Search results for: dynamic network analysis
29994 Experimental Investigation of Fluid Dynamic Effects on Crystallisation Scale Growth and Suppression in Agitation Tank
Authors: Prasanjit Das, M. M. K. Khan, M. G. Rasul, Jie Wu, I. Youn
Abstract:
Mineral scale formation is undoubtedly a more serious problem in the mineral industry than other process industries. To better understand scale growth and suppression, an experimental model is proposed in this study for supersaturated crystallised solutions commonly found in mineral process plants. In this experiment, surface crystallisation of potassium nitrate (KNO3) on the wall of the agitation tank and agitation effects on the scale growth and suppression are studied. The new quantitative scale suppression model predicts that at lower agitation speed, the scale growth rate is enhanced and at higher agitation speed, the scale suppression rate increases due to the increased flow erosion effect. A lab-scale agitation tank with and without baffles were used as a benchmark in this study. The fluid dynamic effects on scale growth and suppression in the agitation tank with three different size impellers (diameter 86, 114, 160 mm and model A310 with flow number 0.56) at various ranges of rotational speed (up to 700 rpm) and solution with different concentration (4.5, 4.75 and 5.25 mol/dm3) were investigated. For more elucidation, the effects of the different size of the impeller on wall surface scale growth and suppression rate as well as bottom settled scale accumulation rate are also discussed. Emphasis was placed on applications in the mineral industry, although results are also relevant to other industrial applications.Keywords: agitation tank, crystallisation, impeller speed, scale
Procedia PDF Downloads 22029993 Artificial Bee Colony Based Modified Energy Efficient Predictive Routing in MANET
Authors: Akhil Dubey, Rajnesh Singh
Abstract:
In modern days there occur many rapid modifications in field of ad hoc network. These modifications create many revolutionary changes in the routing. Predictive energy efficient routing is inspired on the bee’s behavior of swarm intelligence. Predictive routing improves the efficiency of routing in the energetic point of view. The main aim of this routing is the minimum energy consumption during communication and maximized intermediate node’s remaining battery power. This routing is based on food searching behavior of bees. There are two types of bees for the exploration phase the scout bees and for the evolution phase forager bees use by this routing. This routing algorithm computes the energy consumption, fitness ratio and goodness of the path. In this paper we review the literature related with predictive routing, presenting modified routing and simulation result of this algorithm comparison with artificial bee colony based routing schemes in MANET and see the results of path fitness and probability of fitness.Keywords: mobile ad hoc network, artificial bee colony, PEEBR, modified predictive routing
Procedia PDF Downloads 41429992 Structural Characterization and Hot Deformation Behaviour of Al3Ni2/Al3Ni in-situ Core-shell intermetallic in Al-4Cu-Ni Composite
Authors: Ganesh V., Asit Kumar Khanra
Abstract:
An in-situ powder metallurgy technique was employed to create Ni-Al3Ni/Al3Ni2 core-shell-shaped aluminum-based intermetallic reinforced composites. The impact of Ni addition on the phase composition, microstructure, and mechanical characteristics of the Al-4Cu-xNi (x = 0, 2, 4, 6, 8, 10 wt.%) in relation to various sintering temperatures was investigated. Microstructure evolution was extensively examined using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), and transmission electron microscopy (TEM) techniques. Initially, under sintering conditions, the formation of "Single Core-Shell" structures was observed, consisting of Ni as the core with Al3Ni2 intermetallic, whereas samples sintered at 620°C exhibited both "Single Core-Shell" and "Double Core-Shell" structures containing Al3Ni2 and Al3Ni intermetallics formed between the Al matrix and Ni reinforcements. The composite achieved a high compressive yield strength of 198.13 MPa and ultimate strength of 410.68 MPa, with 24% total elongation for the sample containing 10 wt.% Ni. Additionally, there was a substantial increase in hardness, reaching 124.21 HV, which is 2.4 times higher than that of the base aluminum. Nanoindentation studies showed hardness values of 1.54, 4.65, 21.01, 13.16, 5.52, 6.27, and 8.39GPa corresponding to α-Al matrix, Ni, Al3Ni2, Ni and Al3Ni2 interface, Al3Ni, and their respective interfaces. Even at 200°C, it retained 54% of its room temperature strength (90.51 MPa). To investigate the deformation behavior of the composite material, experiments were conducted at deformation temperatures ranging from 300°C to 500°C, with strain rates varying from 0.0001s-1 to 0.1s-1. A sine-hyperbolic constitutive equation was developed to characterize the flow stress of the composite, which exhibited a significantly higher hot deformation activation energy of 231.44 kJ/mol compared to the self-diffusion of pure aluminum. The formation of Al2Cu intermetallics at grain boundaries and Al3Ni2/Al3Ni within the matrix hindered dislocation movement, leading to an increase in activation energy, which might have an adverse effect on high-temperature applications. Two models, the Strain-compensated Arrhenius model and the Artificial Neural Network (ANN) model, were developed to predict the composite's flow behavior. The ANN model outperformed the Strain-compensated Arrhenius model with a lower average absolute relative error of 2.266%, a smaller root means square error of 1.2488 MPa, and a higher correlation coefficient of 0.9997. Processing maps revealed that the optimal hot working conditions for the composite were in the temperature range of 420-500°C and strain rates between 0.0001s-1 and 0.001s-1. The changes in the composite microstructure were successfully correlated with the theory of processing maps, considering temperature and strain rate conditions. The uneven distribution in the shape and size of Core-shell/Al3Ni intermetallic compounds influenced the flow stress curves, leading to Dynamic Recrystallization (DRX), followed by partial Dynamic Recovery (DRV), and ultimately strain hardening. This composite material shows promise for applications in the automobile and aerospace industries.Keywords: core-shell structure, hot deformation, intermetallic compounds, powder metallurgy
Procedia PDF Downloads 1729991 Toward Understanding the Glucocorticoid Receptor Network in Cancer
Authors: Swati Srivastava, Mattia Lauriola, Yuval Gilad, Adi Kimchi, Yosef Yarden
Abstract:
The glucocorticoid receptor (GR) has been proposed to play important, but incompletely understood roles in cancer. Glucocorticoids (GCs) are widely used as co-medication of various carcinomas, due to their ability to reduce the toxicity of chemotherapy. Furthermore, GR antagonism has proven to be a strategy to treat triple negative breast cancer and castration-resistant prostate cancer. These observations suggest differential GR involvement in cancer subtypes. The goal of our study has been to elaborate the current understanding of GR signaling in tumor progression and metastasis. Our study involves two cellular models, non-tumorigenic breast epithelial cells (MCF10A) and Ewing sarcoma cells (CHLA9). In our breast cell model, the results indicated that the GR agonist dexamethasone inhibits EGF-induced mammary cell migration, and this effect was blocked when cells were stimulated with a GR antagonist, namely RU486. Microarray analysis for gene expression revealed that the mechanism underlying inhibition involves dexamenthasone-mediated repression of well-known activators of EGFR signaling, alongside with enhancement of several EGFR’s negative feedback loops. Because GR mainly acts primarily through composite response elements (GREs), or via a tethering mechanism, our next aim has been to find the transcription factors (TFs) which can interact with GR in MCF10A cells.The TF-binding motif overrepresented at the promoter of dexamethasone-regulated genes was predicted by using bioinformatics. To validate the prediction, we performed high-throughput Protein Complementation Assays (PCA). For this, we utilized the Gaussia Luciferase PCA strategy, which enabled analysis of protein-protein interactions between GR and predicted TFs of mammary cells. A library comprising both nuclear receptors (estrogen receptor, mineralocorticoid receptor, GR) and TFs was fused to fragments of GLuc, namely GLuc(1)-X, X-GLuc(1), and X-GLuc(2), where GLuc(1) and GLuc(2) correspond to the N-terminal and C-terminal fragments of the luciferase gene.The resulting library was screened, in human embryonic kidney 293T (HEK293T) cells, for all possible interactions between nuclear receptors and TFs. By screening all of the combinations between TFs and nuclear receptors, we identified several positive interactions, which were strengthened in response to dexamethasone and abolished in response to RU486. Furthermore, the interactions between GR and the candidate TFs were validated by co-immunoprecipitation in MCF10A and in CHLA9 cells. Currently, the roles played by the uncovered interactions are being evaluated in various cellular processes, such as cellular proliferation, migration, and invasion. In conclusion, our assay provides an unbiased network analysis between nuclear receptors and other TFs, which can lead to important insights into transcriptional regulation by nuclear receptors in various diseases, in this case of cancer.Keywords: epidermal growth factor, glucocorticoid receptor, protein complementation assay, transcription factor
Procedia PDF Downloads 22629990 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques
Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas
Abstract:
The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.Keywords: Artificial Neural network, Competitive dynamics, Logistic Regression, Text classification, Text mining
Procedia PDF Downloads 12029989 A Convolutional Neural Network Based Vehicle Theft Detection, Location, and Reporting System
Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala
Abstract:
One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets especially in the motorist industry, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. Sixty (60) vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.Keywords: CNN, location identification, tracking, GPS, GSM
Procedia PDF Downloads 16129988 Efficacy and Mechanisms of Acupuncture for Depression: A Meta-Analysis of Clinical and Preclinical Evidence
Authors: Yimeng Zhang
Abstract:
Major depressive disorder (MDD) is a prevalent mental health condition with a substantial economic impact and limited treatment options. Acupuncture has gained attention as a promising non-pharmacological intervention for alleviating depressive symptoms. However, its mechanisms and clinical effectiveness remain incompletely understood. This meta-analysis aims to (1) synthesize existing evidence on the mechanisms and clinical effectiveness of acupuncture for depression and (2) compare these findings with pharmacological interventions, providing insights for future research. Evidence from animal models and clinical studies indicates that acupuncture may enhance hippocampal and network neuroplasticity and reduce brain inflammation, potentially alleviating depressive disorders. Clinical studies suggest that acupuncture can effectively relieve primary depression, particularly in milder cases, and is beneficial in managing post-stroke depression, pain-related depression, and postpartum depression, both as a standalone and adjunctive treatment. Notably, combining acupuncture with antidepressant pharmacotherapy appears to enhance treatment outcomes and reduce medication side effects, addressing a critical issue in conventional drug therapy's high dropout rates. This meta-analysis, encompassing 12 studies and 710 participants, draws data from eight digital databases (PubMed, EMBASE, Web of Science, EBSCOhost, CNKI, CBM, Wangfang, and CQVIP) covering the period from 2012 to 2022. Utilizing Stata software 15.0, the meta-analysis employed random-effects and fixed-effects models to assess the distribution of depression in Traditional Chinese Medicine (TCM). The results underscore the substantial evidence supporting acupuncture's beneficial effects on depression. However, the small sample sizes of many clinical trials raise concerns about the generalizability of the findings, indicating a need for further research to validate these outcomes and optimize acupuncture's role in treating depression.Keywords: Chinese medicine, acupuncture, depression, meta-analysis
Procedia PDF Downloads 3529987 Diagnostic Assessment for Mastery Learning of Engineering Students with a Bayesian Network Model
Authors: Zhidong Zhang, Yingchen Yang
Abstract:
In this study, a diagnostic assessment model for Mastery Engineering Learning was established based on a group of undergraduate students who studied in an engineering course. A diagnostic assessment model can examine both students' learning process and report achievement results. One very unique characteristic is that the diagnostic assessment model can recognize the errors and anything blocking students in their learning processes. The feedback is provided to help students to know how to solve the learning problems with alternative strategies and help the instructor to find alternative pedagogical strategies in the instructional designs. Dynamics is a core course in which is a common course being shared by several engineering programs. This course is a very challenging for engineering students to solve the problems. Thus knowledge acquisition and problem-solving skills are crucial for student success. Therefore, developing an effective and valid assessment model for student learning are of great importance. Diagnostic assessment is such a model which can provide effective feedback for both students and instructor in the mastery of engineering learning.Keywords: diagnostic assessment, mastery learning, engineering, bayesian network model, learning processes
Procedia PDF Downloads 15129986 Two-Stage Launch Vehicle Trajectory Modeling for Low Earth Orbit Applications
Authors: Assem M. F. Sallam, Ah. El-S. Makled
Abstract:
This paper presents a study on the trajectory of a two stage launch vehicle. The study includes dynamic responses of motion parameters as well as the variation of angles affecting the orientation of the launch vehicle (LV). LV dynamic characteristics including state vector variation with corresponding altitude and velocity for the different LV stages separation, as well as the angle of attack and flight path angles are also discussed. A flight trajectory study for the drop zone of first stage and the jettisoning of fairing are introduced in the mathematical modeling to study their effect. To increase the accuracy of the LV model, atmospheric model is used taking into consideration geographical location and the values of solar flux related to the date and time of launch, accurate atmospheric model leads to enhancement of the calculation of Mach number, which affects the drag force over the LV. The mathematical model is implemented on MATLAB based software (Simulink). The real available experimental data are compared with results obtained from the theoretical computation model. The comparison shows good agreement, which proves the validity of the developed simulation model; the maximum error noticed was generally less than 10%, which is a result that can lead to future works and enhancement to decrease this level of error.Keywords: launch vehicle modeling, launch vehicle trajectory, mathematical modeling, Matlab- Simulink
Procedia PDF Downloads 27329985 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms
Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat
Abstract:
In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.Keywords: availability, design for maintenance (DFM), dynamic maintenance, life cycle cost (LCC), maintenance free operating period (MFOP), simultaneous optimization
Procedia PDF Downloads 11629984 Research of Stalled Operational Modes of Axial-Flow Compressor for Diagnostics of Pre-Surge State
Authors: F. Mohammadsadeghi
Abstract:
Relevance of research: Axial compressors are used in both aircraft engine construction and ground-based gas turbine engines. The compressor is considered to be one of the main gas turbine engine units, which define absolute and relative indicators of engine in general. Failure of compressor often leads to drastic consequences. Therefore, safe (stable) operation must be maintained when using axial compressor. Currently, we can observe a tendency of increase of power unit, productivity, circumferential velocity and compression ratio of axial compressors in gas turbine engines of aircraft and ground-based application whereas metal consumption of their structure tends to fall. This causes the increase of dynamic loads as well as danger of damage of high load compressor or engine structure elements in general due to transient processes. In operating practices of aeronautical engineering and ground units with gas turbine drive the operational stability failure of gas turbine engines is one of relatively often failure causes what can lead to emergency situations. Surge occurrence is considered to be an absolute buckling failure. This is one of the most dangerous and often occurring types of instability. However detailed were the researches of this phenomenon the development of measures for surge before-the-fact prevention is still relevant. This is why the research of transient processes for axial compressors is necessary in order to provide efficient, stable and secure operation. The paper addresses the problem of automatic control system improvement by integrating the anti-surge algorithms for axial compressor of aircraft gas turbine engine. Paper considers dynamic exhaustion of gas dynamic stability of compressor stage, results of numerical simulation of airflow flowing through the airfoil at design and stalling modes, experimental researches to form the criteria that identify the compressor state at pre-surge mode detection. Authors formulated basic ways for developing surge preventing systems, i.e. forming the algorithms that allow detecting the surge origination and the systems that implement the proposed algorithms.Keywords: axial compressor, rotation stall, Surg, unstable operation of gas turbine engine
Procedia PDF Downloads 40829983 Contraceptive Uptake among Women in Low Socio-Economic Areas in Kenya: Quantitative Analysis of Secondary Data
Authors: J. Waita, S. Wamuhu, J. Makoyo, M. Rachel, T. Ngangari, W. Christine, M. Zipporah
Abstract:
Contraceptive use is one of the key global strategies to alleviate maternal mortality. Global efforts through advocating for contraceptive uptake and service provision has led improved contraceptive prevalence. In Kenya maternal mortality rate has remained a challenged despites efforts by government and non-governmental organizations. Objective: To describe the uptake of contraceptives among women in Tunza Clinics, Kenya. Design and Methods: Ps Kenya through health care marketing fund is implementing a family planning program among its 350 Tunza fractional franchise facilities. Through private partnership, private owned facilities in low socio-economic areas are recruited and trained on contraceptive technology update. The providers are supported through facilitative supervision through a mobile based application Health Network Quality Improvement System (HNQIS) and interpersonal communication through 150 community based volunteers. The data analyzed in this paper was collected between January to July 2017 to show the uptake of modern Contraceptives among women in the Tunza franchise, method mix, age and distribution among the age bracket. Further analysis compares two different service delivery strategies; outreach and walk ins. Supportive supervision HNQIS scores was analyzed. Results: During the time period, a total of 132121 family planning clients were attended in 350 facilities. The average age of clients was 29.6 years. The average number of clients attended in the facilities per month was 18874. 73.7 %( n=132121) of the clients attended in the Tunza facilities were aged above 25 years while 22.1% 20-24 years and 4.2% 15-19 years. On contraceptive method mix, intra uterine device insertions clients contributed to 7.5%, implant insertions 15.3%, pills 11.2%, injections 62.7% while condoms and emergency pills had 2.7% and 0.6% respectively. Analysis of service delivery strategy indicated more than 79% of the clients were walk ins while 21% were attended to during outreaches. Uptake of long term contraceptive methods during outreaches was 73% of the clients while short term modern methods were 27%. Health Network Quality Improvement system assessment scores indicated 51% of the facilities scored over 90%, 25% scoring 80-89% while 21% scored below 80%. Conclusion: Preference for short term methods by women is possibly associated to cost as they are cheaper and easy to administer. When the cost of intra uterine device Implants is meant affordable during outreaches, the uptake is observed to increase. Making intra uterine device and implants affordable to women is a key strategy in increasing contraceptive prevalence hence averting maternal mortality.Keywords: contraceptives, contraceptive uptake, low socio economic, supportive supervision
Procedia PDF Downloads 16729982 A Comparison of Convolutional Neural Network Architectures for the Classification of Alzheimer’s Disease Patients Using MRI Scans
Authors: Tomas Premoli, Sareh Rowlands
Abstract:
In this study, we investigate the impact of various convolutional neural network (CNN) architectures on the accuracy of diagnosing Alzheimer’s disease (AD) using patient MRI scans. Alzheimer’s disease is a debilitating neurodegenerative disorder that affects millions worldwide. Early, accurate, and non-invasive diagnostic methods are required for providing optimal care and symptom management. Deep learning techniques, particularly CNNs, have shown great promise in enhancing this diagnostic process. We aim to contribute to the ongoing research in this field by comparing the effectiveness of different CNN architectures and providing insights for future studies. Our methodology involved preprocessing MRI data, implementing multiple CNN architectures, and evaluating the performance of each model. We employed intensity normalization, linear registration, and skull stripping for our preprocessing. The selected architectures included VGG, ResNet, and DenseNet models, all implemented using the Keras library. We employed transfer learning and trained models from scratch to compare their effectiveness. Our findings demonstrated significant differences in performance among the tested architectures, with DenseNet201 achieving the highest accuracy of 86.4%. Transfer learning proved to be helpful in improving model performance. We also identified potential areas for future research, such as experimenting with other architectures, optimizing hyperparameters, and employing fine-tuning strategies. By providing a comprehensive analysis of the selected CNN architectures, we offer a solid foundation for future research in Alzheimer’s disease diagnosis using deep learning techniques. Our study highlights the potential of CNNs as a valuable diagnostic tool and emphasizes the importance of ongoing research to develop more accurate and effective models.Keywords: Alzheimer’s disease, convolutional neural networks, deep learning, medical imaging, MRI
Procedia PDF Downloads 7329981 Natural Frequency Analysis of Small-Scale Arch Structure by Shaking Table Test
Authors: Gee-Cheol Kim, Joo-Won Kang
Abstract:
Structural characteristics of spatial structure are different from that of rahmen structures and it has many factors that are unpredictable experientially. Both horizontal and vertical earthquake should be considered because of seismic behaviour characteristics of spatial structures. This experimental study is conducted about seismic response characteristics of roof structure according to the effect of columns or walls, through scale model of arch structure that has the basic dynamic characteristics of spatial structure. Though remarkable response is not occurred for horizontal direction in the region of higher frequency than the region of frequency that seismic energy is concentrated, relatively large response is occurred in vertical direction. It is proved that seismic response of arch structure with column is varied according to property of column.Keywords: arch structure, seismic response, shaking table, spatial structure
Procedia PDF Downloads 36429980 Getting Back Out There Looking like That: A Visual Critique of Rebecca Welton’s Costuming in Reference to Female Representation in Television
Authors: Abigail R. Gardner
Abstract:
With the rise of big budget television comes a demand for more nuanced characters. However, female characters are often underdeveloped, especially those who do not fit neatly into societal norms. This study examines how Ted Lasso’s Rebecca Welton challenges this idea by using her on-screen fashion to mirror her motivations and character development. Through detailed analysis, this research explores how Rebecca’s wardrobe adds depth to her character, contrasting traditional strategies of costuming female characters in mainstream movies and television. While women, especially older women, are getting more screen time, very few have been given a wardrobe to reflect their dynamic characters. Rebecca’s costumes represent a form of visual storytelling typically reserved for film, but with the rise of single-camera television, there is an opportunity to redefine the relationship between women and fashion on screen.Keywords: costume design, gender and media, visual storytelling, women in television
Procedia PDF Downloads 1529979 Design of a Lumbar Interspinous Process Fixation Device for Minimizing Soft Tissue Removal and Operation Time
Authors: Minhyuk Heo, Jihwan Yun, Seonghun Park
Abstract:
It has been reported that intervertebral fusion surgery, which removes most of the ligaments and muscles of the spine, increases the degenerative disease in adjacent spinal segments. Therefore, it is required to develop a lumbar interspinous process fixation device that minimizes the risks and side effects from the surgery. The objective of the current study is to design an interspinous process fixation device with simple structures in order to minimize soft tissue removal and operation time during intervertebral fusion surgery. For the design concepts of a lumbar fixation device, the principle of the ratchet was first applied on the joining parts of the device in order to shorten the operation time. The coil spring structure was selected for connecting parts between the spinous processes so that a normal range of motion in spinal segments is preserved and degenerative spinal diseases are not developed in the adjacent spinal segments. The stiffness of the spring was determined not to interrupt the motion of a lumbar spine. The designed value of the spring stiffness allows the upper part of the spring to move ~10° which is higher than the range of flexion and extension for normal lumbar spine (6°-8°), when a moment of 10Nm is applied on the upper face of L1. A finite element (FE) model composed of L1 to L5 lumbar spines was generated to verify the mechanical integrity and the dynamic stability of the designed lumbar fixation device and to further optimize the lumbar fixation device. The FE model generated above produced the same pressure value on intervertebral disc and dynamic behavior as the normal intact model reported in the literature. The consistent results from this comparison validates the accuracy in the modeling of the current FE model. Currently, we are trying to generate an abnormal model with defects in one or more components of the normal FE model above. Then, the mechanical integrity and the dynamic stability of the designed lumbar fixation device will be analyzed after being installed in the abnormal model and then the lumbar fixation device will be further optimized.Keywords: lumbar interspinous process fixation device, finite element method, lumbar spine, kinematics
Procedia PDF Downloads 22729978 Gender Policies and Political Culture: An Examination of the Canadian Context
Authors: Chantal Maille
Abstract:
This paper is about gender-based analysis plus (GBA+), an intersectional gender policy used in Canada to assess the impact of policies and programs for men and women from different origins. It looks at Canada’s political culture to explain the nature of its gender policies. GBA+ is defined as an analysis method that makes it possible to assess the eventual effects of policies, programs, services, and other initiatives on women and men of different backgrounds because it takes account of gender and other identity factors. The ‘plus’ in the name serves to emphasize that GBA+ goes beyond gender to include an examination of a wide range of other related identity factors, such as age, education, language, geography, culture, and income. The point of departure for GBA+ is that women and men are not homogeneous populations and gender is never the only factor in defining a person’s identity; rather, it interacts with factors such as ethnic origin, age, disabilities, where the person lives, and other aspects of individual and social identity. GBA+ takes account of these factors and thus challenges notions of similarity or homogeneity within populations of women and men. Comparative analysis based on sex and gender may serve as a gateway to studying a given question, but women, men, girls, and boys do not form homogeneous populations. In the 1990s, intersectionality emerged as a new feminist framework. The popularity of the notion of intersectionality corresponds to a time when, in hindsight, the damage done to minoritized groups by state disengagement policies in concert with global intensification of neoliberalism, and vice versa, can be measured. Although GBA+ constitutes a form of intersectionalization of GBA, it must be understood that the two frameworks do not spring from a similar logic. Intersectionality first emerged as a dynamic analysis of differences between women that was oriented toward change and social justice, whereas GBA is a technique developed by state feminists in a context of analyzing governmental policies and aiming to promote equality between men and women. It can nevertheless be assumed that there might be interest in such a policy and program analysis grid that is decentred from gender and offers enough flexibility to take account of a group of inequalities. In terms of methodology, the research is supported by a qualitative analysis of governmental documents about GBA+ in Canada. Research findings identify links between Canadian gender policies and its political culture. In Canada, diversity has been taken into account as an element at the basis of gendered analysis of public policies since 1995. The GBA+ adopted by the government of Canada conveys an opening to intersectionality and a sensitivity to multiculturalism. The Canadian Multiculturalism Act, adopted 1988, proposes to recognize the fact that multiculturalism is a fundamental characteristic of the Canadian identity and heritage and constitutes an invaluable resource for the future of the country. In conclusion, Canada’s distinct political culture can be associated with the specific nature of its gender policies.Keywords: Canada, gender-based analysis, gender policies, political culture
Procedia PDF Downloads 22229977 U Slot Loaded Wearable Textile Antenna
Authors: Varsha Kheradiya, Ganga Prasad Pandey
Abstract:
The use of wearable antennas is rising because wireless devices become small. The wearable antenna is part of clothes used in communication applications, including energy harvesting, medical application, navigation, and tracking. In current years, Antennas embroidered on clothes, conducting antennas based on fabric, polymer embedded antennas, and inkjet-printed antennas are all attractive ways. Also shows the analysis required for wearable antennas, such as wearable antennae interacting with the human body. The primary requirements for the antenna are small size, low profile minimizing radiation absorption by the human body, high efficiency, structural integrity to survive worst situations, and good gain. Therefore, research in energy harvesting, biomedicine, and military application design is increasingly favoring flexible wearable antennas. Textile materials that are effectively used for designing and developing wearable antennas for body area networks. The wireless body area network is primarily concerned with creating effective antenna systems. The antenna should reduce their size, be lightweight, and be adaptable when integrated into clothes. When antennas integrate into clothes, it provides a convenient alternative to those fabricated using rigid substrates. This paper presents a study of U slot loaded wearable textile antenna. U slot patch antenna design is illustrated for wideband from 1GHz to 6 GHz using textile material jeans as substrate and pure copper polyester taffeta fabric as conducting material. This antenna design exhibits dual band results for WLAN at 2.4 GHz and 3.6 GHz frequencies. Also, study U slot position horizontal and vertical shifting. Shifting the horizontal positive X-axis position of the U slot produces the third band at 5.8 GHz.Keywords: microstrip patch antenna, textile material, U slot wearable antenna, wireless body area network
Procedia PDF Downloads 8929976 Assignment of Airlines Technical Members under Disruption
Authors: Walid Moudani
Abstract:
The Crew Reserve Assignment Problem (CRAP) considers the assignment of the crew members to a set of reserve activities covering all the scheduled flights in order to ensure a continuous plan so that operations costs are minimized while its solution must meet hard constraints resulting from the safety regulations of Civil Aviation as well as from the airlines internal agreements. The problem considered in this study is of highest interest for airlines and may have important consequences on the service quality and on the economic return of the operations. In this communication, a new mathematical formulation for the CRAP is proposed which takes into account the regulations and the internal agreements. While current solutions make use of Artificial Intelligence techniques run on main frame computers, a low cost approach is proposed to provide on-line efficient solutions to face perturbed operating conditions. The proposed solution method uses a dynamic programming approach for the duties scheduling problem and when applied to the case of a medium airline while providing efficient solutions, shows good potential acceptability by the operations staff. This optimization scheme can then be considered as the core of an on-line Decision Support System for crew reserve assignment operations management.Keywords: airlines operations management, combinatorial optimization, dynamic programming, crew scheduling
Procedia PDF Downloads 35329975 The Effect of Annual Weather and Sowing Date on Different Genotype of Maize (Zea mays L.) in Germination and Yield
Authors: Ákos Tótin
Abstract:
In crop production the most modern hybrids are available for us, therefore the yield and yield stability is determined by the agro-technology. The purpose of the experiment is to adapt the modern agrotechnology to the new type of hybrids. The long-term experiment was set up in 2015-2016 on chernozem soil in the Hajdúság (eastern Hungary). The plots were set up in 75 thousand ha-1 plant density. We examined some mainly use hybrids of Hungary. The conducted studies are: germination dynamic, growing dynamic and the effect of annual weather for the yield. We use three different sowing date as early, average and late, and measure how many plant germinated during the germination process. In the experiment, we observed the germination dynamics in 6 hybrid in 4 replication. In each replication, we counted the germinated plants in 2m long 2 row wide area. Data will be shown in the average of the 6 hybrid and 4 replication. Growing dynamics were measured from the 10cm (4-6 leaf) plant highness. We measured 10 plants’ height in two weeks replication. The yield was measured buy a special plot harvester - the Sampo Rosenlew 2010 – what measured the weight of the harvested plot and also took a sample from it. We determined the water content of the samples for the water release dynamics. After it, we calculated the yield (t/ha) of each plot at 14% of moisture content to compare them. We evaluated the data using Microsoft Excel 2015. The annual weather in each crop year define the maize germination dynamics because the amount of heat is determinative for the plants. In cooler crop year the weather is prolonged the germination. At the 2015 crop year the weather was cold in the beginning what prolonged the first sowing germination. But the second and third sowing germinated faster. In the 2016 crop year the weather was much favorable for plants so the first sowing germinated faster than in the previous year. After it the weather cooled down, therefore the second and third sowing germinated slower than the last year. The statistical data analysis program determined that there is a significant difference between the early and late sowing date growing dynamics. In 2015 the first sowing date had the highest amount of yield. The second biggest yield was in the average sowing time. The late sowing date has lowest amount of yield.Keywords: germination, maize, sowing date, yield
Procedia PDF Downloads 23029974 A Panel Cointegration Analysis for Macroeconomic Determinants of International Housing Market
Authors: Mei-Se Chien, Chien-Chiang Lee, Sin-Jie Cai
Abstract:
The main purpose of this paper is to investigate the long-run equilibrium and short-run dynamics of international housing prices when macroeconomic variables change. We apply the Pedroni’s, panel cointegration, using the unbalanced panel data analysis of 33 countries over the period from 1980Q1 to 2013Q1, to examine the relationships among house prices and macroeconomic variables. Our empirical results of panel data cointegration tests support the existence of a cointegration among these macroeconomic variables and house prices. Besides, the empirical results of panel DOLS further present that a 1% increase in economic activity, long-term interest rates, and construction costs cause house prices to respectively change 2.16%, -0.04%, and 0.22% in the long run. Furthermore, the increasing economic activity and the construction cost would cause stronger impacts on the house prices for lower income countries than higher income countries. The results lead to the conclusion that policy of house prices growth can be regarded as economic growth for lower income countries. Finally, in America region, the coefficient of economic activity is the highest, which displays that increasing economic activity causes a faster rise in house prices there than in other regions. There are some special cases whereby the coefficients of interest rates are significantly positive in America and Asia regions.Keywords: house prices, macroeconomic variables, panel cointegration, dynamic OLS
Procedia PDF Downloads 39029973 A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks: Prediction of Influential Factors on Eating Behaviors
Authors: Maryam Kheirollahpour, Mahmoud Danaee, Amir Faisal Merican, Asma Ahmad Shariff
Abstract:
Background: The presence of nonlinearity among the risk factors of eating behavior causes a bias in the prediction models. The accuracy of estimation of eating behaviors risk factors in the primary prevention of obesity has been established. Objective: The aim of this study was to explore the potential of a hybrid model of structural equation modeling (SEM) and Artificial Neural Networks (ANN) to predict eating behaviors. Methods: The Partial Least Square-SEM (PLS-SEM) and a hybrid model (SEM-Artificial Neural Networks (SEM-ANN)) were applied to evaluate the factors affecting eating behavior patterns among university students. 340 university students participated in this study. The PLS-SEM analysis was used to check the effect of emotional eating scale (EES), body shape concern (BSC), and body appreciation scale (BAS) on different categories of eating behavior patterns (EBP). Then, the hybrid model was conducted using multilayer perceptron (MLP) with feedforward network topology. Moreover, Levenberg-Marquardt, which is a supervised learning model, was applied as a learning method for MLP training. The Tangent/sigmoid function was used for the input layer while the linear function applied for the output layer. The coefficient of determination (R²) and mean square error (MSE) was calculated. Results: It was proved that the hybrid model was superior to PLS-SEM methods. Using hybrid model, the optimal network happened at MPLP 3-17-8, while the R² of the model was increased by 27%, while, the MSE was decreased by 9.6%. Moreover, it was found that which one of these factors have significantly affected on healthy and unhealthy eating behavior patterns. The p-value was reported to be less than 0.01 for most of the paths. Conclusion/Importance: Thus, a hybrid approach could be suggested as a significant methodological contribution from a statistical standpoint, and it can be implemented as software to be able to predict models with the highest accuracy.Keywords: hybrid model, structural equation modeling, artificial neural networks, eating behavior patterns
Procedia PDF Downloads 15229972 Multi Object Tracking for Predictive Collision Avoidance
Authors: Bruk Gebregziabher
Abstract:
The safe and efficient operation of Autonomous Mobile Robots (AMRs) in complex environments, such as manufacturing, logistics, and agriculture, necessitates accurate multiobject tracking and predictive collision avoidance. This paper presents algorithms and techniques for addressing these challenges using Lidar sensor data, emphasizing ensemble Kalman filter. The developed predictive collision avoidance algorithm employs the data provided by lidar sensors to track multiple objects and predict their velocities and future positions, enabling the AMR to navigate safely and effectively. A modification to the dynamic windowing approach is introduced to enhance the performance of the collision avoidance system. The overall system architecture encompasses object detection, multi-object tracking, and predictive collision avoidance control. The experimental results, obtained from both simulation and real-world data, demonstrate the effectiveness of the proposed methods in various scenarios, which lays the foundation for future research on global planners, other controllers, and the integration of additional sensors. This thesis contributes to the ongoing development of safe and efficient autonomous systems in complex and dynamic environments.Keywords: autonomous mobile robots, multi-object tracking, predictive collision avoidance, ensemble Kalman filter, lidar sensors
Procedia PDF Downloads 8129971 Analysis of Non-Conventional Roundabout Performance in Mixed Traffic Conditions
Authors: Guneet Saini, Shahrukh, Sunil Sharma
Abstract:
Traffic congestion is the most critical issue faced by those in the transportation profession today. Over the past few years, roundabouts have been recognized as a measure to promote efficiency at intersections globally. In developing countries like India, this type of intersection still faces a lot of issues, such as bottleneck situations, long queues and increased waiting times, due to increasing traffic which in turn affect the performance of the entire urban network. This research is a case study of a non-conventional roundabout, in terms of geometric design, in a small town in India. These types of roundabouts should be analyzed for their functionality in mixed traffic conditions, prevalent in many developing countries. Microscopic traffic simulation is an effective tool to analyze traffic conditions and estimate various measures of operational performance of intersections such as capacity, vehicle delay, queue length and Level of Service (LOS) of urban roadway network. This study involves analyzation of an unsymmetrical non-circular 6-legged roundabout known as “Kala Aam Chauraha” in a small town Bulandshahr in Uttar Pradesh, India using VISSIM simulation package which is the most widely used software for microscopic traffic simulation. For coding in VISSIM, data are collected from the site during morning and evening peak hours of a weekday and then analyzed for base model building. The model is calibrated on driving behavior and vehicle parameters and an optimal set of calibrated parameters is obtained followed by validation of the model to obtain the base model which can replicate the real field conditions. This calibrated and validated model is then used to analyze the prevailing operational traffic performance of the roundabout which is then compared with a proposed alternative to improve efficiency of roundabout network and to accommodate pedestrians in the geometry. The study results show that the alternative proposed is an advantage over the present roundabout as it considerably reduces congestion, vehicle delay and queue length and hence, successfully improves roundabout performance without compromising on pedestrian safety. The study proposes similar designs for modification of existing non-conventional roundabouts experiencing excessive delays and queues in order to improve their efficiency especially in the case of developing countries. From this study, it can be concluded that there is a need to improve the current geometry of such roundabouts to ensure better traffic performance and safety of drivers and pedestrians negotiating the intersection and hence this proposal may be considered as a best fit.Keywords: operational performance, roundabout, simulation, VISSIM
Procedia PDF Downloads 13829970 Hormone Replacement Therapy (HRT) and Its Impact on the All-Cause Mortality of UK Women: A Matched Cohort Study 1984-2017
Authors: Nurunnahar Akter, Elena Kulinskaya, Nicholas Steel, Ilyas Bakbergenuly
Abstract:
Although Hormone Replacement Therapy (HRT) is an effective treatment in ameliorating menopausal symptoms, it has mixed effects on different health outcomes, increasing, for instance, the risk of breast cancer. Because of this, many symptomatic women are left untreated. Untreated menopausal symptoms may result in other health issues, which eventually put an extra burden and costs to the health care system. All-cause mortality analysis may explain the net benefits and risks of the HRT therapy. However, it received far less attention in HRT studies. This study investigated the impact of HRT on all-cause mortality using electronically recorded primary care data from The Health Improvement Network (THIN) that broadly represents the female population in the United Kingdom (UK). The study entry date for this study was the record of the first HRT prescription from 1984, and patients were followed up until death or transfer to another GP practice or study end date, which was January 2017. 112,354 HRT users (cases) were matched with 245,320 non-users by age at HRT initiation and general practice (GP). The hazards of all-cause mortality associated with HRT were estimated by a parametric Weibull-Cox model adjusting for a wide range of important medical, lifestyle, and socio-demographic factors. The multilevel multiple imputation techniques were used to deal with missing data. This study found that during 32 years of follow-up, combined HRT reduced the hazard ratio (HR) of all-cause mortality by 9% (HR: 0.91; 95% Confidence Interval, 0.88-0.94) in women of age between 46 to 65 at first treatment compared to the non-users of the same age. Age-specific mortality analyses found that combined HRT decreased mortality by 13% (HR: 0.87; 95% CI, 0.82-0.92), 12% (HR: 0.88; 95% CI, 0.82-0.93), and 8% (HR: 0.92; 95% CI, 0.85-0.98), in 51 to 55, 56 to 60, and 61 to 65 age group at first treatment, respectively. There was no association between estrogen-only HRT and women’s all-cause mortality. The findings from this study may help to inform the choices of women at menopause and to further educate the clinicians and resource planners.Keywords: hormone replacement therapy, multiple imputations, primary care data, the health improvement network (THIN)
Procedia PDF Downloads 16729969 Atomic Force Microscopy Studies of DNA Binding Properties of the Archaeal Mini Chromosome Maintenance Complex
Authors: Amna Abdalla Mohammed Khalid, Pietro Parisse, Silvia Onesti, Loredana Casalis
Abstract:
Basic cellular processes as DNA replication are crucial to cell life. Understanding at the molecular level the mechanisms that govern DNA replication in proliferating cells is fundamental to understand disease connected to genomic instabilities, as a genetic disease and cancer. A key step for DNA replication to take place, is unwinding the DNA double helix and this carried out by proteins called helicases. The archaeal MCM (minichromosome maintenance) complex from Methanothermobacter thermautotrophicus have being studied using Atomic Force Microscopy (AFM), imaging in air and liquid (Physiological environment). The accurate analysis of AFM topographic images allowed to understand the static conformations as well the interaction dynamic of MCM and DNA double helix in the present of ATP.Keywords: DNA, protein-DNA interaction, MCM (mini chromosome manteinance) complex, atomic force microscopy (AFM)
Procedia PDF Downloads 30529968 Expression Profiling and Immunohistochemical Analysis of Squamous Cell Carcinoma of Head and Neck (Tumor, Transition Zone, Normal) by Whole Genome Scale Sequencing
Authors: Veronika Zivicova, Petr Broz, Zdenek Fik, Alzbeta Mifkova, Jan Plzak, Zdenek Cada, Herbert Kaltner, Jana Fialova Kucerova, Hans-Joachim Gabius, Karel Smetana Jr.
Abstract:
The possibility to determine genome-wide expression profiles of cells and tissues opens a new level of analysis in the quest to define dysregulation in malignancy and thus identify new tumor markers. Toward this long-term aim, we here address two issues on this level for head and neck cancer specimen: i) defining profiles in different regions, i.e. the tumor, the transition zone and normal control and ii) comparing complete data sets for seven individual patients. Special focus in the flanking immunohistochemical part is given to adhesion/growth-regulatory galectins that upregulate chemo- and cytokine expression in an NF-κB-dependent manner, to these regulators and to markers of differentiation, i.e. keratins. The detailed listing of up- and down-regulations, also available in printed form (1), not only served to unveil new candidates for testing as marker but also let the impact of the tumor in the transition zone become apparent. The extent of interindividual variation raises a strong cautionary note on assuming uniformity of regulatory events, to be noted when considering therapeutic implications. Thus, a combination of test targets (and a network analysis for galectins and their downstream effectors) is (are) advised prior to reaching conclusions on further perspectives.Keywords: galectins, genome scale sequencing, squamous cell carcinoma, transition zone
Procedia PDF Downloads 23629967 Global Analysis in a Growth Economic Model with Perfect-Substitution Technologies
Authors: Paolo Russu
Abstract:
The purpose of the present paper is to highlight some features of an economic growth model with environmental negative externalities, giving rise to a three-dimensional dynamic system. In particular, we show that the economy, which is based on a Perfect-Substitution Technologies function of production, has no neither indeterminacy nor poverty trap. This implies that equilibrium select by economy depends on the history (initial values of state variable) of the economy rather than on expectations of economies agents. Moreover, by contrast, we prove that the basin of attraction of locally equilibrium points may be very large, as they can extend up to the boundary of the system phase space. The infinite-horizon optimal control problem has the purpose of maximizing the representative agent’s instantaneous utility function depending on leisure and consumption.Keywords: Hopf bifurcation, open-access natural resources, optimal control, perfect-substitution technologies, Poincarè compactification
Procedia PDF Downloads 16729966 Co-Operation in Hungarian Agriculture
Authors: Eszter Hamza
Abstract:
The competitiveness of economic operators is based on interoperability, which is relatively low in Hungary. The development of co-operation is high priority in Common Agricultural Policy 2014-2020. The aim of the paper to assess co-operations in Hungarian agriculture, estimate the economic outputs and benefits of co-operations, based on statistical data processing and literature. Further objective is to explore the potential of agricultural co-operation with the help of interviews and questionnaire survey. The research seeks to answer questions as to what fundamental factors play role in the development of co-operation, and what are the motivations of the actors and the key success factors and pitfalls. The results were analysed using econometric methods. In Hungarian agriculture we can find several forms of co-operation: cooperatives, producer groups (PG) and producer organizations (PO), machinery cooperatives, integrator companies, product boards and interbranch organisations. Despite the several appearance of the agricultural co-operation, their economic weight is significantly lower in Hungary than in western European countries. Considering the agricultural importance, the integrator companies represent the most weight among the co-operations forms. Hungarian farmers linked to co-operations or organizations mostly in relation to procurement and sales. Less than 30 percent of surveyed farmers are members of a producer organization or cooperative. The trust level is low among farmers. The main obstacle to the development of formalized co-operation, is producers' risk aversion and the black economy in agriculture. Producers often prefer informal co-operation instead of long-term contractual relationships. The Hungarian agricultural co-operations are characterized by non-dynamic development, but slow qualitative change. For the future, one breakout point could be the association of producer groups and organizations, which in addition to the benefits of market concentration, in the dissemination of knowledge, advisory network operation and innovation can act more effectively.Keywords: agriculture, co-operation, producer organisation, trust level
Procedia PDF Downloads 39429965 Ethnic Minority Small and Medium Enterprises and Entrepreneurial Resilience During the COVID-19 Pandemic: A Case of United Kingdom
Authors: Muhammad Bilal Mustafa, Javed Hussain, Simeon Babatunde
Abstract:
The Covid-19 pandemic has exposed the vulnerabilities of countless organisations beyond their size, type, and location. However, some groups and sectors are disproportionally get impacted by the pandemic. In the context of the UK, ethnic Small and Medium Enterprises (SMEs) turn out to be the most precarious group among all private sectors. Many ethnic SMEs shut down their business operations during a pandemic. A large portion of Black, Asian and minority ethnic (BAME) owners have huge concerns regarding their business’ survival and resilience. The current UK-centric studies have focused on the large business population, and there is a gap in ethnic SMEs and how they get affected by the Covid-19 pandemic. Moreover, there is a need to further knowledge and academic research to investigate the fundamental factors that could strengthen the resilience of ethnic SMEs as well as contribute to long-term sustainability. Therefore, this study aims to capture the effect of the Covid-19 pandemic on ethnic SMEs in the UK and assess the survival measures taken by ethnic SMEs during Covid-19. Besides, this study adopts a dynamic capabilities perspective that how firms' specific capabilities enable ethnic SMEs to exploit entrepreneurial opportunities during the Covid-19 pandemic. Finally, this research will help ethnic SMEs to develop vigorous resilience to address future external shocks and market uncertainties.Keywords: COVID-19 pandemic, ethnic minority SMEs, entrepreneurial resilience, dynamic capabilities, sustainability
Procedia PDF Downloads 157