Search results for: social work teaching methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 34083

Search results for: social work teaching methods

1863 Compositional Influence in the Photovoltaic Properties of Dual Ion Beam Sputtered Cu₂ZnSn(S,Se)₄ Thin Films

Authors: Brajendra S. Sengar, Vivek Garg, Gaurav Siddharth, Nisheka Anadkat, Amitesh Kumar, Shaibal Mukherjee

Abstract:

The optimal band gap (~ 1 to 1.5 eV) and high absorption coefficient ~104 cm⁻¹ has made Cu₂ZnSn(S,Se)₄ (CZTSSe) films as one of the most promising absorber materials in thin-film photovoltaics. Additionally, CZTSSe consists of elements that are abundant and non-toxic, makes it even more favourable. The CZTSSe thin films are grown at 100 to 500ᵒC substrate temperature (Tsub) on Soda lime glass (SLG) substrate by Elettrorava dual ion beam sputtering (DIBS) system by utilizing a target at 2.43x10⁻⁴ mbar working pressure with RF power of 45 W in argon ambient. The chemical composition, depth profiling, structural properties and optical properties of these CZTSSe thin films prepared on SLG were examined by energy dispersive X-ray spectroscopy (EDX, Oxford Instruments), Hiden secondary ion mass spectroscopy (SIMS) workstation with oxygen ion gun of energy up to 5 keV, X-ray diffraction (XRD) (Rigaku Cu Kα radiation, λ=.154nm) and Spectroscopic Ellipsometry (SE, M-2000D from J. A. Woollam Co., Inc). It is observed that from that, the thin films deposited at Tsub=200 and 300°C show Cu-poor and Zn-rich states (i.e., Cu/(Zn + Sn) < 1 and Zn/Sn > 1), which is not the case for films grown at other Tsub. It has been reported that the CZTSSe thin films with the highest efficiency are typically at Cu-poor and Zn-rich states. The values of band gap in the fundamental absorption region of CZTSSe are found to be in the range of 1.23-1.70 eV depending upon the Cu/(Zn+Sn) ratio. It is also observed that there is a decline in optical band gap with the increase in Cu/(Zn+Sn) ratio (evaluated from EDX measurement). Cu-poor films are found to have higher optical band gap than Cu-rich films. The decrease in the band gap with the increase in Cu content in case of CZTSSe films may be attributed to changes in the extent of p-d hybridization between Cu d-levels and (S, Se) p-levels. CZTSSe thin films with Cu/(Zn+Sn) ratio in the range 0.86–1.5 have been successfully deposited using DIBS. Optical band gap of the films is found to vary from 1.23 to 1.70 eV based on Cu/(Zn+Sn) ratio. CZTSe films with Cu/ (Zn+Sn) ratio of .86 are found to have optical band gap close to the ideal band gap (1.49 eV) for highest theoretical conversion efficiency. Thus by tailoring the value of Cu/(Zn+Sn), CZTSSe thin films with the desired band gap could be obtained. Acknowledgment: We are thankful to DIBS, EDX, and XRD facility equipped at Sophisticated Instrument Centre (SIC) at IIT Indore. The authors B. S. S and A. K. acknowledge CSIR, and V. G. acknowledges UGC, India for their fellowships. B. S. S is thankful to DST and IUSSTF for BASE Internship Award. Prof. Shaibal Mukherjee is thankful to DST and IUSSTF for BASE Fellowship and MEITY YFRF award. This work is partially supported by DAE BRNS, DST CERI, and DST-RFBR Project under India-Russia Programme of Cooperation in Science and Technology. We are thankful to Mukul Gupta for SIMS facility equipped at UGC-DAE Indore.

Keywords: CZTSSe, DIBS, EDX, solar cell

Procedia PDF Downloads 242
1862 Enhancing Air Quality: Investigating Filter Lifespan and Byproducts in Air Purification Solutions

Authors: Freja Rydahl Rasmussen, Naja Villadsen, Stig Koust

Abstract:

Air purifiers have become widely implemented in a wide range of settings, including households, schools, institutions, and hospitals, as they tackle the pressing issue of indoor air pollution. With their ability to enhance indoor air quality and create healthier environments, air purifiers are particularly vital when ventilation options are limited. These devices incorporate a diverse array of technologies, including HEPA filters, active carbon filters, UV-C light, photocatalytic oxidation, and ionizers, each designed to combat specific pollutants and improve air quality within enclosed spaces. However, the safety of air purifiers has not been investigated thoroughly, and many questions still arise when applying them. Certain air purification technologies, such as UV-C light or ionization, can unintentionally generate undesirable byproducts that can negatively affect indoor air quality and health. It is well-established that these technologies can inadvertently generate nanoparticles or convert common gaseous compounds into harmful ones, thus exacerbating air pollution. However, the formation of byproducts can vary across products, necessitating further investigation. There is a particular concern about the formation of the carcinogenic substance formaldehyde from common gases like acetone. Many air purifiers use mechanical filtration to remove particles, dust, and pollen from the air. Filters need to be replaced periodically for optimal efficiency, resulting in an additional cost for end-users. Currently, there are no guidelines for filter lifespan, and replacement recommendations solely rely on manufacturers. A market screening revealed that manufacturers' recommended lifespans vary greatly (from 1 month to 10 years), and there is a need for general recommendations to guide consumers. Activated carbon filters are used to adsorb various types of chemicals that can pose health risks or cause unwanted odors. These filters have a certain capacity before becoming saturated. If not replaced in a timely manner, the adsorbed substances are likely to be released from the filter through off-gassing or losing adsorption efficiency. The goal of this study is to investigate the lifespan of filters as well as investigate the potentially harmful effects of air purifiers. Understanding the lifespan of filters used in air purifiers and the potential formation of harmful byproducts is essential for ensuring their optimal performance, guiding consumers in their purchasing decisions, and establishing industry standards for safer and more effective air purification solutions. At this time, a selection of air purifiers has been chosen, and test methods have been established. In the following 3 months, the tests will be conducted, and the results will be ready for presentation later.

Keywords: air purifiers, activated carbon filters, byproducts, clean air, indoor air quality

Procedia PDF Downloads 64
1861 Solar Power Generation in a Mining Town: A Case Study for Australia

Authors: Ryan Chalk, G. M. Shafiullah

Abstract:

Climate change is a pertinent issue facing governments and societies around the world. The industrial revolution has resulted in a steady increase in the average global temperature. The mining and energy production industries have been significant contributors to this change prompting government to intervene by promoting low emission technology within these sectors. This paper initially reviews the energy problem in Australia and the mining sector with a focus on the energy requirements and production methods utilised in Western Australia (WA). Renewable energy in the form of utility-scale solar photovoltaics (PV) provides a solution to these problems by providing emission-free energy which can be used to supplement the existing natural gas turbines in operation at the proposed site. This research presents a custom renewable solution for the mining site considering the specific township network, local weather conditions, and seasonal load profiles. A summary of the required PV output is presented to supply slightly over 50% of the towns power requirements during the peak (summer) period, resulting in close to full coverage in the trench (winter) period. Dig Silent Power Factory Software has been used to simulate the characteristics of the existing infrastructure and produces results of integrating PV. Large scale PV penetration in the network introduce technical challenges, that includes; voltage deviation, increased harmonic distortion, increased available fault current and power factor. Results also show that cloud cover has a dramatic and unpredictable effect on the output of a PV system. The preliminary analyses conclude that mitigation strategies are needed to overcome voltage deviations, unacceptable levels of harmonics, excessive fault current and low power factor. Mitigation strategies are proposed to control these issues predominantly through the use of high quality, made for purpose inverters. Results show that use of inverters with harmonic filtering reduces the level of harmonic injections to an acceptable level according to Australian standards. Furthermore, the configuration of inverters to supply active and reactive power assist in mitigating low power factor problems. Use of FACTS devices; SVC and STATCOM also reduces the harmonics and improve the power factor of the network, and finally, energy storage helps to smooth the power supply.

Keywords: climate change, mitigation strategies, photovoltaic (PV), power quality

Procedia PDF Downloads 159
1860 Customized Temperature Sensors for Sustainable Home Appliances

Authors: Merve Yünlü, Nihat Kandemir, Aylin Ersoy

Abstract:

Temperature sensors are used in home appliances not only to monitor the basic functions of the machine but also to minimize energy consumption and ensure safe operation. In parallel with the development of smart home applications and IoT algorithms, these sensors produce important data such as the frequency of use of the machine, user preferences, and the compilation of critical data in terms of diagnostic processes for fault detection throughout an appliance's operational lifespan. Commercially available thin-film resistive temperature sensors have a well-established manufacturing procedure that allows them to operate over a wide temperature range. However, these sensors are over-designed for white goods applications. The operating temperature range of these sensors is between -70°C and 850°C, while the temperature range requirement in home appliance applications is between 23°C and 500°C. To ensure the operation of commercial sensors in this wide temperature range, usually, a platinum coating of approximately 1-micron thickness is applied to the wafer. However, the use of platinum in coating and the high coating thickness extends the sensor production process time and therefore increases sensor costs. In this study, an attempt was made to develop a low-cost temperature sensor design and production method that meets the technical requirements of white goods applications. For this purpose, a custom design was made, and design parameters (length, width, trim points, and thin film deposition thickness) were optimized by using statistical methods to achieve the desired resistivity value. To develop thin film resistive temperature sensors, one side polished sapphire wafer was used. To enhance adhesion and insulation 100 nm silicon dioxide was coated by inductively coupled plasma chemical vapor deposition technique. The lithography process was performed by a direct laser writer. The lift-off process was performed after the e-beam evaporation of 10 nm titanium and 280 nm platinum layers. Standard four-point probe sheet resistance measurements were done at room temperature. The annealing process was performed. Resistivity measurements were done with a probe station before and after annealing at 600°C by using a rapid thermal processing machine. Temperature dependence between 25-300 °C was also tested. As a result of this study, a temperature sensor has been developed that has a lower coating thickness than commercial sensors but can produce reliable data in the white goods application temperature range. A relatively simplified but optimized production method has also been developed to produce this sensor.

Keywords: thin film resistive sensor, temperature sensor, household appliance, sustainability, energy efficiency

Procedia PDF Downloads 67
1859 A Comparison of the Microbiology Profile for Periprosthetic Joint Infection (PJI) of Knee Arthroplasty and Lower Limb Endoprostheses in Tumour Surgery

Authors: Amirul Adlan, Robert A McCulloch, Neil Jenkins, MIchael Parry, Jonathan Stevenson, Lee Jeys

Abstract:

Background and Objectives: The current antibiotic prophylaxis for oncological patients is based upon evidence from primary arthroplasty despite significant differences in both patient group and procedure. The aim of this study was to compare the microbiology organisms responsible for PJI in patients who underwent two-stage revision for infected primary knee replacement with those of infected oncological endoprostheses of the lower limb in a single institution. This will subsequently guide decision making regarding antibiotic prophylaxis at primary implantation for oncological procedures and empirical antibiotics for infected revision procedures (where the infecting organism(s) are unknown). Patient and Methods: 118 patients were treated with two-stage revision surgery for infected knee arthroplasty and lower limb endoprostheses between 1999 and 2019. 74 patients had two-stage revision for PJI of knee arthroplasty, and 44 had two-stage revision of lower limb endoprostheses. There were 68 males and 50 females. The mean age for the knee arthroplasty cohort and lower limb endoprostheses cohort were 70.2 years (50-89) and 36.1 years (12-78), respectively (p<0.01). Patient host and extremity criteria were categorised according to the MSIS Host and Extremity Staging System. Patient microbiological culture, the incidence of polymicrobial infection and multi-drug resistance (MDR) were analysed and recorded. Results: Polymicrobial infection was reported in 16% (12 patients) from knee arthroplasty PJI and 14.5% (8 patients) in endoprostheses PJI (p=0.783). There was a significantly higher incidence of MDR in endoprostheses PJI, isolated in 36.4% of cultures, compared to knee arthroplasty PJI (17.2%) (p=0.01). Gram-positive organisms were isolated in more than 80% of cultures from both cohorts. Coagulase-negative Staphylococcus (CoNS) was the commonest gram-positive organism, and Escherichia coli was the commonest Gram-negative organism in both groups. According to the MSIS staging system, the host and extremity grade of knee arthroplasty PJI cohort were significantly better than endoprostheses PJI(p<0.05). Conclusion: Empirical antibiotic management of PJI in orthopaedic oncology is based upon PJI in arthroplasty despite differences in both host and microbiology. Our results show a significant increase in MDR pathogens within the oncological group despite CoNS being the most common infective organism in both groups. Endoprosthetic patients presented with poorer host and extremity criteria. These factors should be considered when managing this complex patient group, emphasising the importance of broad-spectrum antibiotic prophylaxis and preoperative sampling to ensure appropriate perioperative antibiotic cover.

Keywords: microbiology, periprosthetic Joint infection, knee arthroplasty, endoprostheses

Procedia PDF Downloads 109
1858 An A-Star Approach for the Quickest Path Problem with Time Windows

Authors: Christofas Stergianos, Jason Atkin, Herve Morvan

Abstract:

As air traffic increases, more airports are interested in utilizing optimization methods. Many processes happen in parallel at an airport, and complex models are needed in order to have a reliable solution that can be implemented for ground movement operations. The ground movement for aircraft in an airport, allocating a path to each aircraft to follow in order to reach their destination (e.g. runway or gate), is one process that could be optimized. The Quickest Path Problem with Time Windows (QPPTW) algorithm has been developed to provide a conflict-free routing of vehicles and has been applied to routing aircraft around an airport. It was subsequently modified to increase the accuracy for airport applications. These modifications take into consideration specific characteristics of the problem, such as: the pushback process, which considers the extra time that is needed for pushing back an aircraft and turning its engines on; stand holding where any waiting should be allocated to the stand; and runway sequencing, where the sequence of the aircraft that take off is optimized and has to be respected. QPPTW involves searching for the quickest path by expanding the search in all directions, similarly to Dijkstra’s algorithm. Finding a way to direct the expansion can potentially assist the search and achieve a better performance. We have further modified the QPPTW algorithm to use a heuristic approach in order to guide the search. This new algorithm is based on the A-star search method but estimates the remaining time (instead of distance) in order to assess how far the target is. It is important to consider the remaining time that it is needed to reach the target, so that delays that are caused by other aircraft can be part of the optimization method. All of the other characteristics are still considered and time windows are still used in order to route multiple aircraft rather than a single aircraft. In this way the quickest path is found for each aircraft while taking into account the movements of the previously routed aircraft. After running experiments using a week of real aircraft data from Zurich Airport, the new algorithm (A-star QPPTW) was found to route aircraft much more quickly, being especially fast in routing the departing aircraft where pushback delays are significant. On average A-star QPPTW could route a full day (755 to 837 aircraft movements) 56% faster than the original algorithm. In total the routing of a full week of aircraft took only 12 seconds with the new algorithm, 15 seconds faster than the original algorithm. For real time application, the algorithm needs to be very fast, and this speed increase will allow us to add additional features and complexity, allowing further integration with other processes in airports and leading to more optimized and environmentally friendly airports.

Keywords: a-star search, airport operations, ground movement optimization, routing and scheduling

Procedia PDF Downloads 223
1857 Bridge the Gap: Livability, Sustainable Development Goals and Pandemics: A Review on Visakhapatnam

Authors: Meenakshi Pappu

Abstract:

The terms like liveability, Sustainable Development Goals and pandemic have been widely analysed in proving sustainable cities and community living in growing urban areas by 2030. The pandemic has made us all ruminate about how we look into different fast-growing cities which vary in geographical location, climatic zones, terrains, land use and varying cultural backgrounds & traditions belong to the mother soil. India has taken up huge steps to move towards achieving UN-SDGs. Smart city missions have played a vital role in moving towards SDG. Visakhapatnam city is the executive capital in the state of Andhra Pradesh. Located on the Eastern Ghats in South India, it is surrounded by a mountain range on three sides and the Indian Ocean on one side. This unique geographical location and fast urbanization in the last two decades, has put up immense pressure on the natural environment and recourses. It's observed that a lot of investigation to address the existing and proposed land-use, spatial, natural resources, air quality, environmental challenges, and a range of socio-economic, economic challenges were identified during the assessment phase. The citizen concerns with quality and quantity of access to water, sewerage, energy, transportation (public & private) and safety for the public were found out through surveying. Urban infrastructure plays a major part in city building. These cities are occupied by people who come for a better living. This paper aims to provide off-center way of approach to citizens-oriented community habits by addressing SDG 11: Sustainable cities & community by enkindling a characteristic framework of amalgamating 1.eco-design principal, 2. three factors of liveability and 3. a local traditional planning solution. Aiming towards a sustainable development utilized with the focus on the quality of the life and experience of the people who live in urban areas integrating life with soil & water. Building strong social agenda that includes affordable housing for all levels of households, secure and place for good quality public realm for the local people with activity in green corridor, open meeting space & adding recreational places for advantage..

Keywords: livability, eco-design, smart city mission, sustainable

Procedia PDF Downloads 177
1856 Numerical Investigation of Combustion Chamber Geometry on Combustion Performance and Pollutant Emissions in an Ammonia-Diesel Common Rail Dual-Fuel Engine

Authors: Youcef Sehili, Khaled Loubar, Lyes Tarabet, Mahfoudh Cerdoun, Clement Lacroix

Abstract:

As emissions regulations grow more stringent and traditional fuel sources become increasingly scarce, incorporating carbon-free fuels in the transportation sector emerges as a key strategy for mitigating the impact of greenhouse gas emissions. While the utilization of hydrogen (H2) presents significant technological challenges, as evident in the engine limitation known as knocking, ammonia (NH3) provides a viable alternative that overcomes this obstacle and offers convenient transportation, storage, and distribution. Moreover, the implementation of a dual-fuel engine using ammonia as the primary gas is promising, delivering both ecological and economic benefits. However, when employing this combustion mode, the substitution of ammonia at high rates adversely affects combustion performance and leads to elevated emissions of unburnt NH3, especially under high loads, which requires special treatment of this mode of combustion. This study aims to simulate combustion in a common rail direct injection (CRDI) dual-fuel engine, considering the fundamental geometry of the combustion chamber as well as fifteen (15) alternative proposed geometries to determine the configuration that exhibits superior engine performance during high-load conditions. The research presented here focuses on improving the understanding of the equations and mechanisms involved in the combustion of finely atomized jets of liquid fuel and on mastering the CONVERGETM code, which facilitates the simulation of this combustion process. By analyzing the effect of piston bowl shape on the performance and emissions of a diesel engine operating in dual fuel mode, this work combines knowledge of combustion phenomena with proficiency in the calculation code. To select the optimal geometry, an evaluation of the Swirl, Tumble, and Squish flow patterns was conducted for the fifteen (15) studied geometries. Variations in-cylinder pressure, heat release rate, turbulence kinetic energy, turbulence dissipation rate, and emission rates were observed, while thermal efficiency and specific fuel consumption were estimated as functions of crankshaft angle. To maximize thermal efficiency, a synergistic approach involving the enrichment of intake air with oxygen (O2) and the enrichment of primary fuel with hydrogen (H2) was implemented. Based on the results obtained, it is worth noting that the proposed geometry (T8_b8_d0.6/SW_8.0) outperformed the others in terms of flow quality, reduction of pollutants emitted with a reduction of more than 90% in unburnt NH3, and an impressive improvement in engine efficiency of more than 11%.

Keywords: ammonia, hydrogen, combustion, dual-fuel engine, emissions

Procedia PDF Downloads 67
1855 The Influence of Nutritional and Immunological Status on the Prognosis of Head and Neck Cancer

Authors: Ching-Yi Yiu, Hui-Chen Hsu

Abstract:

Objectives: Head and neck cancer (HNC) is a big global health problem in the world. Despite the development of diagnosis and treatment, the overall survival of HNC is still low. The well recognition of the interaction of the host immune system and cancer cells has led to realizing the processes of tumor initiation, progression and metastasis. Many systemic inflammatory responses have been shown to play a crucial role in cancer progression. The pre and post-treatment nutritional and immunological status of HNC patients is a reliable prognostic indicator of tumor outcomes and survivors. Methods: Between July 2020 to June 2022, We have enrolled 60 HNC patients, including 59 males and 1 female, in Chi Mei Medical Center, Liouying, Taiwan. The age distribution was from 37 to 81 years old (y/o), with a mean age of 57.6 y/o. We evaluated the pre-and post-treatment nutritional and immunological status of these HNC patients with body weight, body weight loss, body mass index (BMI), whole blood count including hemoglobin (Hb), lymphocyte, neutrophil and platelet counts, biochemistry including prealbumin, albumin, c-reactive protein (CRP), with the time period of before treatment, post-treatment 3 and 6 months. We calculated the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) to assess how these biomarkers influence the outcomes of HNC patients. Results: We have carcinoma of the hypopharynx in 21 cases with 35%, carcinoma of the larynx in 9 cases, carcinoma of the tonsil and tongue every 6 cases, carcinoma soft palate and tongue base every 5 cases, carcinoma of buccal mucosa, retromolar trigone and mouth floor every 2 cases, carcinoma of the hard palate and low lip each 1 case. There were stage I 15 cases, stage II 13 cases, stage III 6 cases, stage IVA 10 cases, and stage IVB 16 cases. All patients have received surgery, chemoradiation therapy or combined therapy. We have wound infection in 6 cases, 2 cases of pharyngocutaneous fistula, flap necrosis in 2 cases, and mortality in 6 cases. In the wound infection group, the average BMI is 20.4 kg/m2; the average Hb is 12.9 g/dL, the average albumin is 3.5 g/dL, the average NLR is 6.78, and the average PLR is 243.5. In the PC fistula and flap necrosis group, the average BMI is 21.65 kg/m2; the average Hb is 11.7 g/dL, the average albumin is 3.15 g/dL, average NLR is 13.28, average PLR is 418.84. In the mortality group, the average BMI is 22.3 kg/m2; the average Hb is 13.58 g/dL, the average albumin is 3.77 g/dL, the average NLR is 6.06, and the average PLR is 275.5. Conclusion: HNC is a big challenging public health problem worldwide, especially in the high prevalence of betel nut consumption area Taiwan. Besides the definite risk factors of smoking, drinking and betel nut related, the other biomarkers may play significant prognosticators in the HNC outcomes. We concluded that the average BMI is less than 22 kg/m2, the average Hb is low than 12.0 g/dL, the average albumin is low than 3.3 g/dL, the average NLR is low than 3, and the average PLR is more than 170, the surgical complications and mortality will be increased, and the prognosis is poor in HNC patients.

Keywords: nutritional, immunological, neutrophil-to-lymphocyte ratio, paltelet-to-lymphocyte ratio.

Procedia PDF Downloads 74
1854 Quality Improvement of the Sand Moulding Process in Foundries Using Six Sigma Technique

Authors: Cindy Sithole, Didier Nyembwe, Peter Olubambi

Abstract:

The sand casting process involves pattern making, mould making, metal pouring and shake out. Every step in the sand moulding process is very critical for production of good quality castings. However, waste generated during the sand moulding operation and lack of quality are matters that influences performance inefficiencies and lack of competitiveness in South African foundries. Defects produced from the sand moulding process are only visible in the final product (casting) which results in increased number of scrap, reduced sales and increases cost in the foundry. The purpose of this Research is to propose six sigma technique (DMAIC, Define, Measure, Analyze, Improve and Control) intervention in sand moulding foundries and to reduce variation caused by deficiencies in the sand moulding process in South African foundries. Its objective is to create sustainability and enhance productivity in the South African foundry industry. Six sigma is a data driven method to process improvement that aims to eliminate variation in business processes using statistical control methods .Six sigma focuses on business performance improvement through quality initiative using the seven basic tools of quality by Ishikawa. The objectives of six sigma are to eliminate features that affects productivity, profit and meeting customers’ demands. Six sigma has become one of the most important tools/techniques for attaining competitive advantage. Competitive advantage for sand casting foundries in South Africa means improved plant maintenance processes, improved product quality and proper utilization of resources especially scarce resources. Defects such as sand inclusion, Flashes and sand burn on were some of the defects that were identified as resulting from the sand moulding process inefficiencies using six sigma technique. The courses were we found to be wrong design of the mould due to the pattern used and poor ramming of the moulding sand in a foundry. Six sigma tools such as the voice of customer, the Fishbone, the voice of the process and process mapping were used to define the problem in the foundry and to outline the critical to quality elements. The SIPOC (Supplier Input Process Output Customer) Diagram was also employed to ensure that the material and process parameters were achieved to ensure quality improvement in a foundry. The process capability of the sand moulding process was measured to understand the current performance to enable improvement. The Expected results of this research are; reduced sand moulding process variation, increased productivity and competitive advantage.

Keywords: defects, foundries, quality improvement, sand moulding, six sigma (DMAIC)

Procedia PDF Downloads 186
1853 Reducing the Computational Cost of a Two-way Coupling CFD-FEA Model via a Multi-scale Approach for Fire Determination

Authors: Daniel Martin Fellows, Sean P. Walton, Jennifer Thompson, Oubay Hassan, Kevin Tinkham, Ella Quigley

Abstract:

Structural integrity for cladding products is a key performance parameter, especially concerning fire performance. Cladding products such as PIR-based sandwich panels are tested rigorously, in line with industrial standards. Physical fire tests are necessary to ensure the customer's safety but can give little information about critical behaviours that can help develop new materials. Numerical modelling is a tool that can help investigate a fire's behaviour further by replicating the fire test. However, fire is an interdisciplinary problem as it is a chemical reaction that behaves fluidly and impacts structural integrity. An analysis using Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) is needed to capture all aspects of a fire performance test. One method is a two-way coupling analysis that imports the updated changes in thermal data, due to the fire's behaviour, to the FEA solver in a series of iterations. In light of our recent work with Tata Steel U.K using a two-way coupling methodology to determine the fire performance, it has been shown that a program called FDS-2-Abaqus can make predictions of a BS 476 -22 furnace test with a degree of accuracy. The test demonstrated the fire performance of Tata Steel U.K Trisomet product, a Polyisocyanurate (PIR) based sandwich panel used for cladding. Previous works demonstrated the limitations of the current version of the program, the main limitation being the computational cost of modelling three Trisomet panels, totalling an area of 9 . The computational cost increases substantially, with the intention to scale up to an LPS 1181-1 test, which includes a total panel surface area of 200 .The FDS-2-Abaqus program is developed further within this paper to overcome this obstacle and better accommodate Tata Steel U.K PIR sandwich panels. The new developments aim to reduce the computational cost and error margin compared to experimental data. One avenue explored is a multi-scale approach in the form of Reduced Order Modeling (ROM). The approach allows the user to include refined details of the sandwich panels, such as the overlapping joints, without a computationally costly mesh size.Comparative studies will be made between the new implementations and the previous study completed using the original FDS-2-ABAQUS program. Validation of the study will come from physical experiments in line with governing body standards such as BS 476 -22 and LPS 1181-1. The physical experimental data includes the panels' gas and surface temperatures and mechanical deformation. Conclusions are drawn, noting the new implementations' impact factors and discussing the reasonability for scaling up further to a whole warehouse.

Keywords: fire testing, numerical coupling, sandwich panels, thermo fluids

Procedia PDF Downloads 70
1852 Design, Simulation and Fabrication of Electro-Magnetic Pulse Welding Coil and Initial Experimentation

Authors: Bharatkumar Doshi

Abstract:

Electro-Magnetic Pulse Welding (EMPW) is a solid state welding process carried out at almost room temperature, in which joining is enabled by high impact velocity deformation. In this process, high voltage capacitor’s stored energy is discharged in an EM coil resulting in a damped, sinusoidal current with an amplitude of several hundred kiloamperes. Due to these transient magnetic fields of few tens of Tesla near the coil is generated. As the conductive (tube) part is positioned in this area, an opposing eddy current is induced in this part. Consequently, high Lorentz forces act on the part, leading to acceleration away from the coil. In case of a tube, it gets compressed under forming velocities of more than 300 meters per second. After passing the joining gap it collides with the second metallic joining rod, leading to the formation of a jet under appropriate collision conditions. Due to the prevailing high pressure, metallurgical bonding takes place. A characteristic feature is the wavy interface resulting from the heavy plastic deformations. In the process, the formation of intermetallic compounds which might deteriorate the weld strength can be avoided, even for metals with dissimilar thermal properties. In order to optimize the process parameters like current, voltage, inductance, coil dimensions, workpiece dimensions, air gap, impact velocity, effective plastic strain, shear stress acting in the welding zone/impact zone etc. are very critical and important to establish. These process parameters could be determined by simulation using Finite Element Methods (FEM) in which electromagnetic –structural couple field analysis is performed. The feasibility of welding could thus be investigated by varying the parameters in the simulation using COMSOL. Simulation results shall be applied in performing the preliminary experiments of welding the different alloy steel tubes and/or alloy steel to other materials. The single turn coil (S.S.304) with field shaper (copper) has been designed and manufactured. The preliminary experiments are performed using existing EMPW facility available Institute for Plasma Research, Gandhinagar, India. The experiments are performed at 22kV charged into 64µF capacitor bank and the energy is discharged into single turn EM coil. Welding of axi-symetric components such as aluminum tube and rod has been proven experimentally using EMPW techniques. In this paper EM coil design, manufacturing, Electromagnetic-structural FEM simulation of Magnetic Pulse Welding and preliminary experiment results is reported.

Keywords: COMSOL, EMPW, FEM, Lorentz force

Procedia PDF Downloads 174
1851 Sequential and Combinatorial Pre-Treatment Strategy of Lignocellulose for the Enhanced Enzymatic Hydrolysis of Spent Coffee Waste

Authors: Rajeev Ravindran, Amit K. Jaiswal

Abstract:

Waste from the food-processing industry is produced in large amount and contains high levels of lignocellulose. Due to continuous accumulation throughout the year in large quantities, it creates a major environmental problem worldwide. The chemical composition of these wastes (up to 75% of its composition is contributed by polysaccharide) makes it inexpensive raw material for the production of value-added products such as biofuel, bio-solvents, nanocrystalline cellulose and enzymes. In order to use lignocellulose as the raw material for the microbial fermentation, the substrate is subjected to enzymatic treatment, which leads to the release of reducing sugars such as glucose and xylose. However, the inherent properties of lignocellulose such as presence of lignin, pectin, acetyl groups and the presence of crystalline cellulose contribute to recalcitrance. This leads to poor sugar yields upon enzymatic hydrolysis of lignocellulose. A pre-treatment method is generally applied before enzymatic treatment of lignocellulose that essentially removes recalcitrant components in biomass through structural breakdown. Present study is carried out to find out the best pre-treatment method for the maximum liberation of reducing sugars from spent coffee waste (SPW). SPW was subjected to a range of physical, chemical and physico-chemical pre-treatment followed by a sequential, combinatorial pre-treatment strategy is also applied on to attain maximum sugar yield by combining two or more pre-treatments. All the pre-treated samples were analysed for total reducing sugar followed by identification and quantification of individual sugar by HPLC coupled with RI detector. Besides, generation of any inhibitory compounds such furfural, hydroxymethyl furfural (HMF) which can hinder microbial growth and enzyme activity is also monitored. Results showed that ultrasound treatment (31.06 mg/L) proved to be the best pre-treatment method based on total reducing content followed by dilute acid hydrolysis (10.03 mg/L) while galactose was found to be the major monosaccharide present in the pre-treated SPW. Finally, the results obtained from the study were used to design a sequential lignocellulose pre-treatment protocol to decrease the formation of enzyme inhibitors and increase sugar yield on enzymatic hydrolysis by employing cellulase-hemicellulase consortium. Sequential, combinatorial treatment was found better in terms of total reducing yield and low content of the inhibitory compounds formation, which could be due to the fact that this mode of pre-treatment combines several mild treatment methods rather than formulating a single one. It eliminates the need for a detoxification step and potential application in the valorisation of lignocellulosic food waste.

Keywords: lignocellulose, enzymatic hydrolysis, pre-treatment, ultrasound

Procedia PDF Downloads 360
1850 Analysis of Distance Travelled by Plastic Consumables Used in the First 24 Hours of an Intensive Care Admission: Impacts and Methods of Mitigation

Authors: Aidan N. Smallwood, Celestine R. Weegenaar, Jack N. Evans

Abstract:

The intensive care unit (ICU) is a particularly resource heavy environment, in terms of staff, drugs and equipment required. Whilst many areas of the hospital are attempting to cut down on plastic use and minimise their impact on the environment, this has proven challenging within the confines of intensive care. Concurrently, as globalization has progressed over recent decades, there has been a tendency towards centralised manufacturing with international distribution networks for products, often covering large distances. In this study, we have modelled the standard consumption of plastic single-use items over the course of the first 24-hours of an average individual patient’s stay in a 12 bed ICU in the United Kingdom (UK). We have identified the country of manufacture and calculated the minimum possible distance travelled by each item from factory to patient. We have assumed direct transport via the shortest possible straight line from country of origin to the UK and have not accounted for transport within either country. Assuming an intubated patient with invasive haemodynamic monitoring and central venous access, there are a total of 52 distincts, largely plastic, disposable products which would reasonably be required in the first 24-hours after admission. Each product type has only been counted once to account for multiple items being shipped as one package. Travel distances from origin were summed to give the total distance combined for all 52 products. The minimum possible total distance travelled from country of origin to the UK for all types of product was 273,353 km, equivalent to 6.82 circumnavigations of the globe, or 71% of the way to the moon. The mean distance travelled was 5,256 km, approximately the distance from London to Mecca. With individual packaging for each item, the total weight of consumed products was 4.121 kg. The CO2 produced shipping these items by air freight would equate to 30.1 kg, however doing the same by sea would produce 0.2 kg CO2. Extrapolating these results to the 211,932 UK annual ICU admissions (2018-2019), even with the underestimates of distance and weight of our assumptions, air freight would account for 6586 tons CO2 emitted annually, approximately 130 times that of sea freight. Given the drive towards cost saving within the UK health service, and the decline of the local manufacturing industry, buying from intercontinental manufacturers is inevitable However, transporting all consumables by sea where feasible would be environmentally beneficial, as well as being less costly than air freight. At present, the NHS supply chain purchases from medical device companies, and there is no freely available information as to the transport mode used to deliver the product to the UK. This must be made available to purchasers in order to give a fuller picture of life cycle impact and allow for informed decision making in this regard.

Keywords: CO2, intensive care, plastic, transport

Procedia PDF Downloads 169
1849 Comfort Evaluation of Summer Knitted Clothes of Tencel and Cotton Fabrics

Authors: Mona Mohamed Shawkt Ragab, Heba Mohamed Darwish

Abstract:

Context: Comfort properties of garments are crucial for the wearer, and with the increasing demand for cotton fabric, there is a need to explore alternative fabrics that can offer similar or superior comfort properties. This study focuses on comparing the comfort properties of tencel/cotton single jersey fabric and cotton single jersey fabric, with the aim of identifying fabrics that are more suitable for summer clothes. Research Aim: The aim of this study is to evaluate the comfort properties of tencel/cotton single jersey fabric and cotton single jersey fabric, with the goal of identifying fabrics that can serve as alternatives to cotton, considering their comfort properties for summer clothing. Methodology: An experimental, analytical approach was employed in this study. Two circular knitting machines were used to produce the fabrics, one with a 24 inches gauge and the other with a 28 inches gauge. Both fabrics were knitted with three different loop lengths (3.05 mm, 2.9 mm, and 2.6 mm) to obtain loose, medium, and tight fabrics for evaluation. Various comfort properties, including air permeability, water vapor permeability, wickability, and thermal resistance, were measured for both fabric types. Findings: The study found a significant difference in comfort properties between tencel/cotton single jersey fabric and cotton single jersey fabric. Tencel/cotton fabric exhibited higher air permeability, water vapor permeability, and wickability compared to cotton fabric. These findings suggest that tencel fabric is more suitable for summer clothes due to its superior ventilation and absorption properties. Theoretical Importance: This study contributes to the exploration of alternative fabrics to cotton by evaluating their comfort properties. By identifying fabrics that offer better comfort properties than cotton, particularly in terms of water usage, the study provides valuable insights into sustainable fabric choices for the fashion industry. Data Collection and Analysis Procedures: The comfort properties of the fabrics were measured using appropriate testing methods. Paired comparison t-tests were conducted to determine the significant differences between tencel/cotton fabric and cotton fabric in the measured properties. Correlation coefficients were also calculated to examine the relationships between the factors under study. Question Addressed: The study addresses the question of whether tencel/cotton single jersey fabric can serve as an alternative to cotton fabric for summer clothes, considering their comfort properties. Conclusion: The study concludes that tencel/cotton single jersey fabric offers superior comfort properties compared to cotton single jersey fabric, making it a suitable alternative for summer clothes. The findings also highlight the importance of considering fabric properties, such as air permeability, water vapor permeability, and wickability, when selecting materials for garments to enhance wearer comfort. This research contributes to the search for sustainable alternatives to cotton and provides valuable insights for the fashion industry in making informed fabric choices.

Keywords: comfort properties, cotton fabric, tencel fabric, single jersey

Procedia PDF Downloads 67
1848 Evolutionary Analysis of Influenza A (H1N1) Pdm 09 in Post Pandemic Period in Pakistan

Authors: Nazish Badar

Abstract:

In early 2009, Pandemic type A (H1N1) Influenza virus emerged globally. Since then, it has continued circulation causing considerable morbidity and mortality. The purpose of this study was to evaluate the evolutionary changes in Influenza A (H1N1) pdm09 viruses from 2009-15 and their relevance with the current vaccine viruses. Methods: Respiratory specimens were collected with influenza-like illness and Severe Acute Respiratory Illness. Samples were processed according to CDC protocol. Sequencing and phylogenetic analysis of Haemagglutinin (HA) and neuraminidase (NA) genes was carried out comparing representative isolates from Pakistan viruses. Results: Between Jan2009 - Feb 2016, 1870 (13.2%) samples were positive for influenza A out of 14086. During the pandemic period (2009–10), Influenza A/ H1N1pdm 09 was the dominant strain with 366 (45%) of total influenza positives. In the post-pandemic period (2011–2016), a total of 1066 (59.6%) cases were positive Influenza A/ H1N1pdm 09 with co-circulation of different Influenza A subtypes. Overall, the Pakistan A(H1N1) pdm09 viruses grouped in two genetic clades. Influenza A(H1N1)pdm09 viruses only ascribed to Clade 7 during the pandemic period whereas viruses belong to clade 7 (2011) and clade 6B (2015) during the post-pandemic years. Amino acid analysis of the HA gene revealed mutations at positions S220T, I338V and P100S specially associated with outbreaks in all the analyzed strains. Sequence analyses of post-pandemic A(H1N1)pdm09 viruses showed additional substitutions at antigenic sites; S179N,K180Q (SA), D185N, D239G (CA), S202A (SB) and at receptor binding sites; A13T, S200P when compared with pandemic period. Substitution at Genetic markers; A273T (69%), S200P/T (15%) and D239G (7.6%) associated with severity and E391K (69%) associated with virulence was identified in viruses isolated during 2015. Analysis of NA gene revealed outbreak markers; V106I (23%) among pandemic and N248D (100%) during post-pandemic Pakistan viruses. Additional N-Glycosylation site; HA S179N (23%), NA I23T(7.6%) and N44S (77%) in place of N386K(77%) were only found in post-pandemic viruses. All isolates showed histidine (H) at position 275 in NA indicating sensitivity to neuraminidase inhibitors. Conclusion: This study shows that the Influenza A(H1N1)pdm09 viruses from Pakistan clustered into two genetic clades, with co-circulation of some variants. Certain key substitutions in the receptor binding site and few changes indicative of virulence were also detected in post-pandemic strains. Therefore, it is imperative to continue monitoring of the viruses for early identification of potential variants of high virulence or emergence of drug-resistant variants.

Keywords: Influenza A (H1N1) pdm09, evolutionary analysis, post pandemic period, Pakistan

Procedia PDF Downloads 202
1847 Bivariate Analyses of Factors That May Influence HIV Testing among Women Living in the Democratic Republic of the Congo

Authors: Danielle A. Walker, Kyle L. Johnson, Patrick J. Fox, Jacen S. Moore

Abstract:

The HIV Continuum of Care has become a universal model to provide context for the process of HIV testing, linkage to care, treatment, and viral suppression. HIV testing is the first step in moving toward community viral suppression. Countries with a lower socioeconomic status experience the lowest rates of testing and access to care. The Democratic Republic of the Congo is located in the heart of sub-Saharan Africa, where testing and access to care are low and women experience higher HIV prevalence compared to men. In the Democratic Republic of the Congo there is only a 21.6% HIV testing rate among women. Because a critical gap exists between a woman’s risk of contracting HIV and the decision to be tested, this study was conducted to obtain a better understanding of the relationship between factors that could influence HIV testing among women. The datasets analyzed were from the 2013-14 Democratic Republic of the Congo Demographic and Health Survey Program. The data was subset for women with an age range of 18-49 years. All missing cases were removed and one variable was recoded. The total sample size analyzed was 14,982 women. The results showed that there did not seem to be a difference in HIV testing by mean age. Out of 11 religious categories (Catholic, Protestant, Armee de salut, Kimbanguiste, Other Christians, Muslim, Bundu dia kongo, Vuvamu, Animist, no religion, and other), those who identified as Other Christians had the highest testing rate of 25.9% and those identified as Vuvamu had a 0% testing rate (p<0.001). There was a significant difference in testing by religion. Only 0.7% of women surveyed identified as having no religious affiliation. This suggests partnerships with key community and religious leaders could be a tool to increase testing. Over 60% of women who had never been tested for HIV did not know where to be tested. This highlights the need to educate communities on where testing facilities can be located. Almost 80% of women who believed HIV could be transmitted by supernatural means and/or witchcraft had never been tested before (p=0.08). Cultural beliefs could influence risk perception and testing decisions. Consequently, misconceptions need to be considered when implementing HIV testing and prevention programs. Location by province, years of education, and wealth index were also analyzed to control for socioeconomic status. Kinshasa had the highest testing rate of 54.2% of women living there, and both Equateur and Kasai-Occidental had less than a 10% testing rate (p<0.001). As the education level increased up to 12 years, testing increased (p<0.001). Women within the highest quintile of the wealth index had a 56.1% testing rate, and women within the lowest quintile had a 6.5% testing rate (p<0.001). This study concludes that further research is needed to identify culturally competent methods to increase HIV education programs, build partnerships with key community leaders, and improve knowledge on access to care.

Keywords: Democratic Republic of the Congo, cultural beliefs, education, HIV testing

Procedia PDF Downloads 284
1846 Performance Improvement of Piston Engine in Aeronautics by Means of Additive Manufacturing Technologies

Authors: G. Andreutti, G. Saccone, D. Lucariello, C. Pirozzi, S. Franchitti, R. Borrelli, C. Toscano, P. Caso, G. Ferraro, C. Pascarella

Abstract:

The reduction of greenhouse gases and pollution emissions is a worldwide environmental issue. The amount of CO₂ released by an aircraft is associated with the amount of fuel burned, so the improvement of engine thermo-mechanical efficiency and specific fuel consumption is a significant technological driver for aviation. Moreover, with the prospect that avgas will be phased out, an engine able to use more available and cheaper fuels is an evident advantage. An advanced aeronautical Diesel engine, because of its high efficiency and ability to use widely available and low-cost jet and diesel fuels, is a promising solution to achieve a more fuel-efficient aircraft. On the other hand, a Diesel engine has generally a higher overall weight, if compared with a gasoline one of same power performances. Fixing the MTOW, Max Take-Off Weight, and the operational payload, this extra-weight reduces the aircraft fuel fraction, partially vinifying the associated benefits. Therefore, an effort in weight saving manufacturing technologies is likely desirable. In this work, in order to achieve the mentioned goals, innovative Electron Beam Melting – EBM, Additive Manufacturing – AM technologies were applied to a two-stroke, common rail, GF56 Diesel engine, developed by the CMD Company for aeronautic applications. For this purpose, a consortium of academic, research and industrial partners, including CMD Company, Italian Aerospace Research Centre – CIRA, University of Naples Federico II and the University of Salerno carried out a technological project, funded by the Italian Minister of Education and Research – MIUR. The project aimed to optimize the baseline engine in order to improve its performance and increase its airworthiness features. This project was focused on the definition, design, development, and application of enabling technologies for performance improvement of GF56. Weight saving of this engine was pursued through the application of EBM-AM technologies and in particular using Arcam AB A2X machine, available at CIRA. The 3D printer processes titanium alloy micro-powders and it was employed to realize new connecting rods of the GF56 engine with an additive-oriented design approach. After a preliminary investigation of EBM process parameters and a thermo-mechanical characterization of titanium alloy samples, additive manufactured, innovative connecting rods were fabricated. These engine elements were structurally verified, topologically optimized, 3D printed and suitably post-processed. Finally, the overall performance improvement, on a typical General Aviation aircraft, was estimated, substituting the conventional engine with the optimized GF56 propulsion system.

Keywords: aeronautic propulsion, additive manufacturing, performance improvement, weight saving, piston engine

Procedia PDF Downloads 137
1845 Online Early Childhood Monitoring and Evaluation of Systems in Underprivileged Communities: Tracking Growth and Progress in Young Children's Ability Levels

Authors: Lauren Kathryn Stretch

Abstract:

A study was conducted in the underprivileged setting of Nelson Mandela Bay, South Africa in order to monitor the progress of learners whose teachers receive training through the Early Inspiration Training Programme. Through tracking children’s growth & development, the effectiveness of the practitioner-training programme, which focuses on empowering women from underprivileged communities in South Africa, was analyzed. The aim was to identify impact & reach and to assess the effectiveness of this intervention programme through identifying impact on children’s growth and development. A Pre- and Post-Test was administered on about 850 young children in Pre-Grade R and Grade R classes in order to understand children’s ability level & the growth that would be evident as a result of effective teacher training. A pre-test evaluated the level of each child’s abilities, including physical-motor development, language, and speech development, cognitive development including visual perceptual skills, social-emotional development & play development. This was followed by a random selection of the classes of children into experimental and control groups. The experimental group’s teachers (practitioners) received 8-months of training & intervention, as well as mentorship & support. After the 8-month training programme, children from the experimental & control groups underwent post-assessment. The results indicate that the impact of effective practitioner training and enhancing a deep understanding of stimulation on young children, that this understanding is implemented in the classroom, highlighting the areas of growth & development in the children whose teachers received additional training & support, as compared to those who did not receive additional training. Monitoring & Evaluation systems not only track children’s ability levels, but also have a core focus on reporting systems, mentorship and providing ongoing support. As a result of the study, an Online Application (for Apple or Android Devices) was developed which is used to track children’s growth via age-appropriate assessments. The data is then statistically analysed to provide direction for relevant & impactful intervention. The App also focuses on effective reporting strategies, structures, and implementation to support organizations working with young children & maximize on outcomes.

Keywords: early childhood development, developmental child assessments, online application, monitoring and evaluating online

Procedia PDF Downloads 189
1844 A Delphi Study of Factors Affecting the Forest Biorefinery Development in the Pulp and Paper Industry: The Case of Bio-Based Products

Authors: Natasha Gabriella, Josef-Peter Schöggl, Alfred Posch

Abstract:

Being a mature industry, pulp and paper industry (PPI) possess strength points coming from its existing infrastructure, technology know-how, and abundant availability of biomass. However, the declining trend of the wood-based products sales sends a clear signal to the industry to transform its business model in order to increase its profitability. With the emerging global attention on bio-based economy and circular economy, coupled with the low price of fossil feedstock, the PPI starts to integrate biorefinery as a value-added business model to keep the industry’s competitiveness. Nonetheless, biorefinery as an innovation exposes the PPI with some barriers, of which the uncertainty of the promising product becomes one of the major hurdles. This study aims to assess factors that affect the diffusion and development of forest biorefinery in the PPI, including drivers, barriers, advantages, disadvantages, as well as the most promising bio-based products of forest biorefinery. The study examines the identified factors according to the layer of business environment, being the macro-environment, industry, and strategic group level. Besides, an overview of future state of the identified factors is elaborated as to map necessary improvements for implementing forest biorefinery. A two-phase Delphi method is used to collect the empirical data for the study, comprising of an online-based survey and interviews. Delphi method is an effective communication tools to elicit ideas from a group of experts to further reach a consensus of forecasting future trends. Collaborating a total of 50 experts in the panel, the study reveals that influential factors are found in every layers of business of the PPI. The politic dimension is apparent to have a significant influence for tackling the economy barrier while reinforcing the environmental and social benefits in the macro-environment. In the industry level, the biomass availability appears to be a strength point of the PPI while the knowledge gap on technology and market seem to be barriers. Consequently, cooperation with academia and the chemical industry has to be improved. Human resources issue is indicated as one important premise behind the preceding barrier, along with the indication of the PPI’s resistance towards biorefinery implementation as an innovation. Further, cellulose-based products are acknowledged for near-term product development whereas lignin-based products are emphasized to gain importance in the long-term future.

Keywords: forest biorefinery, pulp and paper, bio-based product, Delphi method

Procedia PDF Downloads 267
1843 Blood Microbiome in Different Metabolic Types of Obesity

Authors: Irina M. Kolesnikova, Andrey M. Gaponov, Sergey A. Roumiantsev, Tatiana V. Grigoryeva, Dilyara R. Khusnutdinova, Dilyara R. Kamaldinova, Alexander V. Shestopalov

Abstract:

Background. Obese patients have unequal risks of metabolic disorders. It is accepted to distinguish between metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUHO). MUHO patients have a high risk of metabolic disorders, insulin resistance, and diabetes mellitus. Among the other things, the gut microbiota also contributes to the development of metabolic disorders in obesity. Obesity is accompanied by significant changes in the gut microbial community. In turn, bacterial translocation from the intestine is the basis for the blood microbiome formation. The aim was to study the features of the blood microbiome in patients with various metabolic types of obesity. Patients, materials, methods. The study included 116 healthy donors and 101 obese patients. Depending on the metabolic type of obesity, the obese patients were divided into subgroups with MHO (n=36) and MUHO (n=53). Quantitative and qualitative assessment of the blood microbiome was based on metagenomic analysis. Blood samples were used to isolate DNA and perform sequencing of the variable v3-v4 region of the 16S rRNA gene. Alpha diversity indices (Simpson index, Shannon index, Chao1 index, phylogenetic diversity, the number of observed operational taxonomic units) were calculated. Moreover, we compared taxa (phyla, classes, orders, and families) in terms of isolation frequency and the taxon share in the total bacterial DNA pool between different patient groups. Results. In patients with MHO, the characteristics of the alpha-diversity of the blood microbiome were like those of healthy donors. However, MUHO was associated with an increase in all diversity indices. The main phyla of the blood microbiome were Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria. Cyanobacteria, TM7, Thermi, Verrucomicrobia, Chloroflexi, Acidobacteria, Planctomycetes, Gemmatimonadetes, and Tenericutes were found to be less significant phyla of the blood microbiome. Phyla Acidobacteria, TM7, and Verrucomicrobia were more often isolated in blood samples of patients with MUHO compared with healthy donors. Obese patients had a decrease in some taxonomic ranks (Bacilli, Caulobacteraceae, Barnesiellaceae, Rikenellaceae, Williamsiaceae). These changes appear to be related to the increased diversity of the blood microbiome observed in obesity. An increase of Lachnospiraceae, Succinivibrionaceae, Prevotellaceae, and S24-7 was noted for MUHO patients, which, apparently, is explained by a magnification in intestinal permeability. Conclusion. Blood microbiome differs in obese patients and healthy donors at class, order, and family levels. Moreover, the nature of the changes is determined by the metabolic type of obesity. MUHO linked to increased diversity of the blood microbiome. This appears to be due to increased microbial translocation from the intestine and non-intestinal sources.

Keywords: blood microbiome, blood bacterial DNA, obesity, metabolically healthy obesity, metabolically unhealthy obesity

Procedia PDF Downloads 154
1842 Provisional Settlements and Urban Resilience: The Transformation of Refugee Camps into Cities

Authors: Hind Alshoubaki

Abstract:

The world is now confronting a widespread urban phenomenon: refugee camps, which have mostly been established in ‘rushing mode,’ pointing toward affording temporary settlements for refugees that provide them with minimum levels of safety, security and protection from harsh weather conditions within a very short time period. In fact, those emergency settlements are transforming into permanent ones since time is a decisive factor in terms of construction and camps’ age. These play an essential role in transforming their temporary character into a permanent one that generates deep modifications to the city’s territorial structure, shaping a new identity and creating a contentious change in the city’s form and history. To achieve a better understanding for the transformation of refugee camps, this study is based on a mixed-methods approach: the qualitative approach explores different refugee camps and analyzes their transformation process in terms of population density and the changes to the city’s territorial structure and urban features. The quantitative approach employs a statistical regression analysis as a reliable prediction of refugees’ satisfaction within the Zaatari camp in order to predict its future transformation. Obviously, refugees’ perceptions of their current conditions will affect their satisfaction, which plays an essential role in transforming emergency settlements into permanent cities over time. The test basically discusses five main themes: the access and readiness of schools, the dispersion of clinics and shopping centers; the camp infrastructure, the construction materials, and the street networks. The statistical analysis showed that Syrian refugees were not satisfied with their current conditions inside the Zaatari refugee camp and that they had started implementing changes according to their needs, desires, and aspirations because they are conscious about the fact of their prolonged stay in this settlement. Also, the case study analyses showed that neglecting the fact that construction takes time leads settlements being created with below-minimum standards that are deteriorating and creating ‘slums,’ which lead to increased crime rates, suicide, drug use and diseases and deeply affect cities’ urban tissues. For this reason, recognizing the ‘temporary-eternal’ character of those settlements is the fundamental concept to consider refugee camps from the beginning as definite permanent cities. This is the key factor to minimize the trauma of displacement on both refugees and the hosting countries. Since providing emergency settlements within a short time period does not mean using temporary materials, having a provisional character or creating ‘makeshift cities.’

Keywords: refugee, refugee camp, temporary, Zaatari

Procedia PDF Downloads 126
1841 Disaggregating Communities and the Making of Factional States: Evidence from Joint Forest Management in Sundarban, India

Authors: Amrita Sen

Abstract:

In the face of a growing insurgent movement and the perceived failure of the state and the market towards sustainable resource management, a range of decentralized forest management policies was formulated in the last two decades, which recognized the need for community representations within the statutory methods of forest management. The recognition conceded on the virtues of ecological sustainability and traditional environmental knowledge, which were considered to be the principal repositories of the forest dependent communities. The present study, in the light of empirical insights, reflects on the contemporary disjunctions between the preconceived communitarian ethic in environmentalism and the lived reality of forest based life-worlds. Many of the popular as well as dominant ideologies, which have historically shaped the conceptual and theoretical understanding of sociology, needs further perusal in the context of the emerging contours of empirical knowledge, which lends opportunities for substantive reworking and analysis. The image of the community appears to be one of those concepts, an identity which has for long defined perspectives and processes associated with people living together harmoniously in small physical spaces. Through an ethnographic account of the implementation of Joint Forest Management (JFM) in a forest fringe village in Sundarban, the study explores the ways in which the idea of ‘community’ gets transformed through the process of state-making, rendering the necessity of its departure from the standard, conventional definition of homogeneity and internal equity. The study necessitates an attention towards the anthropology of micro-politics, disaggregating an essentially constructivist anthropology of ‘collective identities’, which can render the visibility of political mobilizations plausible within the seemingly culturalist production of communities. The two critical questions that the paper seeks to ask in this context are: how the ‘local’ is constituted within community based conservation practices? Within the efforts of collaborative forest management, how accurately does the depiction of ‘indigenous environmental knowledge’, subscribe to its role of sustainable conservation practices? Reflecting on the execution of JFM in Sundarban, the study critically explores the ways in which the state ceases to be ‘trans-national’ and interacts with the rural life-worlds through its local factions. Simultaneously, the study attempts to articulate the scope of constructing a competing representation of community, shaped by increasing political negotiations and bureaucratic alignments which strains against the usual preoccupations with tradition primordiality and non material culture as well as the amorous construction of indigeneity.

Keywords: community, environmentalism, JFM, state-making, identities, indigenous

Procedia PDF Downloads 188
1840 Control of Belts for Classification of Geometric Figures by Artificial Vision

Authors: Juan Sebastian Huertas Piedrahita, Jaime Arturo Lopez Duque, Eduardo Luis Perez Londoño, Julián S. Rodríguez

Abstract:

The process of generating computer vision is called artificial vision. The artificial vision is a branch of artificial intelligence that allows the obtaining, processing, and analysis of any type of information especially the ones obtained through digital images. Actually the artificial vision is used in manufacturing areas for quality control and production, as these processes can be realized through counting algorithms, positioning, and recognition of objects that can be measured by a single camera (or more). On the other hand, the companies use assembly lines formed by conveyor systems with actuators on them for moving pieces from one location to another in their production. These devices must be previously programmed for their good performance and must have a programmed logic routine. Nowadays the production is the main target of every industry, quality, and the fast elaboration of the different stages and processes in the chain of production of any product or service being offered. The principal base of this project is to program a computer that recognizes geometric figures (circle, square, and triangle) through a camera, each one with a different color and link it with a group of conveyor systems to organize the mentioned figures in cubicles, which differ from one another also by having different colors. This project bases on artificial vision, therefore the methodology needed to develop this project must be strict, this one is detailed below: 1. Methodology: 1.1 The software used in this project is QT Creator which is linked with Open CV libraries. Together, these tools perform to realize the respective program to identify colors and forms directly from the camera to the computer. 1.2 Imagery acquisition: To start using the libraries of Open CV is necessary to acquire images, which can be captured by a computer’s web camera or a different specialized camera. 1.3 The recognition of RGB colors is realized by code, crossing the matrices of the captured images and comparing pixels, identifying the primary colors which are red, green, and blue. 1.4 To detect forms it is necessary to realize the segmentation of the images, so the first step is converting the image from RGB to grayscale, to work with the dark tones of the image, then the image is binarized which means having the figure of the image in a white tone with a black background. Finally, we find the contours of the figure in the image to detect the quantity of edges to identify which figure it is. 1.5 After the color and figure have been identified, the program links with the conveyor systems, which through the actuators will classify the figures in their respective cubicles. Conclusions: The Open CV library is a useful tool for projects in which an interface between a computer and the environment is required since the camera obtains external characteristics and realizes any process. With the program for this project any type of assembly line can be optimized because images from the environment can be obtained and the process would be more accurate.

Keywords: artificial intelligence, artificial vision, binarized, grayscale, images, RGB

Procedia PDF Downloads 375
1839 Providing Health Promotion Information by Digital Animation to International Visitors in Japan: A Factorial Design View of Nurses

Authors: Mariko Nishikawa, Masaaki Yamanaka, Ayami Kondo

Abstract:

Background: International visitors to Japan are at a risk of travel-related illnesses or injury that could result in hospitalization in a country where the language and customs are unique. Over twelve million international visitors came to Japan in 2015, and more are expected leading up to the Tokyo Olympics. One aspect of this is the potentially greater demand on healthcare services by foreign visitors. Nurses who take care of them have anxieties and concerns of their knowledge of the Japanese health system. Objectives: An effective distribution of travel-health information is vital for facilitating care for international visitors. Our research investigates whether a four-minute digital animation (Mari Info Japan), designed and developed by the authors and applied to a survey of 513 nurses who take care of foreigners daily, could clarify travel health procedures, reduce anxieties, while making it enjoyable to learn. Methodology: Respondents to a survey were divided into two groups. The intervention group watched Mari Info Japan. The control group read a standard guidebook. The participants were requested to fill a two-page questionnaire called Mari Meter-X, STAI-Y in English and mark a face scale, before and after the interventions. The questions dealt with knowledge of health promotion, the Japanese healthcare system, cultural concerns, anxieties, and attitudes in Japan. Data were collected from an intervention group (n=83) and control group (n=83) of nurses in a hospital, Japan for foreigners from February to March, 2016. We analyzed the data using Text Mining Studio for open-ended questions and JMP for statistical significance. Results: We found that the intervention group displayed more confidence and less anxiety to take care of foreign patients compared to the control group. The intervention group indicated a greater comfort after watching the animation. However, both groups were most likely to be concerned about language, the cost of medical expenses, informed consent, and choice of hospital. Conclusions: From the viewpoint of nurses, the provision of travel-health information by digital animation to international visitors to Japan was more effective than traditional methods as it helped them be better prepared to treat travel-related diseases and injury among international visitors. This study was registered number UMIN000020867. Funding: Grant–in-Aid for Challenging Exploratory Research 2010-2012 & 2014-16, Japanese Government.

Keywords: digital animation, health promotion, international visitor, Japan, nurse

Procedia PDF Downloads 302
1838 Wetting Induced Collapse Behavior of Loosely Compacted Kaolin Soil: A Microstructural Study

Authors: Dhanesh Sing Das, Bharat Tadikonda Venkata

Abstract:

Collapsible soils undergo significant volume reduction upon wetting under the pre-existing mechanically applied normal stress (inundation pressure). These soils exhibit a very high strength in air-dried conditions and can carry up to a considerable magnitude of normal stress without undergoing significant volume change. The soil strength is, however, lost upon saturation and results in a sudden collapse of the soil structure under the existing mechanical stress condition. The intrusion of water into the dry deposits of such soil causes ground subsidence leading to damages in the overlying buildings/structures. A study on the wetting-induced volume change behavior of collapsible soils is essential in dealing with the ground subsidence problems in various geotechnical engineering practices. The collapse of loosely compacted Kaolin soil upon wetting under various inundation pressures has been reported in recent studies. The collapse in the Kaolin soil is attributed to the alteration in the soil particle-particle association (fabric) resulting due to the changes in the various inter-particle (microscale) forces induced by the water saturation. The inundation pressure plays a significant role in the fabric evolution during the wetting process, thus controls the collapse potential of the compacted soil. A microstructural study is useful to understand the collapse mechanisms at various pore-fabric levels under different inundation pressure. Kaolin soil compacted to a dry density of 1.25 g/cc was used in this work to study the wetting-induced volume change behavior under different inundation pressures in the range of 10-1600 kPa. The compacted specimen of Kaolin soil exhibited a consistent collapse under all the studied inundation pressure. The collapse potential was observed to be increasing with an increase in the inundation pressure up to a maximum value of 13.85% under 800 kPa and then decreased to 11.7% under 1600 kPa. Microstructural analysis was carried out based on the fabric images and the pore size distributions (PSDs) obtained from FESEM analysis and mercury intrusion porosimetry (MIP), respectively. The PSDs and the soil fabric images of ‘as-compacted’ specimen and post-collapse specimen under 400 kPa were analyzed to understand the changes in the soil fabric and pores due to wetting. The pore size density curve for the post-collapse specimen was found to be on the finer side with respect to the ‘as-compacted’ specimen, indicating the reduction of the larger pores during the collapse. The inter-aggregate pores in the range of 0.1-0.5μm were identified as the major contributing pore size classes to the macroscopic volume change. Wetting under an inundation pressure results in the reduction of these pore sizes and lead to an increase in the finer pore sizes. The magnitude of inundation pressure influences the amount of reduction of these pores during the wetting process. The collapse potential was directly related to the degree of reduction in the pore volume contributed by these pore sizes.

Keywords: collapse behavior, inundation pressure, kaolin, microstructure

Procedia PDF Downloads 133
1837 Structural Analysis of Archaeoseismic Records Linked to the 5 July 408 - 410 AD Utica Strong Earthquake (NE Tunisia)

Authors: Noureddine Ben Ayed, Abdelkader Soumaya, Saïd Maouche, Ali Kadri, Mongi Gueddiche, Hayet Khayati-Ammar, Ahmed Braham

Abstract:

The archaeological monument of Utica, located in north-eastern Tunisia, was founded (8th century BC) By the Phoenicians as a port installed on the trade route connecting Phoenicia and the Straits of Gibraltar in the Mediterranean Sea. The flourishment of this city as an important settlement during the Roman period was followed by a sudden abandonment, disuse and progressive oblivion in the first half of the fifth century AD. This decadence can be attributed to the destructive earthquake of 5 July 408 - 410 AD, affecting this historic city as documented in 1906 by the seismologist Fernand De Montessus De Ballore. The magnitude of the Utica earthquake was estimated at 6.8 by the Tunisian National Institute of Meteorology (INM). In order to highlight the damage caused by this earthquake, a field survey was carried out at the Utica ruins to detect and analyse the earthquake archaeological effects (EAEs) using structural geology methods. This approach allowed us to highlight several structural damages, including: (1) folded mortar pavements, (2) cracks affecting the mosaic and walls of a water basin in the "House of the Grand Oecus", (3) displaced columns, (4) block extrusion in masonry walls, (5) undulations in mosaic pavements, (6) tilted walls. The structural analysis of these EAEs and data measurements reveal a seismic cause for all evidence of deformation in the Utica monument. The maximum horizontal strain of the ground (e.g. SHmax) inferred from the building oriented damage in Utica shows a NNW-SSE direction under a compressive tectonic regime. For the seismogenic source of this earthquake, we propose the active E-W to NE-SW trending Utique - Ghar El Melh reverse fault, passing through the Utica Monument and extending towards the Ghar El Melh Lake, as the causative tectonic structure. The active fault trace is well supported by instrumental seismicity, geophysical data (e.g., gravity, seismic profiles) and geomorphological analyses. In summary, we find that the archaeoseismic records detected at Utica are similar to those observed at many other archaeological sites affected by destructive ancient earthquakes around the world. Furthermore, the calculated orientation of the average maximum horizontal stress (SHmax) closely match the state of the actual stress field, as highlighted by some earthquake focal mechanisms in this region.

Keywords: Tunisia, utica, seimogenic fault, archaeological earthquake effects

Procedia PDF Downloads 36
1836 African Pattern Trends in Contemporary Textile and Fashion Design: Exploratory Study in African Sources and Technology in Fashion, Art, and Textiles

Authors: Leslie Nobler

Abstract:

African fabrics based specifically on the Dutch Wax Print, or Ankara, popularized during Africa's colonial era, have had an enormous impact on western fashion (especially in the US and UK), in the last half-decade. The trend has had an effect on the world of visual arts as well, which circuitously, also heavily impacts fashion design. In fashion, and notably in celebrity apparel choices, this is in part due to ‘identity’ and taking pride in one's African roots; in the visual arts, artists such as Yinka Shonibare and Njideka Akunyili Crosby are making statements about identity politics, colonialism up through post-colonialism, and racism. The ‘global village’ brought on by the internet has driven this proliferation, as have improvements in the printing technology with which the Ankara print is made, combining wax-resist with roller printing. The newest patterns can now be designed authentically in western African and easily sent electronically to Europe for printing. Examples of Ankara's new reach across the Atlantic abound. They have taken several paths, which the paper will detail. Briefly, the first is its greater utilization in the fashion world, from authentic textile shops in African American neighborhoods to copied (knocked-off) low-end reproductions in discount chains. Secondly, we are seeing far more uses of these textiles/patterns in important works of fine arts from major museums, in Philadelphia to Palm Beach to the Mass MOCA (in the US), all the way to the Israel Museum in Jerusalem, and everywhere in between. And lastly, but quite significantly, we see this trend throughout social media thanks to Instagram, Pinterest and celebrity photos –even at the recent royal wedding. What shall sustain this major new design direction is that Ankara changes with and adapts to the times. Some of it is now printed in West Africa, often in the Nigeria area. And some may be designed in Europe or even at knock-off apparel studios in NY or Asia. But it stays utterly relevant because the motifs are based on objects and scenes in everyday life. In my design studio and university design classes, this idea is first and foremost, from our big spiritual eye motifs to drawings of our art supplies to the ‘politically-loaded’ chain patterns. This first-hand creativity experience becomes part of the research of this paper, along with historic and contemporary sources of inquiry, both through a literature/image search and anecdotal experience into what is behind this exciting and surprising trend.

Keywords: African wax print, Ankara, identity (politics), textile design, surface design

Procedia PDF Downloads 127
1835 Quantifying Multivariate Spatiotemporal Dynamics of Malaria Risk Using Graph-Based Optimization in Southern Ethiopia

Authors: Yonas Shuke Kitawa

Abstract:

Background: Although malaria incidence has substantially fallen sharply over the past few years, the rate of decline varies by district, time, and malaria type. Despite this turn-down, malaria remains a major public health threat in various districts of Ethiopia. Consequently, the present study is aimed at developing a predictive model that helps to identify the spatio-temporal variation in malaria risk by multiple plasmodium species. Methods: We propose a multivariate spatio-temporal Bayesian model to obtain a more coherent picture of the temporally varying spatial variation in disease risk. The spatial autocorrelation in such a data set is typically modeled by a set of random effects that assign a conditional autoregressive prior distribution. However, the autocorrelation considered in such cases depends on a binary neighborhood matrix specified through the border-sharing rule. Over here, we propose a graph-based optimization algorithm for estimating the neighborhood matrix that merely represents the spatial correlation by exploring the areal units as the vertices of a graph and the neighbor relations as the series of edges. Furthermore, we used aggregated malaria count in southern Ethiopia from August 2013 to May 2019. Results: We recognized that precipitation, temperature, and humidity are positively associated with the malaria threat in the area. On the other hand, enhanced vegetation index, nighttime light (NTL), and distance from coastal areas are negatively associated. Moreover, nonlinear relationships were observed between malaria incidence and precipitation, temperature, and NTL. Additionally, lagged effects of temperature and humidity have a significant effect on malaria risk by either species. More elevated risk of P. falciparum was observed following the rainy season, and unstable transmission of P. vivax was observed in the area. Finally, P. vivax risks are less sensitive to environmental factors than those of P. falciparum. Conclusion: The improved inference was gained by employing the proposed approach in comparison to the commonly used border-sharing rule. Additionally, different covariates are identified, including delayed effects, and elevated risks of either of the cases were observed in districts found in the central and western regions. As malaria transmission operates in a spatially continuous manner, a spatially continuous model should be employed when it is computationally feasible.

Keywords: disease mapping, MSTCAR, graph-based optimization algorithm, P. falciparum, P. vivax, waiting matrix

Procedia PDF Downloads 64
1834 The Development of Explicit Pragmatic Knowledge: An Exploratory Study

Authors: Aisha Siddiqa

Abstract:

The knowledge of pragmatic practices in a particular language is considered key to effective communication. Unlike one’s native language where this knowledge is acquired spontaneously, more conscious attention is required to learn second language pragmatics. Traditional foreign language (FL) classrooms generally focus on the acquisition of vocabulary and lexico-grammatical structures, neglecting pragmatic functions that are essential for effective communication in the multilingual networks of the modern world. In terms of effective communication, of particular importance is knowledge of what is perceived as polite or impolite in a certain language, an aspect of pragmatics which is not perceived as obligatory but is nonetheless indispensable for successful intercultural communication and integration. While learning a second language, the acquisition of politeness assumes more prominence as the politeness norms and practices vary according to language and culture. Therefore, along with focusing on the ‘use’ of politeness strategies, it is crucial to examine the ‘acquisition’ and the ‘acquisitional development’ of politeness strategies by second language learners, particularly, by lower proficiency leaners as the norms of politeness are usually focused in lower levels. Hence, there is an obvious need for a study that not only investigates the acquisition of pragmatics by young FL learners using innovative multiple methods; but also identifies the potential causes of the gaps in their development. The present research employs a cross sectional design to explore the acquisition of politeness by young English as a foreign language learners (EFL) in France; at three levels of secondary school learning. The methodology involves two phases. In the first phase a cartoon oral production task (COPT) is used to elicit samples of requests from young EFL learners in French schools. These data are then supplemented by a) role plays, b) an analysis of textbooks, and c) video recordings of classroom activities. This mixed method approach allows us to explore the repertoire of politeness strategies the learners possess and delve deeper into the opportunities available to learners in classrooms to learn politeness strategies in requests. The paper will provide the results of the analysis of COPT data for 250 learners at three different stages of English as foreign language development. Data analysis is based on categorization of requests developed in CCSARP project. The preliminary analysis of the COPT data shows that there is substantial evidence of pragmalinguistic development across all levels but the developmental process seems to gain momentum in the second half of the secondary school period as compared to the early period at school. However, there is very little evidence of sociopragmatic development. The study aims to document the current classroom practices in France by looking at the development of young EFL learner’s politeness strategies across three levels of secondary schools.

Keywords: acquisition, English, France, interlanguage pragmatics, politeness

Procedia PDF Downloads 417