction. The correlation analysis of the color structure and keywords provides a valuable reference for conservation decisions for this historic area in the town. This paper also combines the color structure and Internet evaluation results with generative adversarial networks to generate predicted images of color structure improvements and color improvement schemes. The methods and conclusions of this paper can provide new ideas for the digital management of environmental colors in historic districts and provide a valuable reference for the inheritance of local traditional culture.Keywords: historic districts, color planning, semantic segmentation, natural language processing
Procedia PDF Downloads 8910830 The Effect of Career Decision Self Efficacy on Coping with Career Indecision among Young Adults
Authors: Yuliya Lipshits-Braziler
Abstract:
For many young adults, career decision making is a difficult and complex process that may lead to indecision. Indecision is frequently associated with great psychological distress and low levels of well-being. One important resource for dealing with indecision is career decision self-efficacy (CDSE), which refers to people’s beliefs about their ability to successfully accomplish certain tasks involved in career choice. Drawing from Social Cognitive Theory, it has been hypothesized that CDSE correlates with (a) people’s likelihood to engage in or avoid career decision making tasks, (b) the amount of effort put into the decision making process, (c) the people’s persistence in decision making efforts when faced with difficulties, and (d) the eventual success in arriving at career decisions. Based on these assumptions, the present study examines the associations between the CDSE and 14 strategies for coping with career indecision among young adults. Using the structural equation modeling (SEM), the results showed that CDSE is positively associated with the use of productive coping strategies, such as information-seeking, problem-solving, positive thinking, and self-regulation. In addition, CDSE was negatively associated with nonproductive coping strategies, such as avoidance, isolation, ruminative thinking, and blaming others. Contrary to our expectations, CDSE was not significantly correlated with instrumental help-seeking, while it was negatively correlated with emotional help-seeking. The results of this study can be used to facilitate the development of interventions aiming to reinforce young adults’ career decision making self-efficacy, which may provide them with a basis for overcoming career indecision more effectively.Keywords: career decision self-efficacy, career indecision, coping strategies, career counseling
Procedia PDF Downloads 25910829 Assessing Smallholder Farmers’ Perception of Climate Change and Coping Strategies Adopted in the Olifants Catchment of South Africa
Authors: Mary Funke Olabanji, Thando Ndarana, Nerhene Davis, Sylvester Okechukwu Ilo
Abstract:
Scientific evidence indicates that climate change is already being experienced by farmers, and its impacts are felt on agricultural and food systems. Understanding the perceptions of farmers on climate change and how they respond to this change is essential to the development and implementation of appropriate policies for agriculture and food security. This paper aims to contribute to the understanding of farmers’ perceptions of climate change, adopted coping strategies, long-term implications of their adaptation choices, and barriers to their decisions to adapt. Data were randomly collected from 73 respondents in five districts located in the Olifants catchment of South Africa. A combination of descriptive statistics and Chi-Square statistical tests using the Statistical Package for Social Science (SPSS) was used to analyse the data obtained from the survey. Results show that smallholder farmers have an in-depth perception of climate change. The most significant changes perceived by farmers were increased temperature and low rainfall. The results equally revealed that smallholder farmers in the Olifants catchment had adopted several adaptation strategies in response to the perceived climate change. The significant adaptation strategies from the results include changing cropping patterns and planting date, use of improved seed variety, and chemical fertilizers. The study, therefore, concludes that crop diversification and agroforestry were more effective and sustainable in mitigating the impact of climate change.Keywords: adaptation, climate change, perception, smallholder farmers
Procedia PDF Downloads 18310828 Fostering Organizational Learning across the Canadian Sport System through Leadership and Mentorship Development of Sport Science Leaders
Authors: Jennifer Walinga, Samantha Heron
Abstract:
The goal of the study was to inform the design of effective leadership and mentorship development programming for sport science leaders within the network of Canadian sport institutes and centers. The LEAD (Learn, Engage, Accelerate, Develop) program was implemented to equip sport science leaders with the leadership knowledge, skills, and practice to foster a high - performance culture, enhance the daily training environment, and contribute to optimal performance in sport. After two years of delivery, this analysis of LEAD’s effect on individual and organizational health and performance factors informs the quality of future deliveries and identifies best practice for leadership development across the Canadian sport system and beyond. A larger goal for this project was to inform the public sector more broadly and position sport as a source of best practice for human and social health, development, and performance. The objectives of this study were to review and refine the LEAD program in collaboration with Canadian Sport Institute and Centre leaders, 40-50 participants from three cohorts, and the LEAD program advisory committee, and to trace the effects of the LEAD leadership development program on key leadership mentorship and organizational health indicators across the Canadian sport institutes and centers so as to capture best practice. The study followed a participatory action research framework (PAR) using semi structured interviews with sport scientist participants, program and institute leaders inquiring into impact on specific individual and organizational health and performance factors. Findings included a strong increase in self-reported leadership knowledge, skill, language and confidence, enhancement of human and organizational health factors, and the opportunity to explore more deeply issues of diversity and inclusion, psychological safety, team dynamics, and performance management. The study was significant in building sport leadership and mentorship development strategies for managing change efforts, addressing inequalities, and building personal and operational resilience amidst challenges of uncertainty, pressure, and constraint in real time.Keywords: sport leadership, sport science leader, leadership development, professional development, sport education, mentorship
Procedia PDF Downloads 2710827 Child Sexual Abuse Prevention: Evaluation of the Program “Sharing Mouth to Mouth: My Body, Nobody Can Touch It”
Authors: Faride Peña, Teresita Castillo, Concepción Campo
Abstract:
Sexual violence, and particularly child sexual abuse, is a serious problem all over the world, México included. Given its importance, there are several preventive and care programs done by the government and the civil society all over the country but most of them are developed in urban areas even though these problems are especially serious in rural areas. Yucatán, a state in southern México, occupies one of the first places in child sexual abuse. Considering the above, the University Unit of Clinical Research and Victimological Attention (UNIVICT) of the Autonomous University of Yucatan, designed, implemented and is currently evaluating the program named “Sharing Mouth to Mouth: My Body, Nobody Can Touch It”, a program to prevent child sexual abuse in rural communities of Yucatán, México. Its aim was to develop skills for the detection of risk situations, providing protection strategies and mechanisms for prevention through culturally relevant psycho-educative strategies to increase personal resources in children, in collaboration with parents, teachers, police and municipal authorities. The diagnosis identified that a particularly vulnerable population were children between 4 and 10 years. The program run during 2015 in primary schools in the municipality whose inhabitants are mostly Mayan. The aim of this paper is to present its evaluation in terms of its effectiveness and efficiency. This evaluation included documental analysis of the work done in the field, psycho-educational and recreational activities with children, evaluation of knowledge by participating children and interviews with parents and teachers. The results show high efficiency in fulfilling the tasks and achieving primary objectives. The efficiency shows satisfactory results but also opportunity areas that can be resolved with minor adjustments to the program. The results also show the importance of including culturally relevant strategies and activities otherwise it minimizes possible achievements. Another highlight is the importance of participatory action research in preventive approaches to child sexual abuse since by becoming aware of the importance of the subject people participate more actively; in addition to design culturally appropriate strategies and measures so that the proposal may not be distant to the people. Discussion emphasizes the methodological implications of prevention programs (convenience of using participatory action research (PAR), importance of monitoring and mediation during implementation, developing detection skills tools in creative ways using psycho-educational interactive techniques and working assessment issued by the participants themselves). As well, it is important to consider the holistic character this type of program should have, in terms of incorporating social and culturally relevant characteristics, according to the community individuality and uniqueness, consider type of communication to be used and children’ language skills considering that there should be variations strongly linked to a specific cultural context.Keywords: child sexual abuse, evaluation, PAR, prevention
Procedia PDF Downloads 29610826 Combating Illegal Logging in Malaysia: Policies and Strategies under National Forestry Act (NFA) 1984
Authors: Muhammad Nur Haniff Mohd Noor, Rokiah Kadir, Suriyani Muhamad
Abstract:
The National Forestry Act (NFA) 1984 is the primary forest law that regulates forest-related activities in Peninsular Malaysia. In the 1990s, abundance of illegal logging cases have called for legislative reform of the NFA 1984. As a result, NFA 1984 was amended in 1993 with the principal goal of controlling illegal forest encroachment in the forms of illegal logging, unauthorized harvesting, unlicensed forest settlement and other forms of unlawful activities. At a conceptual level, this paper discusses the policies and strategies implemented under the NFA 1984 (Amendment 1993) that are dedicated to overcome illegal logging. Then, the policies and strategies employed are reviewed and evaluated. Next, this paper conceptually discusses the loopholes of NFA 1984 (Amendment 1993) in relation to aspects where the regulation is considered insufficient to curb illegal logging. In the final section, vital actions and suggested improvements to improve the overall effectiveness of NFA 1984 (Amendment 1993) are examined.Keywords: forest law and regulation, illegal logging, National Forestry Act 1984, NFA 1984, Amendment 1993, Peninsular Malaysia
Procedia PDF Downloads 26310825 The Role of Geodiversity in Earthquake Risk Management Strategies in Haiti
Authors: Djimy Dolcin
Abstract:
Haiti is a victim of the seismic threat, due to its geographical location and geodynamic context. Moreover, the vulnerability of the population is aggravated by the occupation of areas highly exposed to this threat. This work, therefore, presents an analysis of seismic risk management in Haiti in the context of geodiversity and its potential for understanding risk. To carry out this work, a bibliographical search was carried out on the subject. Faced with this state of affairs, we realized that the implementation of information and education strategies aimed at the population, which until now has been unaware of the danger it faces, is a fundamental obligation.Keywords: geodiversity, earthquake risk management, Haiti, earthquake risk
Procedia PDF Downloads 1510824 A Refinement Strategy Coupling Event-B and Planning Domain Definition Language (PDDL) for Planning Problems
Authors: Sabrine Ammar, Mohamed Tahar Bhiri
Abstract:
Automatic planning has a de facto standard language called Planning Domain Definition Language (PDDL) for describing planning problems. It aims to formalize the planning problems described by the concept of state space. PDDL-related dynamic analysis tools, namely planners and validators, are insufficient for verifying and validating PDDL descriptions. Indeed, these tools made it possible to detect errors a posteriori by means of test activity. In this paper, we recommend a formal approach coupling the two languages Event-B and PDDL, for automatic planning. Event-B is used for formal modeling by stepwise refinement with mathematical proofs of planning problems. Thus, this paper proposes a refinement strategy allowing to obtain reliable PDDL descriptions from an ultimate Event-B model correct by construction. The ultimate Event-B model, correct by construction which is supposed to be translatable into PDDL, is automatically translated into PDDL using our MDE Event-B2PDDL tool.Keywords: code generation, event-b, PDDL, refinement strategy, translation rules
Procedia PDF Downloads 19910823 A Probabilistic View of the Spatial Pooler in Hierarchical Temporal Memory
Authors: Mackenzie Leake, Liyu Xia, Kamil Rocki, Wayne Imaino
Abstract:
In the Hierarchical Temporal Memory (HTM) paradigm the effect of overlap between inputs on the activation of columns in the spatial pooler is studied. Numerical results suggest that similar inputs are represented by similar sets of columns and dissimilar inputs are represented by dissimilar sets of columns. It is shown that the spatial pooler produces these results under certain conditions for the connectivity and proximal thresholds. Following the discussion of the initialization of parameters for the thresholds, corresponding qualitative arguments about the learning dynamics of the spatial pooler are discussed.Keywords: hierarchical temporal memory, HTM, learning algorithms, machine learning, spatial pooler
Procedia PDF Downloads 34610822 Integration of Technology through Instructional Systems Design
Authors: C. Salis, D. Zedda, M. F. Wilson
Abstract:
The IDEA project was conceived for teachers who are interested in enhancing their capacity to effectively implement the use of specific technologies in their teaching practice. Participating teachers are coached and supported as they explore technologies applied to the educational context. They access tools such as the technological platform developed by our team. Among the platform functionalities, teachers access an instructional systems design (ISD) tool (learning designer) that was adapted to the needs of our project. The tool is accessible from computers or mobile devices and used in association with other technologies to create new, meaningful learning environments. The objective of an instructional systems design is to guarantee the quality and effectiveness of education and to enhance learning. This goal involves both teachers who want to become more efficient in transferring knowledge or skills and students as the final recipient of their teaching. The use of Blooms’s taxonomy enables teachers to classify the learning objectives into levels of complexity and specificity, thus making it possible to highlight the kind of knowledge teachers would like their students to reach. The fact that the instructional design features can be visualized through the IDEA platform is a guarantee for those who are looking for specific educational materials to be used in their lessons. Despite the benefits offered, a number of teachers are reluctant to use ISD because the preparatory work of having to thoroughly analyze the teaching/learning objectives, the planning of learning material, assessment activities, etc., is long and felt to be time-consuming. This drawback is minimized using a learning designer, as the tool facilitates to reuse of the didactic contents having a clear view of the processes of analysis, planning, and production of educational or testing materials uploaded on our platform. In this paper, we shall present the feedback of the teachers who used our tool in their didactic.Keywords: educational benefits, educational quality, educational technology, ISD tool
Procedia PDF Downloads 18910821 Influence of Intelligence and Failure Mindsets on Parent's Failure Feedback
Authors: Sarah Kalaouze, Maxine Iannucelli, Kristen Dunfield
Abstract:
Children’s implicit beliefs regarding intelligence (i.e., intelligence mindsets) influence their motivation, perseverance, and success. Previous research suggests that the way parents perceive failure influences the development of their child’s intelligence mindsets. We invited 151 children-parent dyads (Age= 5–6 years) to complete a series of difficult puzzles over zoom. We assessed parents’ intelligence and failure mindsets using questionnaires and recorded parents’ person/performance-oriented (e.g., “you are smart” or "you were almost able to complete that one) and process-oriented (e.g., “you are trying really hard” or "maybe if you place the bigger pieces first") failure feedback. We were interested in observing the relation between parental mindsets and the type of feedback provided. We found that parents’ intelligence mindsets were not predictive of the feedback they provided children. Failure mindsets, on the other hand, were predictive of failure feedback. Parents who view failure-as-debilitating provided more person-oriented feedback, focusing on performance and personal ability. Whereas parents who view failure-as-enhancing provided process-oriented feedback, focusing on effort and strategies. Taken all together, our results allow us to determine that although parents might already have a growth intelligence mindset, they don’t necessarily have a failure-as-enhancing mindset. Parents adopting a failure-as-enhancing mindset would influence their children to view failure as a learning opportunity, further promoting practice, effort, and perseverance during challenging tasks. The focus placed on a child’s learning, rather than their performance, encourages them to perceive intelligence as malleable (growth mindset) rather than fix (fixed mindset). This implies that parents should not only hold a growth mindset but thoroughly understand their role in the transmission of intelligence beliefs.Keywords: mindset(s), failure, intelligence, parental feedback, parents
Procedia PDF Downloads 14210820 On the Bias and Predictability of Asylum Cases
Authors: Panagiota Katsikouli, William Hamilton Byrne, Thomas Gammeltoft-Hansen, Tijs Slaats
Abstract:
An individual who demonstrates a well-founded fear of persecution or faces real risk of being subjected to torture is eligible for asylum. In Danish law, the exact legal thresholds reflect those established by international conventions, notably the 1951 Refugee Convention and the 1950 European Convention for Human Rights. These international treaties, however, remain largely silent when it comes to how states should assess asylum claims. As a result, national authorities are typically left to determine an individual’s legal eligibility on a narrow basis consisting of an oral testimony, which may itself be hampered by several factors, including imprecise language interpretation, insecurity or lacking trust towards the authorities among applicants. The leaky ground, on which authorities must assess their subjective perceptions of asylum applicants' credibility, questions whether, in all cases, adjudicators make the correct decision. Moreover, the subjective element in these assessments raises questions on whether individual asylum cases could be afflicted by implicit biases or stereotyping amongst adjudicators. In fact, recent studies have uncovered significant correlations between decision outcomes and the experience and gender of the assigned judge, as well as correlations between asylum outcomes and entirely external events such as weather and political elections. In this study, we analyze a publicly available dataset containing approximately 8,000 summaries of asylum cases, initially rejected, and re-tried by the Refugee Appeals Board (RAB) in Denmark. First, we look for variations in the recognition rates, with regards to a number of applicants’ features: their country of origin/nationality, their identified gender, their identified religion, their ethnicity, whether torture was mentioned in their case and if so, whether it was supported or not, and the year the applicant entered Denmark. In order to extract those features from the text summaries, as well as the final decision of the RAB, we applied natural language processing and regular expressions, adjusting for the Danish language. We observed interesting variations in recognition rates related to the applicants’ country of origin, ethnicity, year of entry and the support or not of torture claims, whenever those were made in the case. The appearance (or not) of significant variations in the recognition rates, does not necessarily imply (or not) bias in the decision-making progress. None of the considered features, with the exception maybe of the torture claims, should be decisive factors for an asylum seeker’s fate. We therefore investigate whether the decision can be predicted on the basis of these features, and consequently, whether biases are likely to exist in the decisionmaking progress. We employed a number of machine learning classifiers, and found that when using the applicant’s country of origin, religion, ethnicity and year of entry with a random forest classifier, or a decision tree, the prediction accuracy is as high as 82% and 85% respectively. tentially predictive properties with regards to the outcome of an asylum case. Our analysis and findings call for further investigation on the predictability of the outcome, on a larger dataset of 17,000 cases, which is undergoing.Keywords: asylum adjudications, automated decision-making, machine learning, text mining
Procedia PDF Downloads 9710819 Evaluation of the Self-Efficacy and Learning Experiences of Final year Students of Computer Science of Southwest Nigerian Universities
Authors: Olabamiji J. Onifade, Peter O. Ajayi, Paul O. Jegede
Abstract:
This study aimed at investigating the preparedness of the undergraduate final year students of Computer Science as the next entrants into the workplace. It assessed their self-efficacy in computational tasks and examined the relationship between their self-efficacy and their learning experiences in Southwest Nigerian universities. The study employed a descriptive survey research design. The population of the study comprises all the final year students of Computer Science. A purposive sampling technique was adopted in selecting a representative sample of interest from the final year students of Computer Science. The Students’ Computational Task Self-Efficacy Questionnaire (SCTSEQ) was used to collect data. Mean, standard deviation, frequency, percentages, and linear regression were used for data analysis. The result obtained revealed that the final year students of Computer Science were averagely confident in performing computational tasks, and there is a significant relationship between the learning experiences of the students and their self-efficacy. The study recommends that the curriculum be improved upon to accommodate industry experts as lecturers in some of the courses, make provision for more practical sessions, and the learning experiences of the student be considered an important component in the undergraduate Computer Science curriculum development process.Keywords: computer science, learning experiences, self-efficacy, students
Procedia PDF Downloads 14410818 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: crime prediction, machine learning, public safety, smart city
Procedia PDF Downloads 11310817 Using Science, Technology, Engineering, Art and Mathematics (STEAM) Project-Based Learning Programs to Transition towards Whole School Pedagogical Shift
Authors: M. Richichi
Abstract:
Evidencing the learning and developmental needs of students in specific educational institutions is central to determining the type of whole school pedagogical shift required. Initiating this transition by designing and implementing STEAM (Science, technology, engineering, art, and mathematics) project-based learning opportunities, in collaboration with industry, exposes teachers to new pedagogical and assessment practices. This experience instills confidence and a renewed sense of energy, which contributes to greater efficacy. Championing teachers in such learning environments leads to “bleeding” of inventive pedagogical understanding and skills as well as motivation. This contributes positively to collective teacher efficacy and the transition towards more cross-disciplinary initiatives and opportunities, and hence an innovative pedagogical shift. Evidence of skill and knowledge development in students, combined with greater confidence, work ethic and interest in STEAM areas, are further indicators of the success of the transitioning process.Keywords: efficacy, pedagogy, transition, STEAM
Procedia PDF Downloads 13110816 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence
Authors: Mohammed Al Sulaimani, Hamad Al Manhi
Abstract:
With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems
Procedia PDF Downloads 34