Search results for: mathematical equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3332

Search results for: mathematical equations

122 A Conceptual Model of the 'Driver – Highly Automated Vehicle' System

Authors: V. A. Dubovsky, V. V. Savchenko, A. A. Baryskevich

Abstract:

The current trend in the automotive industry towards automatic vehicles is creating new challenges related to human factors. This occurs due to the fact that the driver is increasingly relieved of the need to be constantly involved in driving the vehicle, which can negatively impact his/her situation awareness when manual control is required, and decrease driving skills and abilities. These new problems need to be studied in order to provide road safety during the transition towards self-driving vehicles. For this purpose, it is important to develop an appropriate conceptual model of the interaction between the driver and the automated vehicle, which could serve as a theoretical basis for the development of mathematical and simulation models to explore different aspects of driver behaviour in different road situations. Well-known driver behaviour models describe the impact of different stages of the driver's cognitive process on driving performance but do not describe how the driver controls and adjusts his actions. A more complete description of the driver's cognitive process, including the evaluation of the results of his/her actions, will make it possible to more accurately model various aspects of the human factor in different road situations. This paper presents a conceptual model of the 'driver – highly automated vehicle' system based on the P.K. Anokhin's theory of functional systems, which is a theoretical framework for describing internal processes in purposeful living systems based on such notions as goal, desired and actual results of the purposeful activity. A central feature of the proposed model is a dynamic coupling mechanism between the decision-making of a driver to perform a particular action and changes of road conditions due to driver’s actions. This mechanism is based on the stage by stage evaluation of the deviations of the actual values of the driver’s action results parameters from the expected values. The overall functional structure of the highly automated vehicle in the proposed model includes a driver/vehicle/environment state analyzer to coordinate the interaction between driver and vehicle. The proposed conceptual model can be used as a framework to investigate different aspects of human factors in transitions between automated and manual driving for future improvements in driving safety, and for understanding how driver-vehicle interface must be designed for comfort and safety. A major finding of this study is the demonstration that the theory of functional systems is promising and has the potential to describe the interaction of the driver with the vehicle and the environment.

Keywords: automated vehicle, driver behavior, human factors, human-machine system

Procedia PDF Downloads 146
121 Modeling and Optimizing of Sinker Electric Discharge Machine Process Parameters on AISI 4140 Alloy Steel by Central Composite Rotatable Design Method

Authors: J. Satya Eswari, J. Sekhar Babub, Meena Murmu, Govardhan Bhat

Abstract:

Electrical Discharge Machining (EDM) is an unconventional manufacturing process based on removal of material from a part by means of a series of repeated electrical sparks created by electric pulse generators at short intervals between a electrode tool and the part to be machined emmersed in dielectric fluid. In this paper, a study will be performed on the influence of the factors of peak current, pulse on time, interval time and power supply voltage. The output responses measured were material removal rate (MRR) and surface roughness. Finally, the parameters were optimized for maximum MRR with the desired surface roughness. RSM involves establishing mathematical relations between the design variables and the resulting responses and optimizing the process conditions. RSM is not free from problems when it is applied to multi-factor and multi-response situations. Design of experiments (DOE) technique to select the optimum machining conditions for machining AISI 4140 using EDM. The purpose of this paper is to determine the optimal factors of the electro-discharge machining (EDM) process investigate feasibility of design of experiment techniques. The work pieces used were rectangular plates of AISI 4140 grade steel alloy. The study of optimized settings of key machining factors like pulse on time, gap voltage, flushing pressure, input current and duty cycle on the material removal, surface roughness is been carried out using central composite design. The objective is to maximize the Material removal rate (MRR). Central composite design data is used to develop second order polynomial models with interaction terms. The insignificant coefficients’ are eliminated with these models by using student t test and F test for the goodness of fit. CCD is first used to establish the determine the optimal factors of the electro-discharge machining (EDM) for maximizing the MRR. The responses are further treated through a objective function to establish the same set of key machining factors to satisfy the optimization problem of the electro-discharge machining (EDM) process. The results demonstrate the better performance of CCD data based RSM for optimizing the electro-discharge machining (EDM) process.

Keywords: electric discharge machining (EDM), modeling, optimization, CCRD

Procedia PDF Downloads 341
120 Modeling of the Fermentation Process of Enzymatically Extracted Annona muricata L. Juice

Authors: Calister Wingang Makebe, Wilson Agwanande Ambindei, Zangue Steve Carly Desobgo, Abraham Billu, Emmanuel Jong Nso, P. Nisha

Abstract:

Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1, as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.

Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics

Procedia PDF Downloads 68
119 Mathematical Modelling of Biogas Dehumidification by Using of Counterflow Heat Exchanger

Authors: Staņislavs Gendelis, Andris Jakovičs, Jānis Ratnieks, Aigars Laizāns, Dāvids Vardanjans

Abstract:

Dehumidification of biogas at the biomass plants is very important to provide the energy efficient burning of biomethane at the outlet. A few methods are widely used to reduce the water content in biogas, e.g. chiller/heat exchanger based cooling, usage of different adsorbents like PSA, or the combination of such approaches. A quite different method of biogas dehumidification is offered and analyzed in this paper. The main idea is to direct the flow of biogas from the plant around it downwards; thus, creating additional insulation layer. As the temperature in gas shell layer around the plant will decrease from ~ 38°C to 20°C in the summer or even to 0°C in the winter, condensation of water vapor occurs. The water from the bottom of the gas shell can be collected and drain away. In addition, another upward shell layer is created after the condensate drainage place on the outer side to further reducing heat losses. Thus, counterflow biogas heat exchanger is created around the biogas plant. This research work deals with the numerical modelling of biogas flow, taking into account heat exchange and condensation on cold surfaces. Different kinds of boundary conditions (air and ground temperatures in summer/winter) and various physical properties of constructions (insulation between layers, wall thickness) are included in the model to make it more general and useful for different biogas flow conditions. The complexity of this problem is fact, that the temperatures in both channels are conjugated in case of low thermal resistance between layers. MATLAB programming language is used for multiphysical model development, numerical calculations and result visualization. Experimental installation of a biogas plant’s vertical wall with an additional 2 layers of polycarbonate sheets with the controlled gas flow was set up to verify the modelling results. Gas flow at inlet/outlet, temperatures between the layers and humidity were controlled and measured during a number of experiments. Good correlation with modelling results for vertical wall section allows using of developed numerical model for an estimation of parameters for the whole biogas dehumidification system. Numerical modelling of biogas counterflow heat exchanger system placed on the plant’s wall for various cases allows optimizing of thickness for gas layers and insulation layer to ensure necessary dehumidification of the gas under different climatic conditions. Modelling of system’s defined configuration with known conditions helps to predict the temperature and humidity content of the biogas at the outlet.

Keywords: biogas dehumidification, numerical modelling, condensation, biogas plant experimental model

Procedia PDF Downloads 549
118 Anti-Gravity to Neo-Concretism: The Epodic Spaces of Non-Objective Art

Authors: Alexandra Kennedy

Abstract:

Making use of the notion of ‘epodic spaces’ this paper presents a reconsideration of non-objective art practices, proposing alternatives to established materialist, formalist, process-based conceptualist approaches to such work. In his Neo-Concrete Manifesto (1959) Ferreira Gullar (1930-2016) sought to create a distinction between various forms of non-objective art. He distinguished the ‘geometric’ arts of neoplasticism, constructivism, and suprematism – which he described as ‘dangerously acute rationalism’ – from other non-objective practices. These alternatives, he proposed, have an expressive potential lacking in the former and this formed the basis for their categorisation as neo-concrete. Gullar prioritized the phenomenological over the rational, with an emphasis on the role of the spectator (a key concept of minimalism). Gullar highlighted the central role of sensual experience, colour and the poetic in such work. In the early twentieth century, Russian Cosmism – an esoteric philosophical movement – was highly influential on Russian avant-garde artists and can account for suprematist artists’ interest in, and approach to, planar geometry and four-dimensional space as demonstrated in the abstract paintings of Kasimir Malevich (1879-1935). Nikolai Fyodorov (1823-1903) promoted the idea of anti-gravity and cosmic space as the field for artistic activity. The artist and writer Kuzma Petrov-Vodkin (1878-1939) wrote on the concept of Euclidean space, the overcoming of such rational conceptions of space and the breaking free from the gravitational field and the earth’s sphere. These imaginary spaces, which also invoke a bodily experience, present a poetic dimension to the work of the suprematists. It is a dimension that arguably aligns more with Gullar’s formulation of his neo-concrete rather than that of his alignment of Suprematism with rationalism. While found in experiments with planar geometry, the interest in forms suggestive of an experience of breaking free–both physically from the earth and conceptually from rational, mathematical space (in a pre-occupation with non-Euclidean space and anti-geometry) and in their engagement with the spatial properties of colour, Suprematism presents itself as imaginatively epodic. The paper discusses both historical and contemporary non-objective practices in this context, drawing attention to the manner in which the category of the non-objective is used to categorise art works which are, arguably, qualitatively different.

Keywords: anti-gravity, neo-concrete, non-Euclidian geometry, non-objective painting

Procedia PDF Downloads 178
117 IoT Continuous Monitoring Biochemical Oxygen Demand Wastewater Effluent Quality: Machine Learning Algorithms

Authors: Sergio Celaschi, Henrique Canavarro de Alencar, Claaudecir Biazoli

Abstract:

Effluent quality is of the highest priority for compliance with the permit limits of environmental protection agencies and ensures the protection of their local water system. Of the pollutants monitored, the biochemical oxygen demand (BOD) posed one of the greatest challenges. This work presents a solution for wastewater treatment plants - WWTP’s ability to react to different situations and meet treatment goals. Delayed BOD5 results from the lab take 7 to 8 analysis days, hindered the WWTP’s ability to react to different situations and meet treatment goals. Reducing BOD turnaround time from days to hours is our quest. Such a solution is based on a system of two BOD bioreactors associated with Digital Twin (DT) and Machine Learning (ML) methodologies via an Internet of Things (IoT) platform to monitor and control a WWTP to support decision making. DT is a virtual and dynamic replica of a production process. DT requires the ability to collect and store real-time sensor data related to the operating environment. Furthermore, it integrates and organizes the data on a digital platform and applies analytical models allowing a deeper understanding of the real process to catch sooner anomalies. In our system of continuous time monitoring of the BOD suppressed by the effluent treatment process, the DT algorithm for analyzing the data uses ML on a chemical kinetic parameterized model. The continuous BOD monitoring system, capable of providing results in a fraction of the time required by BOD5 analysis, is composed of two thermally isolated batch bioreactors. Each bioreactor contains input/output access to wastewater sample (influent and effluent), hydraulic conduction tubes, pumps, and valves for batch sample and dilution water, air supply for dissolved oxygen (DO) saturation, cooler/heater for sample thermal stability, optical ODO sensor based on fluorescence quenching, pH, ORP, temperature, and atmospheric pressure sensors, local PLC/CPU for TCP/IP data transmission interface. The dynamic BOD system monitoring range covers 2 mg/L < BOD < 2,000 mg/L. In addition to the BOD monitoring system, there are many other operational WWTP sensors. The CPU data is transmitted/received to/from the digital platform, which in turn performs analyses at periodic intervals, aiming to feed the learning process. BOD bulletins and their credibility intervals are made available in 12-hour intervals to web users. The chemical kinetics ML algorithm is composed of a coupled system of four first-order ordinary differential equations for the molar masses of DO, organic material present in the sample, biomass, and products (CO₂ and H₂O) of the reaction. This system is solved numerically linked to its initial conditions: DO (saturated) and initial products of the kinetic oxidation process; CO₂ = H₂0 = 0. The initial values for organic matter and biomass are estimated by the method of minimization of the mean square deviations. A real case of continuous monitoring of BOD wastewater effluent quality is being conducted by deploying an IoT application on a large wastewater purification system located in S. Paulo, Brazil.

Keywords: effluent treatment, biochemical oxygen demand, continuous monitoring, IoT, machine learning

Procedia PDF Downloads 73
116 The Connection Between the Semiotic Theatrical System and the Aesthetic Perception

Authors: Păcurar Diana Istina

Abstract:

The indissoluble link between aesthetics and semiotics, the harmonization and semiotic understanding of the interactions between the viewer and the object being looked at, are the basis of the practical demonstration of the importance of aesthetic perception within the theater performance. The design of a theater performance includes several structures, some considered from the beginning, art forms (i.e., the text), others being represented by simple, common objects (e.g., scenographic elements), which, if reunited, can trigger a certain aesthetic perception. The audience is delivered, by the team involved in the performance, a series of auditory and visual signs with which they interact. It is necessary to explain some notions about the physiological support of the transformation of different types of stimuli at the level of the cerebral hemispheres. The cortex considered the superior integration center of extransecal and entanged stimuli, permanently processes the information received, but even if it is delivered at a constant rate, the generated response is individualized and is conditioned by a number of factors. Each changing situation represents a new opportunity for the viewer to cope with, developing feelings of different intensities that influence the generation of meanings and, therefore, the management of interactions. In this sense, aesthetic perception depends on the detection of the “correctness” of signs, the forms of which are associated with an aesthetic property. Fairness and aesthetic properties can have positive or negative values. Evaluating the emotions that generate judgment and implicitly aesthetic perception, whether we refer to visual emotions or auditory emotions, involves the integration of three areas of interest: Valence, arousal and context control. In this context, superior human cognitive processes, memory, interpretation, learning, attribution of meanings, etc., help trigger the mechanism of anticipation and, no less important, the identification of error. This ability to locate a short circuit produced in a series of successive events is fundamental in the process of forming an aesthetic perception. Our main purpose in this research is to investigate the possible conditions under which aesthetic perception and its minimum content are generated by all these structures and, in particular, by interactions with forms that are not commonly considered aesthetic forms. In order to demonstrate the quantitative and qualitative importance of the categories of signs used to construct a code for reading a certain message, but also to emphasize the importance of the order of using these indices, we have structured a mathematical analysis that has at its core the analysis of the percentage of signs used in a theater performance.

Keywords: semiology, aesthetics, theatre semiotics, theatre performance, structure, aesthetic perception

Procedia PDF Downloads 89
115 Influence of Atmospheric Pollutants on Child Respiratory Disease in Cartagena De Indias, Colombia

Authors: Jose A. Alvarez Aldegunde, Adrian Fernandez Sanchez, Matthew D. Menden, Bernardo Vila Rodriguez

Abstract:

Up to five statistical pre-processings have been carried out considering the pollutant records of the stations present in Cartagena de Indias, Colombia, also taking into account the childhood asthma incidence surveys conducted in hospitals in the city by the Health Ministry of Colombia for this study. These pre-processings have consisted of different techniques such as the determination of the quality of data collection, determination of the quality of the registration network, identification and debugging of errors in data collection, completion of missing data and purified data, as well as the improvement of the time scale of records. The characterization of the quality of the data has been conducted by means of density analysis of the pollutant registration stations using ArcGis Software and through mass balance techniques, making it possible to determine inconsistencies in the records relating the registration data between stations following the linear regression. The results obtained in this process have highlighted the positive quality in the pollutant registration process. Consequently, debugging of errors has allowed us to identify certain data as statistically non-significant in the incidence and series of contamination. This data, together with certain missing records in the series recorded by the measuring stations, have been completed by statistical imputation equations. Following the application of these prior processes, the basic series of incidence data for respiratory disease and pollutant records have allowed the characterization of the influence of pollutants on respiratory diseases such as, for example, childhood asthma. This characterization has been carried out using statistical correlation methods, including visual correlation, simple linear regression correlation and spectral analysis with PAST Software which identifies maximum periodicity cycles and minimums under the formula of the Lomb periodgram. In relation to part of the results obtained, up to eleven maximums and minimums considered contemporary between the incidence records and the particles have been identified taking into account the visual comparison. The spectral analyses that have been performed on the incidence and the PM2.5 have returned a series of similar maximum periods in both registers, which are at a maximum during a period of one year and another every 25 days (0.9 and 0.07 years). The bivariate analysis has managed to characterize the variable "Daily Vehicular Flow" in the ninth position of importance of a total of 55 variables. However, the statistical correlation has not obtained a favorable result, having obtained a low value of the R2 coefficient. The series of analyses conducted has demonstrated the importance of the influence of pollutants such as PM2.5 in the development of childhood asthma in Cartagena. The quantification of the influence of the variables has been able to determine that there is a 56% probability of dependence between PM2.5 and childhood respiratory asthma in Cartagena. Considering this justification, the study could be completed through the application of the BenMap Software, throwing a series of spatial results of interpolated values of the pollutant contamination records that exceeded the established legal limits (represented by homogeneous units up to the neighborhood level) and results of the impact on the exacerbation of pediatric asthma. As a final result, an economic estimate (in Colombian Pesos) of the monthly and individual savings derived from the percentage reduction of the influence of pollutants in relation to visits to the Hospital Emergency Room due to asthma exacerbation in pediatric patients has been granted.

Keywords: Asthma Incidence, BenMap, PM2.5, Statistical Analysis

Procedia PDF Downloads 116
114 Creating Futures: Using Fictive Scripting Methods for Institutional Strategic Planning

Authors: Christine Winberg, James Garraway

Abstract:

Many key university documents, such as vision and mission statements and strategic plans, are aspirational and future-oriented. There is a wide range of future-oriented methods that are used in planning applications, ranging from mathematical modelling to expert opinions. Many of these methods have limitations, and planners using these tools might, for example, make the technical-rational assumption that their plans will unfold in a logical and inevitable fashion, thus underestimating the many complex forces that are at play in planning for an unknown future. This is the issue that this study addresses. The overall project aim was to assist a new university of technology in developing appropriate responses to its social responsibility, graduate employability and research missions in its strategic plan. The specific research question guiding the research activities and approach was: how might the use of innovative future-oriented planning tools enable or constrain a strategic planning process? The research objective was to engage collaborating groups in the use of an innovative tool to develop and assess future scenarios, for the purpose of developing deeper understandings of possible futures and their challenges. The scenario planning tool chosen was ‘fictive scripting’, an analytical technique derived from Technology Forecasting and Innovation Studies. Fictive scripts are future projections that also take into account the present shape of the world and current developments. The process thus began with a critical diagnosis of the present, highlighting its tensions and frictions. The collaborative groups then developed fictive scripts, each group producing a future scenario that foregrounded different institutional missions, their implications and possible consequences. The scripts were analyzed with a view to identifying their potential contribution to the university’s strategic planning exercise. The unfolding fictive scripts revealed a number of insights in terms of unexpected benefits, unexpected challenges, and unexpected consequences. These insights were not evident in previous strategic planning exercises. The contribution that this study offers is to show how better choices can be made and potential pitfalls avoided through a systematic foresight exercise. When universities develop strategic planning documents, they are looking into the future. In this paper it is argued that the use of appropriate tools for future-oriented exercises, can help planners to understand more fully what achieving desired outcomes might entail, what challenges might be encountered, and what unexpected consequences might ensue.

Keywords: fictive scripts, scenarios, strategic planning, technological forecasting

Procedia PDF Downloads 121
113 Multibody Constrained Dynamics of Y-Method Installation System for a Large Scale Subsea Equipment

Authors: Naeem Ullah, Menglan Duan, Mac Darlington Uche Onuoha

Abstract:

The lowering of subsea equipment into the deep waters is a challenging job due to the harsh offshore environment. Many researchers have introduced various installation systems to deploy the payload safely into the deep oceans. In general practice, dual floating vessels are not employed owing to the prevalent safety risks and hazards caused by ever-increasing dynamical effects sourced by mutual interaction between the bodies. However, while keeping in the view of the optimal grounds, such as economical one, the Y-method, the two conventional tugboats supporting the equipment by the two independent strands connected to a tri-plate above the equipment, has been employed to study multibody dynamics of the dual barge lifting operations. In this study, the two tugboats and the suspended payload (Y-method) are deployed for the lowering of subsea equipment into the deep waters as a multibody dynamic system. The two-wire ropes are used for the lifting and installation operation by this Y-method installation system. 6-dof (degree of freedom) for each body are considered to establish coupled 18-dof multibody model by embedding technique or velocity transformation technique. The fundamental and prompt advantage of this technique is that the constraint forces can be eliminated directly, and no extra computational effort is required for the elimination of the constraint forces. The inertial frame of reference is taken at the surface of the water as the time-independent frame of reference, and the floating frames of reference are introduced in each body as the time-dependent frames of reference in order to formulate the velocity transformation matrix. The local transformation of the generalized coordinates to the inertial frame of reference is executed by applying the Euler Angle approach. The spherical joints are articulated amongst the multibody as the kinematic joints. The hydrodynamic force, the two-strand forces, the hydrostatic force, and the mooring forces are taken into consideration as the external forces. The radiation force of the hydrodynamic force is obtained by employing the Cummins equation. The wave exciting part of the hydrodynamic force is obtained by using force response amplitude operators (RAOs) that are obtained by the commercial solver ‘OpenFOAM’. The strand force is obtained by considering the wire rope as an elastic spring. The nonlinear hydrostatic force is obtained by the pressure integration technique at each time step of the wave movement. The mooring forces are evaluated by using Faltinsen analytical approach. ‘The Runge Kutta Method’ of Fourth-Order is employed to evaluate the coupled equations of motion obtained for 18-dof multibody model. The results are correlated with the simulated Orcaflex Model. Moreover, the results from Orcaflex Model are compared with the MOSES Model from previous studies. The MBDS of single barge lifting operation from the former studies are compared with the MBDS of the established dual barge lifting operation. The dynamics of the dual barge lifting operation are found larger in magnitude as compared to the single barge lifting operation. It is noticed that the traction at the top connection point of the cable decreases with the increase in the length, and it becomes almost constant after passing through the splash zone.

Keywords: dual barge lifting operation, Y-method, multibody dynamics, shipbuilding, installation of subsea equipment, shipbuilding

Procedia PDF Downloads 203
112 An Effort at Improving Reliability of Laboratory Data in Titrimetric Analysis for Zinc Sulphate Tablets Using Validated Spreadsheet Calculators

Authors: M. A. Okezue, K. L. Clase, S. R. Byrn

Abstract:

The requirement for maintaining data integrity in laboratory operations is critical for regulatory compliance. Automation of procedures reduces incidence of human errors. Quality control laboratories located in low-income economies may face some barriers in attempts to automate their processes. Since data from quality control tests on pharmaceutical products are used in making regulatory decisions, it is important that laboratory reports are accurate and reliable. Zinc Sulphate (ZnSO4) tablets is used in treatment of diarrhea in pediatric population, and as an adjunct therapy for COVID-19 regimen. Unfortunately, zinc content in these formulations is determined titrimetrically; a manual analytical procedure. The assay for ZnSO4 tablets involves time-consuming steps that contain mathematical formulae prone to calculation errors. To achieve consistency, save costs, and improve data integrity, validated spreadsheets were developed to simplify the two critical steps in the analysis of ZnSO4 tablets: standardization of 0.1M Sodium Edetate (EDTA) solution, and the complexometric titration assay procedure. The assay method in the United States Pharmacopoeia was used to create a process flow for ZnSO4 tablets. For each step in the process, different formulae were input into two spreadsheets to automate calculations. Further checks were created within the automated system to ensure validity of replicate analysis in titrimetric procedures. Validations were conducted using five data sets of manually computed assay results. The acceptance criteria set for the protocol were met. Significant p-values (p < 0.05, α = 0.05, at 95% Confidence Interval) were obtained from students’ t-test evaluation of the mean values for manual-calculated and spreadsheet results at all levels of the analysis flow. Right-first-time analysis and principles of data integrity were enhanced by use of the validated spreadsheet calculators in titrimetric evaluations of ZnSO4 tablets. Human errors were minimized in calculations when procedures were automated in quality control laboratories. The assay procedure for the formulation was achieved in a time-efficient manner with greater level of accuracy. This project is expected to promote cost savings for laboratory business models.

Keywords: data integrity, spreadsheets, titrimetry, validation, zinc sulphate tablets

Procedia PDF Downloads 169
111 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources

Authors: Mustafa Alhamdi

Abstract:

Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.

Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification

Procedia PDF Downloads 150
110 A Microwave Heating Model for Endothermic Reaction in the Cement Industry

Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

Microwave technology has been gaining importance in contributing to decarbonization processes in high energy demand industries. Despite the several numerical models presented in the literature, a proper Verification and Validation exercise is still lacking. This is important and required to evaluate the physical process model accuracy and adequacy. Another issue addresses impedance matching, which is an important mechanism used in microwave experiments to increase electromagnetic efficiency. Such mechanism is not available in current computational tools, thus requiring an external numerical procedure. A numerical model was implemented to study the continuous processing of limestone with microwave heating. This process requires the material to be heated until a certain temperature that will prompt a highly endothermic reaction. Both a 2D and 3D model were built in COMSOL Multiphysics to solve the two-way coupling between Maxwell and Energy equations, along with the coupling between both heat transfer phenomena and limestone endothermic reaction. The 2D model was used to study and evaluate the required numerical procedure, being also a benchmark test, allowing other authors to implement impedance matching procedures. To achieve this goal, a controller built in MATLAB was used to continuously matching the cavity impedance and predicting the required energy for the system, thus successfully avoiding energy inefficiencies. The 3D model reproduces realistic results and therefore supports the main conclusions of this work. Limestone was modeled as a continuous flow under the transport of concentrated species, whose material and kinetics properties were taken from literature. Verification and Validation of the coupled model was taken separately from the chemical kinetic model. The chemical kinetic model was found to correctly describe the chosen kinetic equation by comparing numerical results with experimental data. A solution verification was made for the electromagnetic interface, where second order and fourth order accurate schemes were found for linear and quadratic elements, respectively, with numerical uncertainty lower than 0.03%. Regarding the coupled model, it was demonstrated that the numerical error would diverge for the heat transfer interface with the mapped mesh. Results showed numerical stability for the triangular mesh, and the numerical uncertainty was less than 0.1%. This study evaluated limestone velocity, heat transfer, and load influence on thermal decomposition and overall process efficiency. The velocity and heat transfer coefficient were studied with the 2D model, while different loads of material were studied with the 3D model. Both models demonstrated to be highly unstable when solving non-linear temperature distributions. High velocity flows exhibited propensity to thermal runways, and the thermal efficiency showed the tendency to stabilize for the higher velocities and higher filling ratio. Microwave efficiency denoted an optimal velocity for each heat transfer coefficient, pointing out that electromagnetic efficiency is a consequence of energy distribution uniformity. The 3D results indicated the inefficient development of the electric field for low filling ratios. Thermal efficiencies higher than 90% were found for the higher loads and microwave efficiencies up to 75% were accomplished. The 80% fill ratio was demonstrated to be the optimal load with an associated global efficiency of 70%.

Keywords: multiphysics modeling, microwave heating, verification and validation, endothermic reactions modeling, impedance matching, limestone continuous processing

Procedia PDF Downloads 140
109 Black-Box-Optimization Approach for High Precision Multi-Axes Forward-Feed Design

Authors: Sebastian Kehne, Alexander Epple, Werner Herfs

Abstract:

A new method for optimal selection of components for multi-axes forward-feed drive systems is proposed in which the choice of motors, gear boxes and ball screw drives is optimized. Essential is here the synchronization of electrical and mechanical frequency behavior of all axes because even advanced controls (like H∞-controls) can only control a small part of the mechanical modes – namely only those of observable and controllable states whose value can be derived from the positions of extern linear length measurement systems and/or rotary encoders on the motor or gear box shafts. Further problems are the unknown processing forces like cutting forces in machine tools during normal operation which make the estimation and control via an observer even more difficult. To start with, the open source Modelica Feed Drive Library which was developed at the Laboratory for Machine Tools, and Production Engineering (WZL) is extended from one axis design to the multi axes design. It is capable to simulate the mechanical, electrical and thermal behavior of permanent magnet synchronous machines with inverters, different gear boxes and ball screw drives in a mechanical system. To keep the calculation time down analytical equations are used for field and torque producing equivalent circuit, heat dissipation and mechanical torque at the shaft. As a first step, a small machine tool with a working area of 635 x 315 x 420 mm is taken apart, and the mechanical transfer behavior is measured with an impulse hammer and acceleration sensors. With the frequency transfer functions, a mechanical finite element model is built up which is reduced with substructure coupling to a mass-damper system which models the most important modes of the axes. The model is modelled with Modelica Feed Drive Library and validated by further relative measurements between machine table and spindle holder with a piezo actor and acceleration sensors. In a next step, the choice of possible components in motor catalogues is limited by derived analytical formulas which are based on well-known metrics to gain effective power and torque of the components. The simulation in Modelica is run with different permanent magnet synchronous motors, gear boxes and ball screw drives from different suppliers. To speed up the optimization different black-box optimization methods (Surrogate-based, gradient-based and evolutionary) are tested on the case. The objective that was chosen is to minimize the integral of the deviations if a step is given on the position controls of the different axes. Small values are good measures for a high dynamic axes. In each iteration (evaluation of one set of components) the control variables are adjusted automatically to have an overshoot less than 1%. It is obtained that the order of the components in optimization problem has a deep impact on the speed of the black-box optimization. An approach to do efficient black-box optimization for multi-axes design is presented in the last part. The authors would like to thank the German Research Foundation DFG for financial support of the project “Optimierung des mechatronischen Entwurfs von mehrachsigen Antriebssystemen (HE 5386/14-1 | 6954/4-1)” (English: Optimization of the Mechatronic Design of Multi-Axes Drive Systems).

Keywords: ball screw drive design, discrete optimization, forward feed drives, gear box design, linear drives, machine tools, motor design, multi-axes design

Procedia PDF Downloads 286
108 Magnetic Navigation in Underwater Networks

Authors: Kumar Divyendra

Abstract:

Underwater Sensor Networks (UWSNs) have wide applications in areas such as water quality monitoring, marine wildlife management etc. A typical UWSN system consists of a set of sensors deployed randomly underwater which communicate with each other using acoustic links. RF communication doesn't work underwater, and GPS too isn't available underwater. Additionally Automated Underwater Vehicles (AUVs) are deployed to collect data from some special nodes called Cluster Heads (CHs). These CHs aggregate data from their neighboring nodes and forward them to the AUVs using optical links when an AUV is in range. This helps reduce the number of hops covered by data packets and helps conserve energy. We consider the three-dimensional model of the UWSN. Nodes are initially deployed randomly underwater. They attach themselves to the surface using a rod and can only move upwards or downwards using a pump and bladder mechanism. We use graph theory concepts to maximize the coverage volume while every node maintaining connectivity with at least one surface node. We treat the surface nodes as landmarks and each node finds out its hop distance from every surface node. We treat these hop-distances as coordinates and use them for AUV navigation. An AUV intending to move closer to a node with given coordinates moves hop by hop through nodes that are closest to it in terms of these coordinates. In absence of GPS, multiple different approaches like Inertial Navigation System (INS), Doppler Velocity Log (DVL), computer vision-based navigation, etc., have been proposed. These systems have their own drawbacks. INS accumulates error with time, vision techniques require prior information about the environment. We propose a method that makes use of the earth's magnetic field values for navigation and combines it with other methods that simultaneously increase the coverage volume under the UWSN. The AUVs are fitted with magnetometers that measure the magnetic intensity (I), horizontal inclination (H), and Declination (D). The International Geomagnetic Reference Field (IGRF) is a mathematical model of the earth's magnetic field, which provides the field values for the geographical coordinateson earth. Researchers have developed an inverse deep learning model that takes the magnetic field values and predicts the location coordinates. We make use of this model within our work. We combine this with with the hop-by-hop movement described earlier so that the AUVs move in such a sequence that the deep learning predictor gets trained as quickly and precisely as possible We run simulations in MATLAB to prove the effectiveness of our model with respect to other methods described in the literature.

Keywords: clustering, deep learning, network backbone, parallel computing

Procedia PDF Downloads 98
107 A Case Study Report on Acoustic Impact Assessment and Mitigation of the Hyprob Research Plant

Authors: D. Bianco, A. Sollazzo, M. Barbarino, G. Elia, A. Smoraldi, N. Favaloro

Abstract:

The activities, described in the present paper, have been conducted in the framework of the HYPROB-New Program, carried out by the Italian Aerospace Research Centre (CIRA) promoted and funded by the Italian Ministry of University and Research (MIUR) in order to improve the National background on rocket engine systems for space applications. The Program has the strategic objective to improve National system and technology capabilities in the field of liquid rocket engines (LRE) for future Space Propulsion Systems applications, with specific regard to LOX/LCH4 technology. The main purpose of the HYPROB program is to design and build a Propulsion Test Facility (HIMP) allowing test activities on Liquid Thrusters. The development of skills in liquid rocket propulsion can only pass through extensive test campaign. Following its mission, CIRA has planned the development of new testing facilities and infrastructures for space propulsion characterized by adequate sizes and instrumentation. The IMP test cell is devoted to testing articles representative of small combustion chambers, fed with oxygen and methane, both in liquid and gaseous phase. This article describes the activities that have been carried out for the evaluation of the acoustic impact, and its consequent mitigation. The impact of the simulated acoustic disturbance has been evaluated, first, using an approximated method based on experimental data by Baumann and Coney, included in “Noise and Vibration Control Engineering” edited by Vér and Beranek. This methodology, used to evaluate the free-field radiation of jet in ideal acoustical medium, analyzes in details the jet noise and assumes sources acting at the same time. It considers as principal radiation sources the jet mixing noise, caused by the turbulent mixing of jet gas and the ambient medium. Empirical models, allowing a direct calculation of the Sound Pressure Level, are commonly used for rocket noise simulation. The model named after K. Eldred is probably one of the most exploited in this area. In this paper, an improvement of the Eldred Standard model has been used for a detailed investigation of the acoustical impact of the Hyprob facility. This new formulation contains an explicit expression for the acoustic pressure of each equivalent noise source, in terms of amplitude and phase, allowing the investigation of the sources correlation effects and their propagation through wave equations. In order to enhance the evaluation of the facility acoustic impact, including an assessment of the mitigation strategies to be set in place, a more advanced simulation campaign has been conducted using both an in-house code for noise propagation and scattering, and a commercial code for industrial noise environmental impact, CadnaA. The noise prediction obtained with the revised Eldred-based model has then been used for formulating an empirical/BEM (Boundary Element Method) hybrid approach allowing the evaluation of the barrier mitigation effect, at the design. This approach has been compared with the analogous empirical/ray-acoustics approach, implemented within CadnaA using a customized definition of sources and directivity factor. The resulting impact evaluation study is reported here, along with the design-level barrier optimization for noise mitigation.

Keywords: acoustic impact, industrial noise, mitigation, rocket noise

Procedia PDF Downloads 146
106 Characterization of Aerosol Particles in Ilorin, Nigeria: Ground-Based Measurement Approach

Authors: Razaq A. Olaitan, Ayansina Ayanlade

Abstract:

Understanding aerosol properties is the main goal of global research in order to lower the uncertainty associated with climate change in the trends and magnitude of aerosol particles. In order to identify aerosol particle types, optical properties, and the relationship between aerosol properties and particle concentration between 2019 and 2021, a study conducted in Ilorin, Nigeria, examined the aerosol robotic network's ground-based sun/sky scanning radiometer. The AERONET algorithm version 2 was utilized to retrieve monthly data on aerosol optical depth and angstrom exponent. The version 3 algorithm, which is an almucantar level 2 inversion, was employed to retrieve daily data on single scattering albedo and aerosol size distribution. Excel 2016 was used to analyze the data's monthly, seasonal, and annual mean averages. The distribution of different types of aerosols was analyzed using scatterplots, and the optical properties of the aerosol were investigated using pertinent mathematical theorems. To comprehend the relationships between particle concentration and properties, correlation statistics were employed. Based on the premise that aerosol characteristics must remain constant in both magnitude and trend across time and space, the study's findings indicate that the types of aerosols identified between 2019 and 2021 are as follows: 29.22% urban industrial (UI) aerosol type, 37.08% desert (D) aerosol type, 10.67% biomass burning (BB), and 23.03% urban mix (Um) aerosol type. Convective wind systems, which frequently carry particles as they blow over long distances in the atmosphere, have been responsible for the peak-of-the-columnar aerosol loadings, which were observed during August of the study period. The study has shown that while coarse mode particles dominate, fine particles are increasing in seasonal and annual trends. Burning biomass and human activities in the city are linked to these trends. The study found that the majority of particles are highly absorbing black carbon, with the fine mode having a volume median radius of 0.08 to 0.12 meters. The investigation also revealed that there is a positive coefficient of correlation (r = 0.57) between changes in aerosol particle concentration and changes in aerosol properties. Human activity is rapidly increasing in Ilorin, causing changes in aerosol properties, indicating potential health risks from climate change and human influence on geological and environmental systems.

Keywords: aerosol loading, aerosol types, health risks, optical properties

Procedia PDF Downloads 63
105 Investigating the Impacts on Cyclist Casualty Severity at Roundabouts: A UK Case Study

Authors: Nurten Akgun, Dilum Dissanayake, Neil Thorpe, Margaret C. Bell

Abstract:

Cycling has gained a great attention with comparable speeds, low cost, health benefits and reducing the impact on the environment. The main challenge associated with cycling is the provision of safety for the people choosing to cycle as their main means of transport. From the road safety point of view, cyclists are considered as vulnerable road users because they are at higher risk of serious casualty in the urban network but more specifically at roundabouts. This research addresses the development of an enhanced mathematical model by including a broad spectrum of casualty related variables. These variables were geometric design measures (approach number of lanes and entry path radius), speed limit, meteorological condition variables (light, weather, road surface) and socio-demographic characteristics (age and gender), as well as contributory factors. Contributory factors included driver’s behavior related variables such as failed to look properly, sudden braking, a vehicle passing too close to a cyclist, junction overshot, failed to judge other person’s path, restart moving off at the junction, poor turn or manoeuvre and disobeyed give-way. Tyne and Wear in the UK were selected as a case study area. The cyclist casualty data was obtained from UK STATS19 National dataset. The reference categories for the regression model were set to slight and serious cyclist casualties. Therefore, binary logistic regression was applied. Binary logistic regression analysis showed that approach number of lanes was statistically significant at the 95% level of confidence. A higher number of approach lanes increased the probability of severity of cyclist casualty occurrence. In addition, sudden braking statistically significantly increased the cyclist casualty severity at the 95% level of confidence. The result concluded that cyclist casualty severity was highly related to approach a number of lanes and sudden braking. Further research should be carried out an in-depth analysis to explore connectivity of sudden braking and approach number of lanes in order to investigate the driver’s behavior at approach locations. The output of this research will inform investment in measure to improve the safety of cyclists at roundabouts.

Keywords: binary logistic regression, casualty severity, cyclist safety, roundabout

Procedia PDF Downloads 178
104 Numerical Investigation of Solid Subcooling on a Low Melting Point Metal in Latent Thermal Energy Storage Systems Based on Flat Slab Configuration

Authors: Cleyton S. Stampa

Abstract:

This paper addresses the perspectives of using low melting point metals (LMPMs) as phase change materials (PCMs) in latent thermal energy storage (LTES) units, through a numerical approach. This is a new class of PCMs that has been one of the most prospective alternatives to be considered in LTES, due to these materials present high thermal conductivity and elevated heat of fusion, per unit volume. The chosen type of LTES consists of several horizontal parallel slabs filled with PCM. The heat transfer fluid (HTF) circulates through the channel formed between each two consecutive slabs on a laminar regime through forced convection. The study deals with the LTES charging process (heat-storing) by using pure gallium as PCM, and it considers heat conduction in the solid phase during melting driven by natural convection in the melt. The transient heat transfer problem is analyzed in one arbitrary slab under the influence of the HTF. The mathematical model to simulate the isothermal phase change is based on a volume-averaged enthalpy method, which is successfully verified by comparing its predictions with experimental data from works available in the pertinent literature. Regarding the convective heat transfer problem in the HTF, it is assumed that the flow is thermally developing, whereas the velocity profile is already fully developed. The study aims to learn about the effect of the solid subcooling in the melting rate through comparisons with the melting process of the solid in which it starts to melt from its fusion temperature. In order to best understand this effect in a metallic compound, as it is the case of pure gallium, the study also evaluates under the same conditions established for the gallium, the melting process of commercial paraffin wax (organic compound) and of the calcium chloride hexahydrate (CaCl₂ 6H₂O-inorganic compound). In the present work, it is adopted the best options that have been established by several researchers in their parametric studies with respect to this type of LTES, which lead to high values of thermal efficiency. To do so, concerning with the geometric aspects, one considers a gap of the channel formed by two consecutive slabs, thickness and length of the slab. About the HTF, one considers the type of fluid, the mass flow rate, and inlet temperature.

Keywords: flat slab, heat storing, pure metal, solid subcooling

Procedia PDF Downloads 141
103 Development and Application of an Intelligent Masonry Modulation in BIM Tools: Literature Review

Authors: Sara A. Ben Lashihar

Abstract:

The heritage building information modelling (HBIM) of the historical masonry buildings has expanded lately to meet the urgent needs for conservation and structural analysis. The masonry structures are unique features for ancient building architectures worldwide that have special cultural, spiritual, and historical significance. However, there is a research gap regarding the reliability of the HBIM modeling process of these structures. The HBIM modeling process of the masonry structures faces significant challenges due to the inherent complexity and uniqueness of their structural systems. Most of these processes are based on tracing the point clouds and rarely follow documents, archival records, or direct observation. The results of these techniques are highly abstracted models where the accuracy does not exceed LOD 200. The masonry assemblages, especially curved elements such as arches, vaults, and domes, are generally modeled with standard BIM components or in-place models, and the brick textures are graphically input. Hence, future investigation is necessary to establish a methodology to generate automatically parametric masonry components. These components are developed algorithmically according to mathematical and geometric accuracy and the validity of the survey data. The main aim of this paper is to provide a comprehensive review of the state of the art of the existing researches and papers that have been conducted on the HBIM modeling of the masonry structural elements and the latest approaches to achieve parametric models that have both the visual fidelity and high geometric accuracy. The paper reviewed more than 800 articles, proceedings papers, and book chapters focused on "HBIM and Masonry" keywords from 2017 to 2021. The studies were downloaded from well-known, trusted bibliographic databases such as Web of Science, Scopus, Dimensions, and Lens. As a starting point, a scientometric analysis was carried out using VOSViewer software. This software extracts the main keywords in these studies to retrieve the relevant works. It also calculates the strength of the relationships between these keywords. Subsequently, an in-depth qualitative review followed the studies with the highest frequency of occurrence and the strongest links with the topic, according to the VOSViewer's results. The qualitative review focused on the latest approaches and the future suggestions proposed in these researches. The findings of this paper can serve as a valuable reference for researchers, and BIM specialists, to make more accurate and reliable HBIM models for historic masonry buildings.

Keywords: HBIM, masonry, structure, modeling, automatic, approach, parametric

Procedia PDF Downloads 165
102 Measuring Systems Interoperability: A Focal Point for Standardized Assessment of Regional Disaster Resilience

Authors: Joel Thomas, Alexa Squirini

Abstract:

The key argument of this research is that every element of systems interoperability is an enabler of regional disaster resilience, and arguably should become a focal point for standardized measurement of communities’ ability to work together. Few resilience research efforts have focused on the development and application of solutions that measurably improve communities’ ability to work together at a regional level, yet a majority of the most devastating and disruptive disasters are those that have had a regional impact. The key findings of the research include a unique theoretical, mathematical, and operational approach to tangibly and defensibly measure and assess systems interoperability required to support crisis information management activities performed by governments, the private sector, and humanitarian organizations. A most effective way for communities to measurably improve regional disaster resilience is through deliberately executed disaster preparedness activities. Developing interoperable crisis information management capabilities is a crosscutting preparedness activity that greatly affects a community’s readiness and ability to work together in times of crisis. Thus, improving communities’ human and technical posture to work together in advance of a crisis, with the ultimate goal of enabling information sharing to support coordination and the careful management of available resources, is a primary means by which communities may improve regional disaster resilience. This model describes how systems interoperability can be qualitatively and quantitatively assessed when characterized as five forms of capital: governance; standard operating procedures; technology; training and exercises; and usage. The unique measurement framework presented defines the relationships between systems interoperability, information sharing and safeguarding, operational coordination, community preparedness and regional disaster resilience, and offers a means by which to implement real-world solutions and measure progress over the course of a multi-year program. The model is being developed and piloted in partnership with the U.S. Department of Homeland Security (DHS) Science and Technology Directorate (S&T) and the North Atlantic Treaty Organization (NATO) Advanced Regional Civil Emergency Coordination Pilot (ARCECP) with twenty-three organizations in Bosnia and Herzegovina, Croatia, Macedonia, and Montenegro. The intended effect of the model implementation is to enable communities to answer two key questions: 'Have we measurably improved crisis information management capabilities as a result of this effort?' and, 'As a result, are we more resilient?'

Keywords: disaster, interoperability, measurement, resilience

Procedia PDF Downloads 143
101 Modeling Standpipe Pressure Using Multivariable Regression Analysis by Combining Drilling Parameters and a Herschel-Bulkley Model

Authors: Seydou Sinde

Abstract:

The aims of this paper are to formulate mathematical expressions that can be used to estimate the standpipe pressure (SPP). The developed formulas take into account the main factors that, directly or indirectly, affect the behavior of SPP values. Fluid rheology and well hydraulics are some of these essential factors. Mud Plastic viscosity, yield point, flow power, consistency index, flow rate, drillstring, and annular geometries are represented by the frictional pressure (Pf), which is one of the input independent parameters and is calculated, in this paper, using Herschel-Bulkley rheological model. Other input independent parameters include the rate of penetration (ROP), applied load or weight on the bit (WOB), bit revolutions per minute (RPM), bit torque (TRQ), and hole inclination and direction coupled in the hole curvature or dogleg (DL). The technique of repeating parameters and Buckingham PI theorem are used to reduce the number of the input independent parameters into the dimensionless revolutions per minute (RPMd), the dimensionless torque (TRQd), and the dogleg, which is already in the dimensionless form of radians. Multivariable linear and polynomial regression technique using PTC Mathcad Prime 4.0 is used to analyze and determine the exact relationships between the dependent parameter, which is SPP, and the remaining three dimensionless groups. Three models proved sufficiently satisfactory to estimate the standpipe pressure: multivariable linear regression model 1 containing three regression coefficients for vertical wells; multivariable linear regression model 2 containing four regression coefficients for deviated wells; and multivariable polynomial quadratic regression model containing six regression coefficients for both vertical and deviated wells. Although that the linear regression model 2 (with four coefficients) is relatively more complex and contains an additional term over the linear regression model 1 (with three coefficients), the former did not really add significant improvements to the later except for some minor values. Thus, the effect of the hole curvature or dogleg is insignificant and can be omitted from the input independent parameters without significant losses of accuracy. The polynomial quadratic regression model is considered the most accurate model due to its relatively higher accuracy for most of the cases. Data of nine wells from the Middle East were used to run the developed models with satisfactory results provided by all of them, even if the multivariable polynomial quadratic regression model gave the best and most accurate results. Development of these models is useful not only to monitor and predict, with accuracy, the values of SPP but also to early control and check for the integrity of the well hydraulics as well as to take the corrective actions should any unexpected problems appear, such as pipe washouts, jet plugging, excessive mud losses, fluid gains, kicks, etc.

Keywords: standpipe, pressure, hydraulics, nondimensionalization, parameters, regression

Procedia PDF Downloads 84
100 Computational Analysis of Thermal Degradation in Wind Turbine Spars' Equipotential Bonding Subjected to Lightning Strikes

Authors: Antonio A. M. Laudani, Igor O. Golosnoy, Ole T. Thomsen

Abstract:

Rotor blades of large, modern wind turbines are highly susceptible to downward lightning strikes, as well as to triggering upward lightning; consequently, it is necessary to equip them with an effective lightning protection system (LPS) in order to avoid any damage. The performance of existing LPSs is affected by carbon fibre reinforced polymer (CFRP) structures, which lead to lightning-induced damage in the blades, e.g. via electrical sparks. A solution to prevent internal arcing would be to electrically bond the LPS and the composite structures such that to obtain the same electric potential. Nevertheless, elevated temperatures are achieved at the joint interfaces because of high contact resistance, which melts and vaporises some of the epoxy resin matrix around the bonding. The produced high-pressure gasses open up the bonding and can ignite thermal sparks. The objective of this paper is to predict the current density distribution and the temperature field in the adhesive joint cross-section, in order to check whether the resin pyrolysis temperature is achieved and any damage is expected. The finite element method has been employed to solve both the current and heat transfer problems, which are considered weakly coupled. The mathematical model for electric current includes Maxwell-Ampere equation for induced electric field solved together with current conservation, while the thermal field is found from heat diffusion equation. In this way, the current sub-model calculates Joule heat release for a chosen bonding configuration, whereas the thermal analysis allows to determining threshold values of voltage and current density not to be exceeded in order to maintain the temperature across the joint below the pyrolysis temperature, therefore preventing the occurrence of outgassing. In addition, it provides an indication of the minimal number of bonding points. It is worth to mention that the numerical procedures presented in this study can be tailored and applied to any type of joints other than adhesive ones for wind turbine blades. For instance, they can be applied for lightning protection of aerospace bolted joints. Furthermore, they can even be customized to predict the electromagnetic response under lightning strikes of other wind turbine systems, such as nacelle and hub components.

Keywords: carbon fibre reinforced polymer, equipotential bonding, finite element method, FEM, lightning protection system, LPS, wind turbine blades

Procedia PDF Downloads 164
99 Application of Multilinear Regression Analysis for Prediction of Synthetic Shear Wave Velocity Logs in Upper Assam Basin

Authors: Triveni Gogoi, Rima Chatterjee

Abstract:

Shear wave velocity (Vs) estimation is an important approach in the seismic exploration and characterization of a hydrocarbon reservoir. There are varying methods for prediction of S-wave velocity, if recorded S-wave log is not available. But all the available methods for Vs prediction are empirical mathematical models. Shear wave velocity can be estimated using P-wave velocity by applying Castagna’s equation, which is the most common approach. The constants used in Castagna’s equation vary for different lithologies and geological set-ups. In this study, multiple regression analysis has been used for estimation of S-wave velocity. The EMERGE module from Hampson-Russel software has been used here for generation of S-wave log. Both single attribute and multi attributes analysis have been carried out for generation of synthetic S-wave log in Upper Assam basin. Upper Assam basin situated in North Eastern India is one of the most important petroleum provinces of India. The present study was carried out using four wells of the study area. Out of these wells, S-wave velocity was available for three wells. The main objective of the present study is a prediction of shear wave velocities for wells where S-wave velocity information is not available. The three wells having S-wave velocity were first used to test the reliability of the method and the generated S-wave log was compared with actual S-wave log. Single attribute analysis has been carried out for these three wells within the depth range 1700-2100m, which corresponds to Barail group of Oligocene age. The Barail Group is the main target zone in this study, which is the primary producing reservoir of the basin. A system generated list of attributes with varying degrees of correlation appeared and the attribute with the highest correlation was concerned for the single attribute analysis. Crossplot between the attributes shows the variation of points from line of best fit. The final result of the analysis was compared with the available S-wave log, which shows a good visual fit with a correlation of 72%. Next multi-attribute analysis has been carried out for the same data using all the wells within the same analysis window. A high correlation of 85% has been observed between the output log from the analysis and the recorded S-wave. The almost perfect fit between the synthetic S-wave and the recorded S-wave log validates the reliability of the method. For further authentication, the generated S-wave data from the wells have been tied to the seismic and correlated them. Synthetic share wave log has been generated for the well M2 where S-wave is not available and it shows a good correlation with the seismic. Neutron porosity, density, AI and P-wave velocity are proved to be the most significant variables in this statistical method for S-wave generation. Multilinear regression method thus can be considered as a reliable technique for generation of shear wave velocity log in this study.

Keywords: Castagna's equation, multi linear regression, multi attribute analysis, shear wave logs

Procedia PDF Downloads 229
98 Research on the Optimization of Satellite Mission Scheduling

Authors: Pin-Ling Yin, Dung-Ying Lin

Abstract:

Satellites play an important role in our daily lives, from monitoring the Earth's environment and providing real-time disaster imagery to predicting extreme weather events. As technology advances and demands increase, the tasks undertaken by satellites have become increasingly complex, with more stringent resource management requirements. A common challenge in satellite mission scheduling is the limited availability of resources, including onboard memory, ground station accessibility, and satellite power. In this context, efficiently scheduling and managing the increasingly complex satellite missions under constrained resources has become a critical issue that needs to be addressed. The core of Satellite Onboard Activity Planning (SOAP) lies in optimizing the scheduling of the received tasks, arranging them on a timeline to form an executable onboard mission plan. This study aims to develop an optimization model that considers the various constraints involved in satellite mission scheduling, such as the non-overlapping execution periods for certain types of tasks, the requirement that tasks must fall within the contact range of specified types of ground stations during their execution, onboard memory capacity limits, and the collaborative constraints between different types of tasks. Specifically, this research constructs a mixed-integer programming mathematical model and solves it with a commercial optimization package. Simultaneously, as the problem size increases, the problem becomes more difficult to solve. Therefore, in this study, a heuristic algorithm has been developed to address the challenges of using commercial optimization package as the scale increases. The goal is to effectively plan satellite missions, maximizing the total number of executable tasks while considering task priorities and ensuring that tasks can be completed as early as possible without violating feasibility constraints. To verify the feasibility and effectiveness of the algorithm, test instances of various sizes were generated, and the results were validated through feedback from on-site users and compared against solutions obtained from a commercial optimization package. Numerical results show that the algorithm performs well under various scenarios, consistently meeting user requirements. The satellite mission scheduling algorithm proposed in this study can be flexibly extended to different types of satellite mission demands, achieving optimal resource allocation and enhancing the efficiency and effectiveness of satellite mission execution.

Keywords: mixed-integer programming, meta-heuristics, optimization, resource management, satellite mission scheduling

Procedia PDF Downloads 25
97 Risk and Emotion: Measuring the Effect of Emotion and Other Visceral Factors on Decision Making under Risk

Authors: Michael Mihalicz, Aziz Guergachi

Abstract:

Background: The science of modelling choice preferences has evolved over centuries into an interdisciplinary field contributing to several branches of Microeconomics and Mathematical Psychology. Early theories in Decision Science rested on the logic of rationality, but as it and related fields matured, descriptive theories emerged capable of explaining systematic violations of rationality through cognitive mechanisms underlying the thought processes that guide human behaviour. Cognitive limitations are not, however, solely responsible for systematic deviations from rationality and many are now exploring the effect of visceral factors as the more dominant drivers. The current study builds on the existing literature by exploring sleep deprivation, thermal comfort, stress, hunger, fear, anger and sadness as moderators to three distinct elements that define individual risk preference under Cumulative Prospect Theory. Methodology: This study is designed to compare the risk preference of participants experiencing an elevated affective or visceral state to those in a neutral state using nonparametric elicitation methods across three domains. Two experiments will be conducted simultaneously using different methodologies. The first will determine visceral states and risk preferences randomly over a two-week period by prompting participants to complete an online survey remotely. In each round of questions, participants will be asked to self-assess their current state using Visual Analogue Scales before answering a series of lottery-style elicitation questions. The second experiment will be conducted in a laboratory setting using psychological primes to induce a desired state. In this experiment, emotional states will be recorded using emotion analytics and used a basis for comparison between the two methods. Significance: The expected results include a series of measurable and systematic effects on the subjective interpretations of gamble attributes and evidence supporting the proposition that a portion of the variability in human choice preferences unaccounted for by cognitive limitations can be explained by interacting visceral states. Significant results will promote awareness about the subconscious effect that emotions and other drive states have on the way people process and interpret information, and can guide more effective decision making by informing decision-makers of the sources and consequences of irrational behaviour.

Keywords: decision making, emotions, prospect theory, visceral factors

Procedia PDF Downloads 149
96 An Initiative for Improving Pre-Service Teachers’ Pedagogical Content Knowledge in Mathematics

Authors: Taik Kim

Abstract:

Mathematics anxiety has an important consequence for teacher practices that influence students’ attitudes and achievement. Elementary prospective teachers have the highest levels of mathematics anxiety in comparison with other college majors. In his teaching practice, the researcher developed a highly successful teaching model to reduce pre-service teachers’ higher math anxiety and simultaneously to improve their pedagogical math content knowledge. There were eighty one participants from 2015 to 2018 who took the Mathematics for Elementary Teachers I and II. As the analysis data indicated, elementary prospective teachers’ math anxiety was greatly reduced with improving their math pedagogical knowledge. U.S encounters a critical shortage of well qualified educators. To solve the issue, it is essential to engage students in a long-term commitmentto shape better teachers, who will, in turn, produce k-12 school students that are better-prepared for college students. It is imperative that new instructional strategies are implemented to improve student learning and address declining interest, poor preparedness, a lack of diverse representation, and low persistence of students in mathematics. Many four year college students take math courses from the math department in the College of Arts& Science and then take methodology courses from the College of Education. Before taking pedagogy, many students struggle in learning mathematics and lose their confidence. Since the content course focus on college level math, instead of pre service teachers’ teaching area, per se elementary math, they do not have a chance to improve their teaching skills on topics which eventually they teach. The research, a joint appointment of math and math education, has been involved in teaching content and pedagogy. As the result indicated, participants were able to math content at the same time how to teach. In conclusion, the new initiative to use several teaching strategies was able not only to increase elementary prospective teachers’ mathematical skills and knowledge but also to improve their attitude toward mathematics. We need an innovative teaching strategy which implements evidence-based tactics in redesigning a education and math to improve pre service teachers’math skills and which can improve students’ attitude toward math and students’ logical and reasoning skills. Implementation of these best practices in the local school district is particularly important because K-8 teachers are not generally familiar with lab-based instruction. At the same time, local school teachers will learn a new way how to teach math. This study can be a vital teacher education model expanding throughout the State and nationwide. In summary, this study yields invaluable information how to improve teacher education in the elementary level and, eventually, how to enhance K-8 students’ math achievement.

Keywords: quality of education and improvement method, teacher education, innovative teaching and learning methodologies, math education

Procedia PDF Downloads 104
95 The Phenomenon of the Seawater Intrusion with Fresh Groundwater in the Arab Region

Authors: Kassem Natouf, Ihab Jnad

Abstract:

In coastal aquifers, the interface between fresh groundwater and salty seawater may shift inland, reaching coastal wells and causing an increase in the salinity of the water they pump, putting them out of service. Many Arab coastal sites suffer from this phenomenon due to the increased pumping of coastal groundwater. This research aims to prepare a comprehensive study describing the common characteristics of the phenomenon of seawater intrusion with coastal freshwater aquifers in the Arab region, its general and specific causes and negative effects, in a way that contributes to overcoming this phenomenon, and to exchanging expertise between Arab countries in studying and analyzing it, leading to overcoming it. This research also aims to build geographical and relational databases for data, information and studies available in Arab countries about seawater intrusion with freshwater so as to provide the data and information necessary for managing groundwater resources on Arab coasts, including studying the effects of climate change on these resources and helping decision-makers in developing executive programs to overcome the seawater intrusion with groundwater. The research relied on the methodology of analysis and comparison, where the available information and data about the phenomenon in the Arab region were collected. After that, the information and data collected were studied and analyzed, and the causes of the phenomenon in each case, its results, and solutions for prevention were stated. Finally, the different cases were compared, and the common causes, results, and methods of treatment between them were deduced, and a technical report summarizing that was prepared. To overcome the phenomenon of seawater intrusion with fresh groundwater: (1) It is necessary to develop efforts to monitor the quantity and quality of groundwater on the coasts and to develop mathematical models to predict the impact of climate change, sea level rise, and human activities on coastal groundwater. (2) Over-pumping of coastal aquifers is an important cause of seawater intrusion. To mitigate this problem, Arab countries should reduce groundwater pumping and promote rainwater harvesting, surface irrigation, and water recycling practices. (3) Artificial recharge of coastal groundwater with various forms of water, whether fresh or treated, is a promising technology to mitigate the effects of seawater intrusion.

Keywords: coastal aquifers, seawater intrusion, fresh groundwater, salinity increase, Arab region, groundwater management, climate change effects, sustainable water practices, over-pumping, artificial recharge, monitoring and modeling, data databases, groundwater resources, negative effects, comparative analysis, technical report, water scarcity, groundwater quality, decision-making, environmental impact, agricultural practices

Procedia PDF Downloads 35
94 Geospatial and Statistical Evidences of Non-Engineered Landfill Leachate Effects on Groundwater Quality in a Highly Urbanised Area of Nigeria

Authors: David A. Olasehinde, Peter I. Olasehinde, Segun M. A. Adelana, Dapo O. Olasehinde

Abstract:

An investigation was carried out on underground water system dynamics within Ilorin metropolis to monitor the subsurface flow and its corresponding pollution. Africa population growth rate is the highest among the regions of the world, especially in urban areas. A corresponding increase in waste generation and a change in waste composition from predominantly organic to non-organic waste has also been observed. Percolation of leachate from non-engineered landfills, the chief means of waste disposal in many of its cities, constitutes a threat to the underground water bodies. Ilorin city, a transboundary town in southwestern Nigeria, is a ready microcosm of Africa’s unique challenge. In spite of the fact that groundwater is naturally protected from common contaminants such as bacteria as the subsurface provides natural attenuation process, groundwater samples have been noted to however possesses relatively higher dissolved chemical contaminants such as bicarbonate, sodium, and chloride which poses a great threat to environmental receptors and human consumption. The Geographic Information System (GIS) was used as a tool to illustrate, subsurface dynamics and the corresponding pollutant indicators. Forty-four sampling points were selected around known groundwater pollutant, major old dumpsites without landfill liners. The results of the groundwater flow directions and the corresponding contaminant transport were presented using expert geospatial software. The experimental results were subjected to four descriptive statistical analyses, namely: principal component analysis, Pearson correlation analysis, scree plot analysis, and Ward cluster analysis. Regression model was also developed aimed at finding functional relationships that can adequately relate or describe the behaviour of water qualities and the hypothetical factors landfill characteristics that may influence them namely; distance of source of water body from dumpsites, static water level of groundwater, subsurface permeability (inferred from hydraulic gradient), and soil infiltration. The regression equations developed were validated using the graphical approach. Underground water seems to flow from the northern portion of Ilorin metropolis down southwards transporting contaminants. Pollution pattern in the study area generally assumed a bimodal pattern with the major concentration of the chemical pollutants in the underground watershed and the recharge. The correlation between contaminant concentrations and the spread of pollution indicates that areas of lower subsurface permeability display a higher concentration of dissolved chemical content. The principal component analysis showed that conductivity, suspended solids, calcium hardness, total dissolved solids, total coliforms, and coliforms were the chief contaminant indicators in the underground water system in the study area. Pearson correlation revealed a high correlation of electrical conductivity for many parameters analyzed. In the same vein, the regression models suggest that the heavier the molecular weight of a chemical contaminant of a pollutant from a point source, the greater the pollution of the underground water system at a short distance. The study concludes that the associative properties of landfill have a significant effect on groundwater quality in the study area.

Keywords: dumpsite, leachate, groundwater pollution, linear regression, principal component

Procedia PDF Downloads 117
93 Modeling Search-And-Rescue Operations by Autonomous Mobile Robots at Sea

Authors: B. Kriheli, E. Levner, T. C. E. Cheng, C. T. Ng

Abstract:

During the last decades, research interest in planning, scheduling, and control of emergency response operations, especially people rescue and evacuation from the dangerous zone of marine accidents, has increased dramatically. Until the survivors (called ‘targets’) are found and saved, it may cause loss or damage whose extent depends on the location of the targets and the search duration. The problem is to efficiently search for and detect/rescue the targets as soon as possible with the help of intelligent mobile robots so as to maximize the number of saved people and/or minimize the search cost under restrictions on the amount of saved people within the allowable response time. We consider a special situation when the autonomous mobile robots (AMR), e.g., unmanned aerial vehicles and remote-controlled robo-ships have no operator on board as they are guided and completely controlled by on-board sensors and computer programs. We construct a mathematical model for the search process in an uncertain environment and provide a new fast algorithm for scheduling the activities of the autonomous robots during the search-and rescue missions after an accident at sea. We presume that in the unknown environments, the AMR’s search-and-rescue activity is subject to two types of error: (i) a 'false-negative' detection error where a target object is not discovered (‘overlooked') by the AMR’s sensors in spite that the AMR is in a close neighborhood of the latter and (ii) a 'false-positive' detection error, also known as ‘a false alarm’, in which a clean place or area is wrongly classified by the AMR’s sensors as a correct target. As the general resource-constrained discrete search problem is NP-hard, we restrict our study to finding local-optimal strategies. A specificity of the considered operational research problem in comparison with the traditional Kadane-De Groot-Stone search models is that in our model the probability of the successful search outcome depends not only on cost/time/probability parameters assigned to each individual location but, as well, on parameters characterizing the entire history of (unsuccessful) search before selecting any next location. We provide a fast approximation algorithm for finding the AMR route adopting a greedy search strategy in which, in each step, the on-board computer computes a current search effectiveness value for each location in the zone and sequentially searches for a location with the highest search effectiveness value. Extensive experiments with random and real-life data provide strong evidence in favor of the suggested operations research model and corresponding algorithm.

Keywords: disaster management, intelligent robots, scheduling algorithm, search-and-rescue at sea

Procedia PDF Downloads 172