Search results for: home network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6142

Search results for: home network

2962 Reverse Logistics Information Management Using Ontological Approach

Authors: F. Lhafiane, A. Elbyed, M. Bouchoum

Abstract:

Reverse Logistics (RL) Process is considered as complex and dynamic network that involves many stakeholders such as: suppliers, manufactures, warehouse, retails, and costumers, this complexity is inherent in such process due to lack of perfect knowledge or conflicting information. Ontologies, on the other hand, can be considered as an approach to overcome the problem of sharing knowledge and communication among the various reverse logistics partners. In this paper, we propose a semantic representation based on hybrid architecture for building the Ontologies in an ascendant way, this method facilitates the semantic reconciliation between the heterogeneous information systems (ICT) that support reverse logistics Processes and product data.

Keywords: Reverse Logistics, information management, heterogeneity, ontologies, semantic web

Procedia PDF Downloads 493
2961 Arc Interruption Design for DC High Current/Low SC Fuses via Simulation

Authors: Ali Kadivar, Kaveh Niayesh

Abstract:

This report summarizes a simulation-based approach to estimate the current interruption behavior of a fuse element utilized in a DC network protecting battery banks under different stresses. Due to internal resistance of the battries, the short circuit current in very close to the nominal current, and it makes the fuse designation tricky. The base configuration considered in this report consists of five fuse units in parallel. The simulations are performed using a multi-physics software package, COMSOL® 5.6, and the necessary material parameters have been calculated using two other software packages.The first phase of the simulation starts with the heating of the fuse elements resulted from the current flow through the fusing element. In this phase, the heat transfer between the metallic strip and the adjacent materials results in melting and evaporation of the filler and housing before the aluminum strip is evaporated and the current flow in the evaporated strip is cut-off, or an arc is eventually initiated. The initiated arc starts to expand, so the entire metallic strip is ablated, and a long arc of around 20 mm is created within the first 3 milliseconds after arc initiation (v_elongation = 6.6 m/s. The final stage of the simulation is related to the arc simulation and its interaction with the external circuitry. Because of the strong ablation of the filler material and venting of the arc caused by the melting and evaporation of the filler and housing before an arc initiates, the arc is assumed to burn in almost pure ablated material. To be able to precisely model this arc, one more step related to the derivation of the transport coefficients of the plasma in ablated urethane was necessary. The results indicate that an arc current interruption, in this case, will not be achieved within the first tens of milliseconds. In a further study, considering two series elements, the arc was interrupted within few milliseconds. A very important aspect in this context is the potential impact of many broken strips parallel to the one where the arc occurs. The generated arcing voltage is also applied to the other broken strips connected in parallel with arcing path. As the gap between the other strips is very small, a large voltage of a few hundred volts generated during the current interruption may eventually lead to a breakdown of another gap. As two arcs in parallel are not stable, one of the arcs will extinguish, and the total current will be carried by one single arc again. This process may be repeated several times if the generated voltage is very large. The ultimate result would be that the current interruption may be delayed.

Keywords: DC network, high current / low SC fuses, FEM simulation, paralle fuses

Procedia PDF Downloads 69
2960 Mobile Cloud Computing: How to Improve

Authors: Abdullah Aljumah, Tariq Ahamad

Abstract:

The simplest possible human-computer interaction is mobile cloud computing as it emerges and makes the use of all modern-day human-oriented technology. The main aim of this idea is the QoS (quality of service) by using user-friendly and reliable software over the global network in order to make it economical by reducing cost, reliable, and increase the main storage. Since we studied and went through almost all the existing related work in this area and we came up with some challenges that will rise or might be rising for some basic areas in mobile cloud computing and mostly stogie and security area. In this research article, we suggest some recommendation for mobile cloud computing and for its security that will help in building more powerful tools to handle all this pressure.

Keywords: Cloud Computing, MCC, SAAS, computer interaction

Procedia PDF Downloads 383
2959 Storm-Runoff Simulation Approaches for External Natural Catchments of Urban Sewer Systems

Authors: Joachim F. Sartor

Abstract:

According to German guidelines, external natural catchments are greater sub-catchments without significant portions of impervious areas, which possess a surface drainage system and empty in a sewer network. Basically, such catchments should be disconnected from sewer networks, particularly from combined systems. If this is not possible due to local conditions, their flow hydrographs have to be considered at the design of sewer systems, because the impact may be significant. Since there is a lack of sufficient measurements of storm-runoff events for such catchments and hence verified simulation methods to analyze their design flows, German standards give only general advices and demands special considerations in such cases. Compared to urban sub-catchments, external natural catchments exhibit greatly different flow characteristics. With increasing area size their hydrological behavior approximates that of rural catchments, e.g. sub-surface flow may prevail and lag times are comparable long. There are few observed peak flow values and simple (mostly empirical) approaches that are offered by literature for Central Europe. Most of them are at least helpful to crosscheck results that are achieved by simulation lacking calibration. Using storm-runoff data from five monitored rural watersheds in the west of Germany with catchment areas between 0.33 and 1.07 km2 , the author investigated by multiple event simulation three different approaches to determine the rainfall excess. These are the modified SCS variable run-off coefficient methods by Lutz and Zaiß as well as the soil moisture model by Ostrowski. Selection criteria for storm events from continuous precipitation data were taken from recommendations of M 165 and the runoff concentration method (parallel cascades of linear reservoirs) from a DWA working report to which the author had contributed. In general, the two run-off coefficient methods showed results that are of sufficient accuracy for most practical purposes. The soil moisture model showed no significant better results, at least not to such a degree that it would justify the additional data collection that its parameter determination requires. Particularly typical convective summer events after long dry periods, that are often decisive for sewer networks (not so much for rivers), showed discrepancies between simulated and measured flow hydrographs.

Keywords: external natural catchments, sewer network design, storm-runoff modelling, urban drainage

Procedia PDF Downloads 153
2958 Development of a Practical Screening Measure for the Prediction of Low Birth Weight and Neonatal Mortality in Upper Egypt

Authors: Prof. Ammal Mokhtar Metwally, Samia M. Sami, Nihad A. Ibrahim, Fatma A. Shaaban, Iman I. Salama

Abstract:

Objectives: Reducing neonatal mortality by 2030 is still a challenging goal in developing countries. low birth weight (LBW) is a significant contributor to this, especially where weighing newborns is not possible routinely. The present study aimed to determine a simple, easy, reliable anthropometric measure(s) that can predict LBW) and neonatal mortality. Methods: A prospective cohort study of 570 babies born in districts of El Menia governorate, Egypt (where most deliveries occurred at home) was examined at birth. Newborn weight, length, head, chest, mid-arm, and thigh circumferences were measured. Follow up of the examined neonates took place during their first four weeks of life to report any mortalities. The most predictable anthropometric measures were determined using the statistical package of SPSS, and multiple Logistic regression analysis was performed.: Results: Head and chest circumferences with cut-off points < 33 cm and ≤ 31.5 cm, respectively, were the significant predictors for LBW. They carried the best combination of having the highest sensitivity (89.8 % & 86.4 %) and least false negative predictive value (1.4 % & 1.7 %). Chest circumference with a cut-off point ≤ 31.5 cm was the significant predictor for neonatal mortality with 83.3 % sensitivity and 0.43 % false negative predictive value. Conclusion: Using chest circumference with a cut-off point ≤ 31.5 cm is recommended as a single simple anthropometric measurement for the prediction of both LBW and neonatal mortality. The predicted measure could act as a substitute for weighting newborns in communities where scales to weigh them are not routinely available.

Keywords: low birth weight, neonatal mortality, anthropometric measures, practical screening

Procedia PDF Downloads 102
2957 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation

Authors: Jonathan Gong

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning

Procedia PDF Downloads 131
2956 Generation of Renewable Energy Through Photovoltaic Panels, Albania Photovoltaic Capacity

Authors: Dylber Qema

Abstract:

Driven by recent developments in technology and the growing concern about the sustainability and environmental impact of conventional fuel use, the possibility of producing clean and sustainable energy in significant quantities from renewable energy sources has sparked interest all over the world. Solar energy is one of the sources for the generation of electricity, with no emissions or environmental pollution. The electricity produced by photovoltaics can supply a home or business and can even be sold or exchanged with the grid operator. A very positive effect of using photovoltaic modules is that they do not produce greenhouse gases and do not produce chemical waste, unlike all other forms of energy production. Photovoltaics are becoming one of the largest investments in the field of renewable generating units. Improving the reliability of the electric power system is one of the most important impacts of the installation of photovoltaics (PV). Renewable energy sources are so large that they can meet the energy demands of the whole world, thus enabling sustainable supply as well as reducing local and global atmospheric emissions. Albania is rated by experts as one of the most favorable countries in Europe for the production of electricity from solar panels. But the country currently produces about 1% of its energy from the sun, while the rest of the needs are met by hydropower plants and imports. Albania has very good characteristics in terms of solar radiation (about 1300–1400 kW/m2). Solar energy has great potential and is a permanent source of energy with greater economic efficiency. Photovoltaic energy is also seen as an alternative, as long periods of drought in Albania have produced crises and high costs for securing energy in the foreign market.

Keywords: capacity, ministry of tourism and environment, obstacles, photovoltaic energy, sustainable

Procedia PDF Downloads 60
2955 Flood Mapping Using Height above the Nearest Drainage Model: A Case Study in Fredericton, NB, Canada

Authors: Morteza Esfandiari, Shabnam Jabari, Heather MacGrath, David Coleman

Abstract:

Flood is a severe issue in different places in the world as well as the city of Fredericton, New Brunswick, Canada. The downtown area of Fredericton is close to the Saint John River, which is susceptible to flood around May every year. Recently, the frequency of flooding seems to be increased, especially after the fact that the downtown area and surrounding urban/agricultural lands got flooded in two consecutive years in 2018 and 2019. In order to have an explicit vision of flood span and damage to affected areas, it is necessary to use either flood inundation modelling or satellite data. Due to contingent availability and weather dependency of optical satellites, and limited existing data for the high cost of hydrodynamic models, it is not always feasible to rely on these sources of data to generate quality flood maps after or during the catastrophe. Height Above the Nearest Drainage (HAND), a state-of-the-art topo-hydrological index, normalizes the height of a basin based on the relative elevation along with the stream network and specifies the gravitational or the relative drainage potential of an area. HAND is a relative height difference between the stream network and each cell on a Digital Terrain Model (DTM). The stream layer is provided through a multi-step, time-consuming process which does not always result in an optimal representation of the river centerline depending on the topographic complexity of that region. HAND is used in numerous case studies with quite acceptable and sometimes unexpected results because of natural and human-made features on the surface of the earth. Some of these features might cause a disturbance in the generated model, and consequently, the model might not be able to predict the flow simulation accurately. We propose to include a previously existing stream layer generated by the province of New Brunswick and benefit from culvert maps to improve the water flow simulation and accordingly the accuracy of HAND model. By considering these parameters in our processing, we were able to increase the accuracy of the model from nearly 74% to almost 92%. The improved model can be used for generating highly accurate flood maps, which is necessary for future urban planning and flood damage estimation without any need for satellite imagery or hydrodynamic computations.

Keywords: HAND, DTM, rapid floodplain, simplified conceptual models

Procedia PDF Downloads 153
2954 Review of Cable Fault Locating Methods and Usage of VLF for Real Cases of High Resistance Fault Locating

Authors: Saadat Ali, Rashid Abdulla Ahmed Alshehhi

Abstract:

Cable faults are always probable and common during or after commissioning, causing significant delays and disrupting power distribution or transmission network, which is intolerable for the utilities&service providers being their reliability and business continuity measures. Therefore, the adoption of rapid localization & rectification methodology is the main concern for them. This paper explores the present techniques available for high voltage cable localization & rectification and which is preferable with regards to easier, faster, and also less harmful to cables. It also provides insight experience of high resistance fault locating by utilization of the Very Low Frequency (VLF) method.

Keywords: faults, VLF, real cases, cables

Procedia PDF Downloads 113
2953 An Extensible Software Infrastructure for Computer Aided Custom Monitoring of Patients in Smart Homes

Authors: Ritwik Dutta, Marylin Wolf

Abstract:

This paper describes the trade-offs and the design from scratch of a self-contained, easy-to-use health dashboard software system that provides customizable data tracking for patients in smart homes. The system is made up of different software modules and comprises a front-end and a back-end component. Built with HTML, CSS, and JavaScript, the front-end allows adding users, logging into the system, selecting metrics, and specifying health goals. The back-end consists of a NoSQL Mongo database, a Python script, and a SimpleHTTPServer written in Python. The database stores user profiles and health data in JSON format. The Python script makes use of the PyMongo driver library to query the database and displays formatted data as a daily snapshot of user health metrics against target goals. Any number of standard and custom metrics can be added to the system, and corresponding health data can be fed automatically, via sensor APIs or manually, as text or picture data files. A real-time METAR request API permits correlating weather data with patient health, and an advanced query system is implemented to allow trend analysis of selected health metrics over custom time intervals. Available on the GitHub repository system, the project is free to use for academic purposes of learning and experimenting, or practical purposes by building on it.

Keywords: flask, Java, JavaScript, health monitoring, long-term care, Mongo, Python, smart home, software engineering, webserver

Procedia PDF Downloads 391
2952 Cultural Heritage, Manga, and Film: Japanese Tourism at Petit Trianon, Versailles

Authors: Denise C. I. Maior-Barron

Abstract:

This conference presentation proposes to discuss the Japanese tourist perception of Marie Antoinette, at the heritage site which represents the home par excellence of the last Queen of France: Petit Trianon, Versailles. The underpinning analysis has a two-fold aim of firstly identifying the elements that contributed at the said perception and secondly of placing this in the wider context of tabi (travel) culture. The contribution of the presentation lies in its relevance to the analysis of postmodern trends of Japanese travel culture in relation to the consumption of European cultural heritage, through an insight into Japanese contemporary perception of heritage sites and their associated historical figures subject to controversy. Based upon the author’s doctoral studies field research at Petit Trianon - survey led in situ between 2010-2012, applied with the questionnaire method on a total of 307 respondents out of which 53 Japanese nationals - the media sources that were revealed to have had a direct influence on these nationals’ perception of Marie Antoinette, were Riyoko Ikeda’s shōjo manga La Rose de Versailles (1972) and Sofia Coppola’s film Marie-Antoinette (2006). The interpretation of the survey results through an assessment of visitor discourse determined the research methodology to be qualitative as opposed to quantitative, thus what confirmed the empirical hypothesis of the survey was a pattern of perception instead of percentages. Consequently, the interpretation focused on the answers to the questions relating to the image of Marie Antoinette in relation to historical knowledge, cultural background and last but not least media influences.

Keywords: cultural heritage, manga, film, tabi

Procedia PDF Downloads 441
2951 Wet Spun Graphene Fibers With Silver Nanoparticles For Flexible Electronic Applications

Authors: Syed W. Hasan, Zhiqun Tian

Abstract:

Wet spinning provides a facile and economic route to fabricate graphene nanofibers (GFs) on mass scale. Nevertheless, the pristine GFs exhibit significantly low electrical and mechanical properties owing to stacked graphene sheets and weak inter-atomic bonding. In this report, we present highly conductive Ag-decorated-GFs (Ag/GFs). The SEM micrographs show Ag nanoparticles (NPs) (dia ~10 nm) are homogeneously distributed throughout the cross-section of the fiber. The Ag NPs provide a conductive network for the electrons flow raising the conductivity to 1.8(10^4) S/m which is 4 times higher than the pristine GFs. Our results surpass the conductivities of graphene fibers doped with CNTs, Nanocarbon, fullerene, and Cu. The chemical and structural attributes of Ag/GFs are further elucidated through XPS, AFM and Raman spectroscopy.

Keywords: Ag nanoparticles, Conductive fibers, Graphene, Wet spinning

Procedia PDF Downloads 144
2950 Criminal Justice System, Health and Imprisonment in India

Authors: Debolina Chatterjee, Suhita Chopra Chatterjee

Abstract:

Imprisonment is an expansive concept, as it is regulated by laws under criminal justice system of the state. The state sets principles of punishment to control offenders and also puts limits to excess punitive control. One significant way through which it exercises control is through rules governing healthcare of imprisoned population. Prisons signify specialized settings which accommodate both medical and legal concerns. The provision of care operates within the institutional paradigm of punishment. This requires the state to negotiate adequately between goals of punishment and fulfilment of basic human rights of offenders. The present study is based on a critical analysis of prison healthcare standards in India, which include government policies and guidelines. It also demonstrates how healthcare is delivered by drawing insights from a primary study conducted in a correctional home in the state of West Bengal, India, which houses both male and female inmates. Forty women were interviewed through semi-structured interviews, followed by focus group discussions. Doctors and administrative personnel were also interviewed. Findings show how institutional practices control women through subversion of the role of doctors to prison administration. Also, poor healthcare infrastructure, unavailability of specialized services, hierarchies between personnel and inmates make prisons unlikely sites for therapeutic intervention. The paper further discusses how institutional practices foster gender-based discriminatory practices.

Keywords: imprisonment, Indian prisons, prison healthcare, punishment

Procedia PDF Downloads 234
2949 Hybrid Knowledge and Data-Driven Neural Networks for Diffuse Optical Tomography Reconstruction in Medical Imaging

Authors: Paola Causin, Andrea Aspri, Alessandro Benfenati

Abstract:

Diffuse Optical Tomography (DOT) is an emergent medical imaging technique which employs NIR light to estimate the spatial distribution of optical coefficients in biological tissues for diagnostic purposes, in a noninvasive and non-ionizing manner. DOT reconstruction is a severely ill-conditioned problem due to prevalent scattering of light in the tissue. In this contribution, we present our research in adopting hybrid knowledgedriven/data-driven approaches which exploit the existence of well assessed physical models and build upon them neural networks integrating the availability of data. Namely, since in this context regularization procedures are mandatory to obtain a reasonable reconstruction [1], we explore the use of neural networks as tools to include prior information on the solution. 2. Materials and Methods The idea underlying our approach is to leverage neural networks to solve PDE-constrained inverse problems of the form 𝒒 ∗ = 𝒂𝒓𝒈 𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃), (1) where D is a loss function which typically contains a discrepancy measure (or data fidelity) term plus other possible ad-hoc designed terms enforcing specific constraints. In the context of inverse problems like (1), one seeks the optimal set of physical parameters q, given the set of observations y. Moreover, 𝑦̃ is the computable approximation of y, which may be as well obtained from a neural network but also in a classic way via the resolution of a PDE with given input coefficients (forward problem, Fig.1 box ). Due to the severe ill conditioning of the reconstruction problem, we adopt a two-fold approach: i) we restrict the solutions (optical coefficients) to lie in a lower-dimensional subspace generated by auto-decoder type networks. This procedure forms priors of the solution (Fig.1 box ); ii) we use regularization procedures of type 𝒒̂ ∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃)+ 𝑹(𝒒), where 𝑹(𝒒) is a regularization functional depending on regularization parameters which can be fixed a-priori or learned via a neural network in a data-driven modality. To further improve the generalizability of the proposed framework, we also infuse physics knowledge via soft penalty constraints (Fig.1 box ) in the overall optimization procedure (Fig.1 box ). 3. Discussion and Conclusion DOT reconstruction is severely hindered by ill-conditioning. The combined use of data-driven and knowledgedriven elements is beneficial and allows to obtain improved results, especially with a restricted dataset and in presence of variable sources of noise.

Keywords: inverse problem in tomography, deep learning, diffuse optical tomography, regularization

Procedia PDF Downloads 75
2948 Improving the Global Competitiveness of SMEs by Logistics Transportation Management: Case Study Chicken Meat Supply Chain

Authors: P. Vanichkobchinda

Abstract:

The Logistics Transportation techniques, Open Vehicle Routing (OVR) is an approach toward transportation cost reduction, especially for long distance pickup and delivery nodes. The outstanding characteristic of OVR is that the route starting node and ending node are not necessary the same as in typical vehicle routing problems. This advantage enables the routing to flow continuously and the vehicle does not always return to its home base. This research aims to develop a heuristic for the open vehicle routing problem with pickup and delivery under time window and loading capacity constraints to minimize the total distance. The proposed heuristic is developed based on the Insertion method, which is a simple method and suitable for the rapid calculation that allows insertion of the new additional transportation requirements along the original paths. According to the heuristic analysis, cost comparisons between the proposed heuristic and companies are using method, nearest neighbor method show that the insertion heuristic. Moreover, the proposed heuristic gave superior solutions in all types of test problems. In conclusion, the proposed heuristic can effectively and efficiently solve the open vehicle routing. The research indicates that the improvement of new transport's calculation and the open vehicle routing with "Insertion Heuristic" represent a better outcome with 34.3 percent in average. in cost savings. Moreover, the proposed heuristic gave superior solutions in all types of test problems. In conclusion, the proposed heuristic can effectively and efficiently solve the open vehicle routing.

Keywords: business competitiveness, cost reduction, SMEs, logistics transportation, VRP

Procedia PDF Downloads 687
2947 Ray Tracing Modified 3D Image Method Simulation of Picocellular Propagation Channel Environment

Authors: Fathi Alwafie

Abstract:

In this paper we present the simulation of the propagation characteristics of the picocellular propagation channel environment. The first aim has been to find a correct description of the environment for received wave. The result of the first investigations is that the environment of the indoor wave significantly changes as we change the electric parameters of material constructions. A modified 3D ray tracing image method tool has been utilized for the coverage prediction. A detailed analysis of the dependence of the indoor wave on the wide-band characteristics of the channel: Root Mean Square (RMS) delay spread characteristics and mean excess delay, is also investigated.

Keywords: propagation, ray tracing, network, mobile computing

Procedia PDF Downloads 402
2946 An Edusemiotic Approach to Multimodal Poetry Teaching for Afrikaans

Authors: Kruger Uys

Abstract:

Poetry analysis plays a vital role in promoting critical thinking, literary appreciation, and language skills among learners. This paper proposes an innovative multimodal teaching approach that combines traditional textual analysis of poems with multimodal educational semiotic analysis of animated poetry films. The aim is to present a methodological framework through which poetry concepts and elements, along with the visual and auditory components in animated poetry films, can be comprehensively illuminated. Traditional textual analysis involves close reading, linguistic examination, and thematic exploration to identify, discuss, and apply poetry concepts. When combined with a multimodal edusemiotic analysis of the semiotic signs and codes present in animated poetry films, new perspectives emerge that enrich the interpretation of poetry. Furthermore, the proposed integrated approach, as prescribed by CAPS, enhances a holistic understanding of poetry terminology and elements, as well as complex linguistic and visual patterns that promote visual literacy, refined data interpretation skills, and learner engagement in the poetry classroom. To illustrate this phenomenon, the poem My mamma is bossies (My mom’s bonkers) by Jeanne Goosen (prescribed for Grade 10 Afrikaans Home Language learners in the CAPS curriculum) will be discussed. This study aims to contribute to the existing Afrikaans poetry curriculum but also equip all language educators to cultivate poetry appreciation, critical thinking, and creativity among learners in the ever-evolving landscape of education.

Keywords: edusemiotics, multimodality, poetry education, animated poetry films

Procedia PDF Downloads 29
2945 Harmonization of Accreditation Standards in Education of Central Asian Countries: Theoretical Aspect

Authors: Yskak Nabi, Onolkan Umankulova, Ilyas Seitov

Abstract:

Tempus project about “Central Asian network for quality assurance – CANQA” had been implemented in 2009-2012. As the result of the project, two accreditation agencies were established: the agency for quality assurance in the field of education, “EdNet” in Kyrgyzstan, center of progressive technologies in Tajikistan. The importance of the research studies of the project is supported by the idea that the creation of Central-Asian network for quality assurance in education is still relevant, and results of the International forum “Global in regional: Kazakhstan in Bologna process and EU projects,” that was held in Nur-Sultan in October 2020, proves this. At the same time, the previous experience of the partnership between accreditation agencies of Central Asia shows that recommendations elaborated within the CANQA project were not theoretically justified. But there are a number of facts and arguments that prove the practical appliance of these recommendations. In this respect, joint activities of accreditation agencies of Kyrgyzstan and Kazakhstan are representative. For example, independent Kazakh agency of accreditation and rating successfully conducts accreditation of Kyrgyz universities; based on the memorandum about joint activity between the agency for quality assurance in the field of education “EdNet” (Kyrgyzstan) and Astana accreditation agency (Kazakhstan), the last one provides its experts for accreditation procedures in EdNet. Exchange of experience among the agencies shows an effective approach towards adaptation of European standards to the reality of education systems of Central Asia with consideration of not only a legal framework but also from the point of European practices view. Therefore, the relevance of the research is identified as there is a practical partnership between accreditation agencies of Central Asian countries, but the absence of theoretical justification of integrational processes in the accreditation field. As a result, the following hypothesis was put forward: “if to develop theoretical aspects for harmonization of accreditation standards, then integrational processes would be improved since the implementation of Bologna process principles would be supported with wider possibilities, and particularly, students and academic mobility would be improved.” Indeed, for example, in Kazakhstan, the total share of foreign students was 5,04% in 2020, and most of them are coming from Kyrgyzstan, Tajikistan, and Uzbekistan, and if integrational processes will be improved, then this share can increase.

Keywords: accreditation standards in education, Central Asian countries, pedagogical theory, model

Procedia PDF Downloads 202
2944 Forensic Methods Used for the Verification of the Authenticity of Prints

Authors: Olivia Rybak-Karkosz

Abstract:

This paper aims to present the results of scientific research on methods of forging art prints and their elements, such as signature or provenance and forensic science methods that might be used to verify their authenticity. In the last decades, the art market has observed significant interest in purchasing prints. They are considered an economical alternative to paintings and a considerable investment. However, the authenticity of an art print is difficult to establish as similar visual effects might be achieved with drawings or xerox. The latter is easy to make using a home printer. They are then offered on flea markets or internet auctions as genuine prints. This probable ease of forgery and, at the same time, the difficulty of distinguishing art print techniques were the main reasons why this research was undertaken. A lack of scientific methods dedicated to disclosing a forgery encouraged the author to verify the possibility of using forensic science's methods known and used in other fields of expertise. This research methodology consisted of completing representative forgery samples collected in selected museums based in Poland and a few in Germany and Austria. That allowed the author to present a typology of methods used to forge art prints. Given that one of the most famous graphic design examples is bills and securities, it seems only appropriate to propose in print verification the usage of methods of detecting counterfeit currency. These methods contain an examination of ink, paper, and watermarks. On prints, additionally, signatures and imprints of stamps, etc., are forged as well. So the examination should be completed with handwriting examination and forensic sphragistics. The paper contains a stipulation to conduct a complex analysis of authenticity with the participation of an art restorer, art historian, and forensic expert as head of this team.

Keywords: art forgery, examination of an artwork, handwriting analysis, prints

Procedia PDF Downloads 132
2943 Multiperson Drone Control with Seamless Pilot Switching Using Onboard Camera and Openpose Real-Time Keypoint Detection

Authors: Evan Lowhorn, Rocio Alba-Flores

Abstract:

Traditional classification Convolutional Neural Networks (CNN) attempt to classify an image in its entirety. This becomes problematic when trying to perform classification with a drone’s camera in real-time due to unpredictable backgrounds. Object detectors with bounding boxes can be used to isolate individuals and other items, but the original backgrounds remain within these boxes. These basic detectors have been regularly used to determine what type of object an item is, such as “person” or “dog.” Recent advancement in computer vision, particularly with human imaging, is keypoint detection. Human keypoint detection goes beyond bounding boxes to fully isolate humans and plot points, or Regions of Interest (ROI), on their bodies within an image. ROIs can include shoulders, elbows, knees, heads, etc. These points can then be related to each other and used in deep learning methods such as pose estimation. For drone control based on human motions, poses, or signals using the onboard camera, it is important to have a simple method for pilot identification among multiple individuals while also giving the pilot fine control options for the drone. To achieve this, the OpenPose keypoint detection network was used with body and hand keypoint detection enabled. OpenPose supports the ability to combine multiple keypoint detection methods in real-time with a single network. Body keypoint detection allows simple poses to act as the pilot identifier. The hand keypoint detection with ROIs for each finger can then offer a greater variety of signal options for the pilot once identified. For this work, the individual must raise their non-control arm to be identified as the operator and send commands with the hand on their other arm. The drone ignores all other individuals in the onboard camera feed until the current operator lowers their non-control arm. When another individual wish to operate the drone, they simply raise their arm once the current operator relinquishes control, and then they can begin controlling the drone with their other hand. This is all performed mid-flight with no landing or script editing required. When using a desktop with a discrete NVIDIA GPU, the drone’s 2.4 GHz Wi-Fi connection combined with OpenPose restrictions to only body and hand allows this control method to perform as intended while maintaining the responsiveness required for practical use.

Keywords: computer vision, drone control, keypoint detection, openpose

Procedia PDF Downloads 185
2942 Cloud Computing in Jordanian Libraries: An Overview

Authors: Mohammad A. Al-Madi, Nagham A. Al-Madi, Fanan A. Al-Madi

Abstract:

The current concept of the technology of cloud computing libraries has been increasing where users can store their data in a virtual space and can be retrieved from anywhere whilst using the network. By using cloud computing technology, industries and individuals save money, time, and space. Moreover, data and information about libraries can be placed in the cloud. This paper discusses the meaning of cloud computing along with its types. Further, the focus has been given to the application of cloud computing in modern libraries. Additionally, the advantages of cloud computing and the areas in which cloud computing be applied with current usage are discussed. Finally, the present situation of the Jordanian libraries is considered and discussed in further detail.

Keywords: cloud computing, community cloud, hybrid cloud, private cloud, public cloud

Procedia PDF Downloads 222
2941 Complicating Representations of Domestic Violence Perpetration through a Qualitative Content Analysis and Socio-Ecological Approach

Authors: Charlotte Lucke

Abstract:

This study contributes to the body of literature that analyzes and complicates oversimplified and sensationalized representations of trauma and violence through a close examination and complication of representations of perpetrators of domestic violence in the mass media. This study determines the ways the media frames perpetrators of domestic violence through a qualitative content analysis and socio-ecological approach to the perpetration of violence. While the qualitative analysis has not been carried out, through preliminary research, this study hypothesizes that the media represents perpetrators through tropes such as the 'predator' or 'offender,' or as a demonized 'other.' It is necessary to expose and work through such stereotypes because cultivation theory demonstrates that the mass media determines societal beliefs about and perceptions of the world. Thus, representations of domestic violence in the mass media can lead people to believe that perpetrators of violence are mere animals or criminals and overlook the trauma that many perpetrators experience. When the media represents perpetrators as pure evil, monsters, or absolute 'others,' it leaves out the complexities of what moves people to commit domestic violence. By analyzing and placing media representations of perpetrators into conversation with the socio-ecological approach to violence perpetration, this study complicates domestic violence stereotypes. The socio-ecological model allows researchers to consider the way the interplay between individuals and their families, friends, communities, and cultures can move people to act violently. Using this model, along with psychological and psychoanalytic approaches to the etiology of domestic violence, this paper argues that media stereotypes conceal the way people’s experiences of trauma, along with community and cultural norms, perpetuates the cycle of systemic trauma and violence in the home.

Keywords: domestic violence, media images, representing trauma, theorising trauma

Procedia PDF Downloads 242
2940 Artificial Intelligence Technologies Used in Healthcare: Its Implication on the Healthcare Workforce and Applications in the Diagnosis of Diseases

Authors: Rowanda Daoud Ahmed, Mansoor Abdulhak, Muhammad Azeem Afzal, Sezer Filiz, Usama Ahmad Mughal

Abstract:

This paper discusses important aspects of AI in the healthcare domain. The increase of data in healthcare both in size and complexity, opens more room for artificial intelligence applications. Our focus is to review the main AI methods within the scope of the health care domain. The results of the review show that recommendations for diagnosis and recommendations for treatment, patent engagement, and administrative tasks are the key applications of AI in healthcare. Understanding the potential of AI methods in the domain of healthcare would benefit healthcare practitioners and will improve patient outcomes.

Keywords: AI in healthcare, technologies of AI, neural network, future of AI in healthcare

Procedia PDF Downloads 117
2939 A Deep Learning Approach for Optimum Shape Design

Authors: Cahit Perkgöz

Abstract:

Artificial intelligence has brought new approaches to solving problems in almost every research field in recent years. One of these topics is shape design and optimization, which has the possibility of applications in many fields, such as nanotechnology and electronics. A properly constructed cost function can eliminate the need for labeled data required in deep learning and create desired shapes. In this work, the network parameters are optimized differentially, which differs from traditional approaches. The methods are tested for physics-related structures and successful results are obtained. This work is supported by Eskişehir Technical University scientific research project (Project No: 20ADP090)

Keywords: deep learning, shape design, optimization, artificial intelligence

Procedia PDF Downloads 155
2938 The Impact of Regulatory Changes on the Development of Mobile Medical Apps

Authors: M. McHugh, D. Lillis

Abstract:

Mobile applications are being used to perform a wide variety of tasks in day-to-day life, ranging from checking email to controlling your home heating. Application developers have recognized the potential to transform a smart device into a medical device, by using a mobile medical application i.e. a mobile phone or a tablet. When initially conceived these mobile medical applications performed basic functions e.g. BMI calculator, accessing reference material etc.; however, increasing complexity offers clinicians and patients a range of functionality. As this complexity and functionality increases, so too does the potential risk associated with using such an application. Examples include any applications that provide the ability to inflate and deflate blood pressure cuffs, as well as applications that use patient-specific parameters and calculate dosage or create a dosage plan for radiation therapy. If an unapproved mobile medical application is marketed by a medical device organization, then they face significant penalties such as receiving an FDA warning letter to cease the prohibited activity, fines and possibility of facing a criminal conviction. Regulatory bodies have finalized guidance intended for mobile application developers to establish if their applications are subject to regulatory scrutiny. However, regulatory controls appear contradictory with the approaches taken by mobile application developers who generally work with short development cycles and very little documentation and as such, there is the potential to stifle further improvements due to these regulations. The research presented as part of this paper details how by adopting development techniques, such as agile software development, mobile medical application developers can meet regulatory requirements whilst still fostering innovation.

Keywords: agile, applications, FDA, medical, mobile, regulations, software engineering, standards

Procedia PDF Downloads 362
2937 Remaining Useful Life (RUL) Assessment Using Progressive Bearing Degradation Data and ANN Model

Authors: Amit R. Bhende, G. K. Awari

Abstract:

Remaining useful life (RUL) prediction is one of key technologies to realize prognostics and health management that is being widely applied in many industrial systems to ensure high system availability over their life cycles. The present work proposes a data-driven method of RUL prediction based on multiple health state assessment for rolling element bearings. Bearing degradation data at three different conditions from run to failure is used. A RUL prediction model is separately built in each condition. Feed forward back propagation neural network models are developed for prediction modeling.

Keywords: bearing degradation data, remaining useful life (RUL), back propagation, prognosis

Procedia PDF Downloads 438
2936 An Architecture Based on Capsule Networks for the Identification of Handwritten Signature Forgery

Authors: Luisa Mesquita Oliveira Ribeiro, Alexei Manso Correa Machado

Abstract:

Handwritten signature is a unique form for recognizing an individual, used to discern documents, carry out investigations in the criminal, legal, banking areas and other applications. Signature verification is based on large amounts of biometric data, as they are simple and easy to acquire, among other characteristics. Given this scenario, signature forgery is a worldwide recurring problem and fast and precise techniques are needed to prevent crimes of this nature from occurring. This article carried out a study on the efficiency of the Capsule Network in analyzing and recognizing signatures. The chosen architecture achieved an accuracy of 98.11% and 80.15% for the CEDAR and GPDS databases, respectively.

Keywords: biometrics, deep learning, handwriting, signature forgery

Procedia PDF Downloads 85
2935 Nutritional Allowance Support Affecting Treatment Compliance among TB Patients in Western, Nepal

Authors: Yadav R. K., Baral S.

Abstract:

Introduction: Nepal is one of the world’s least developed countries and has a high incidence of tuberculosis (TB). The TB prevalence survey in 2019 showed 69,000 Nepalese is developing TB and 4,000 die every year. Given its disproportionate impact on the impoverished segments of society, TB often thrusts patients into extreme poverty or exacerbates their existing economic struggles. Consequently, not only the patients but also their families suffer from the loss of livelihood. This study aims to assess the support of nutritional allowance on treatment compliance among retreatment tuberculosis patients in Nepal. This is a secondary analysis of data from HMIS (Health Management Information System) to investigate treatment compliance among tuberculosis patients and its association with nutritional allowance. The study population consisted of all individuals (N=2972) who had received services from July 16, 2021, to December 14, 2022. The SPSS 21version was used to conduct descriptive and bivariate analysis. Out of the total TB patients (n=2972), a third-fourth (65.9%) of TB patients were male. More than one-tenth (12.3%) of respondents received a nutrition support allowance. The TB treatment compliance rate was more (89.91%) in the nutrition support allowance group compared to the non-nutritional support group (87.98%). TB patients who received the nutritional support allowance were nearly twice as likely to have a higher TB treatment compliance rate compared to those who did not receive the nutritional support allowance. Providing nutritional allowance support to tuberculosis (TB) patients can play a significant role in improving treatment compliance and outcomes. Age and the type of TB are important factors that have shown statistical significance in relation to treatment compliance. Therefore, it is recommended to provide nutritional allowance support to both new and retreatment TB patients. To enhance treatment compliance among TB patients, it is beneficial to provide timely nutrition allowances and arrange home visits by TB focal persons.

Keywords: nutrition, support, treatment compliance, TB, Nepal

Procedia PDF Downloads 143
2934 Artificial Neural Networks Application on Nusselt Number and Pressure Drop Prediction in Triangular Corrugated Plate Heat Exchanger

Authors: Hany Elsaid Fawaz Abdallah

Abstract:

This study presents a new artificial neural network(ANN) model to predict the Nusselt Number and pressure drop for the turbulent flow in a triangular corrugated plate heat exchanger for forced air and turbulent water flow. An experimental investigation was performed to create a new dataset for the Nusselt Number and pressure drop values in the following range of dimensionless parameters: The plate corrugation angles (from 0° to 60°), the Reynolds number (from 10000 to 40000), pitch to height ratio (from 1 to 4), and Prandtl number (from 0.7 to 200). Based on the ANN performance graph, the three-layer structure with {12-8-6} hidden neurons has been chosen. The training procedure includes back-propagation with the biases and weight adjustment, the evaluation of the loss function for the training and validation dataset and feed-forward propagation of the input parameters. The linear function was used at the output layer as the activation function, while for the hidden layers, the rectified linear unit activation function was utilized. In order to accelerate the ANN training, the loss function minimization may be achieved by the adaptive moment estimation algorithm (ADAM). The ‘‘MinMax’’ normalization approach was utilized to avoid the increase in the training time due to drastic differences in the loss function gradients with respect to the values of weights. Since the test dataset is not being used for the ANN training, a cross-validation technique is applied to the ANN network using the new data. Such procedure was repeated until loss function convergence was achieved or for 4000 epochs with a batch size of 200 points. The program code was written in Python 3.0 using open-source ANN libraries such as Scikit learn, TensorFlow and Keras libraries. The mean average percent error values of 9.4% for the Nusselt number and 8.2% for pressure drop for the ANN model have been achieved. Therefore, higher accuracy compared to the generalized correlations was achieved. The performance validation of the obtained model was based on a comparison of predicted data with the experimental results yielding excellent accuracy.

Keywords: artificial neural networks, corrugated channel, heat transfer enhancement, Nusselt number, pressure drop, generalized correlations

Procedia PDF Downloads 90
2933 The Effect of Gender Differences on Mate Selection in Private University

Authors: Hui Min Kong, Rajalakshmi A/P Ganesan

Abstract:

The present study was conducted to investigate the effect of gender differences in mate selection in a private university. Mate selection is an important process and decision to the people around the world, especially for single people. The future partner we have chosen could be our lifetime friend, supporter, and lover. Mate selection is important to us, but we have never fully understood the evolution of gender differences in mate selection. Besides, there was an insufficient empirical finding of gender differences in mate selection in Malaysia. Hence, the research would allow us to understand our feelings and thoughts about our future partners. The research null hypotheses have stated that there was no significant difference on 18 mate selections characteristics between males and females. A quantitative method was performed to test the hypotheses through independent t-test. There was a total of 373 heterosexual participants with the age range of 18 to 35 in the study. The instrument used was Factors in choosing a mate developed by Buss and Barnes (1986). Results indicated that females (M= 26.69) were found to be highly valued on refinement and neatness, good financial prospect, dependable character, emotional stability and maturity, desire for home and children, favorable social status or rating, similar religious background, ambition and industriousness, mutual attraction, good health and education and intelligence than males (M= 23.25). These results demonstrated that there were 61.11% significant gender differences in mate selections characteristics. Findings of this research have highlighted the importance of human mate selections in Malaysia. Further research is needed to identify the factors that could have a possible moderating effect of gender differences in mate selection.

Keywords: gender differences, mate selections, evolution, future partner

Procedia PDF Downloads 113