Search results for: sequential dependence model
14633 Breast Cancer Incidence Estimation in Castilla-La Mancha (CLM) from Mortality and Survival Data
Authors: C. Romero, R. Ortega, P. Sánchez-Camacho, P. Aguilar, V. Segur, J. Ruiz, G. Gutiérrez
Abstract:
Introduction: Breast cancer is a leading cause of death in CLM. (2.8% of all deaths in women and 13,8% of deaths from tumors in womens). It is the most tumor incidence in CLM region with 26.1% from all tumours, except nonmelanoma skin (Cancer Incidence in Five Continents, Volume X, IARC). Cancer registries are a good information source to estimate cancer incidence, however the data are usually available with a lag which makes difficult their use for health managers. By contrast, mortality and survival statistics have less delay. In order to serve for resource planning and responding to this problem, a method is presented to estimate the incidence of mortality and survival data. Objectives: To estimate the incidence of breast cancer by age group in CLM in the period 1991-2013. Comparing the data obtained from the model with current incidence data. Sources: Annual number of women by single ages (National Statistics Institute). Annual number of deaths by all causes and breast cancer. (Mortality Registry CLM). The Breast cancer relative survival probability. (EUROCARE, Spanish registries data). Methods: A Weibull Parametric survival model from EUROCARE data is obtained. From the model of survival, the population and population data, Mortality and Incidence Analysis MODel (MIAMOD) regression model is obtained to estimate the incidence of cancer by age (1991-2013). Results: The resulting model is: Ix,t = Logit [const + age1*x + age2*x2 + coh1*(t – x) + coh2*(t-x)2] Where: Ix,t is the incidence at age x in the period (year) t; the value of the parameter estimates is: const (constant term in the model) = -7.03; age1 = 3.31; age2 = -1.10; coh1 = 0.61 and coh2 = -0.12. It is estimated that in 1991 were diagnosed in CLM 662 cases of breast cancer (81.51 per 100,000 women). An estimated 1,152 cases (112.41 per 100,000 women) were diagnosed in 2013, representing an increase of 40.7% in gross incidence rate (1.9% per year). The annual average increases in incidence by age were: 2.07% in women aged 25-44 years, 1.01% (45-54 years), 1.11% (55-64 years) and 1.24% (65-74 years). Cancer registries in Spain that send data to IARC declared 2003-2007 the average annual incidence rate of 98.6 cases per 100,000 women. Our model can obtain an incidence of 100.7 cases per 100,000 women. Conclusions: A sharp and steady increase in the incidence of breast cancer in the period 1991-2013 is observed. The increase was seen in all age groups considered, although it seems more pronounced in young women (25-44 years). With this method you can get a good estimation of the incidence.Keywords: breast cancer, incidence, cancer registries, castilla-la mancha
Procedia PDF Downloads 31314632 The Inversion of Helical Twist Sense in Liquid Crystal by Spectroscopy Methods
Authors: Anna Drzewicz, Marzena Tykarska
Abstract:
The chiral liquid crystal phases form the helicoidal structure, which is characterized by the helical pitch and the helical twist sense. In anticlinic smectic phase with antiferroelectric properties three types of helix temperature dependence have been obtained: increased helical pitch with temperature and right-handed helix, decreased helical pitch with temperature and left-handed helix and the inversion of both. The change of helical twist sense may be observed during the transition from one liquid crystal phase to another or within one phase for the same substance. According to Gray and McDonnell theory, the helical handedness depends on the absolute configuration of the assymetric carbon atom and its position related to the rigid core of the molecule. However, this theory does not explain the inversion of helical twist sense phenomenon. It is supposed, that it may be caused by the presence of different conformers with opposite handendess, which concentration may change with temperature. In this work, the inversion of helical twist sense in the chiral liquid crystals differing in the length of alkyl chain, in the substitution the benzene ring by fluorine atoms and in the type of helix handedness was tested by vibrational spectroscopy (infrared and raman spectroscopy) and by nuclear magnetic resonance spectroscopy. The results obtained from the vibrational spectroscopy confirm the presence of different conformers. Moreover, the analysis of nuclear magnetic resonance spectra is very useful to check, on which structural fragments the change of conformations are important for the change of helical twist sense.Keywords: helical twist sense, liquid crystals, nuclear magnetic resonance spectroscopy, vibrational spectroscopy
Procedia PDF Downloads 28414631 A Deterministic Large Deviation Model Based on Complex N-Body Systems
Authors: David C. Ni
Abstract:
In the previous efforts, we constructed N-Body Systems by an extended Blaschke product (EBP), which represents a non-temporal and nonlinear extension of Lorentz transformation. In this construction, we rely only on two parameters, nonlinear degree, and relative momentum to characterize the systems. We further explored root computation via iteration with an algorithm extended from Jenkins-Traub method. The solution sets demonstrate a form of σ+ i [-t, t], where σ and t are the real numbers, and the [-t, t] shows various canonical distributions. In this paper, we correlate the convergent sets in the original domain with solution sets, which demonstrating large-deviation distributions in the codomain. We proceed to compare our approach with the formula or principles, such as Donsker-Varadhan and Wentzell-Freidlin theories. The deterministic model based on this construction allows us to explore applications in the areas of finance and statistical mechanics.Keywords: nonlinear Lorentz transformation, Blaschke equation, iteration solutions, root computation, large deviation distribution, deterministic model
Procedia PDF Downloads 39514630 Co-Gasification of Petroleum Waste and Waste Tires: A Numerical and CFD Study
Authors: Thomas Arink, Isam Janajreh
Abstract:
The petroleum industry generates significant amounts of waste in the form of drill cuttings, contaminated soil and oily sludge. Drill cuttings are a product of the off-shore drilling rigs, containing wet soil and total petroleum hydrocarbons (TPH). Contaminated soil comes from different on-shore sites and also contains TPH. The oily sludge is mainly residue or tank bottom sludge from storage tanks. The two main treatment methods currently used are incineration and thermal desorption (TD). Thermal desorption is a method where the waste material is heated to 450ºC in an anaerobic environment to release volatiles, the condensed volatiles can be used as a liquid fuel. For the thermal desorption unit dry contaminated soil is mixed with moist drill cuttings to generate a suitable mixture. By thermo gravimetric analysis (TGA) of the TD feedstock it was found that less than 50% of the TPH are released, the discharged material is stored in landfill. This study proposes co-gasification of petroleum waste with waste tires as an alternative to thermal desorption. Co-gasification with a high-calorific material is necessary since the petroleum waste consists of more than 60 wt% ash (soil/sand), causing its calorific value to be too low for gasification. Since the gasification process occurs at 900ºC and higher, close to 100% of the TPH can be released, according to the TGA. This work consists of three parts: 1. a mathematical gasification model, 2. a reactive flow CFD model and 3. experimental work on a drop tube reactor. Extensive material characterization was done by means of proximate analysis (TGA), ultimate analysis (CHNOS flash analysis) and calorific value measurements (Bomb calorimeter) for the input parameters of the mathematical and CFD model. The mathematical model is a zero dimensional model based on Gibbs energy minimization together with Lagrange multiplier; it is used to find the product species composition (molar fractions of CO, H2, CH4 etc.) for different tire/petroleum feedstock mixtures and equivalence ratios. The results of the mathematical model act as a reference for the CFD model of the drop-tube reactor. With the CFD model the efficiency and product species composition can be predicted for different mixtures and particle sizes. Finally both models are verified by experiments on a drop tube reactor (1540 mm long, 66 mm inner diameter, 1400 K maximum temperature).Keywords: computational fluid dynamics (CFD), drop tube reactor, gasification, Gibbs energy minimization, petroleum waste, waste tires
Procedia PDF Downloads 52114629 Assessment of Barriers Influencing the Adoption of Building Information Modelling in the Construction Industry, Lagos State, Nigeria
Authors: Tosin Deborah Akanbi, Adeyemi Oluwaseun Adepoju, Hameed Olusegun Adebambo, Akinloye Fatai Lawal
Abstract:
Building information modelling (BIM) is a process that starts with the development of a sequential 3D design and encourages data administration, organization, and visualization throughout the life span of a facility (drawings, construction, and supervision). The implementation of building information modelling has been slow in recent years, and this is due to some prominent barriers that hinder its adoption. In this regard, the study aims to examine the significant barriers that influence the adoption of building information modelling in the Lagos state construction industry. Data were gathered through a questionnaire survey with 332 construction professionals in the study area. Three online structured interviews were conducted to support and validate the findings of the quantitative analysis. The results revealed that interest (lack of awareness and understanding of BIM, absence of in-house BIM competent professionals, and unavailability of BIM competent professionals in the labour market), legal (lack of policies and regulations on copyright ownership and lack of enforcement from government agencies and industry leaderships) and professional (people’s inability or refusal to learn new technologies and processes, waste in time and human resource and lack of clarity of professional roles in BIM) barriers are the major barriers influencing the adoption of BIM. The results also revealed that six final themes were generated, namely: finance barriers, industry barriers, interest barriers, leadership barriers, legal barriers, and professional barriers. Thus, there is a need for policymakers to design and implement policies (regulatory, economic, and information) to promote financial schemes to support construction firms and professionals and to reduce financial barriers. It is also important for the government to lay down rules and regulations that must be enforced among the construction professionals and firms in the Lagos state construction industry.Keywords: BIM barriers, BIM adoption characteristics, construction industry, Lagos State Nigeria
Procedia PDF Downloads 5414628 Nonlinear Finite Element Modeling of Unbonded Steel Reinforced Concrete Beams
Authors: Fares Jnaid, Riyad Aboutaha
Abstract:
In this paper, a nonlinear Finite Element Analysis (FEA) was carried out using ANSYS software to build a model able of predicting the behavior of Reinforced Concrete (RC) beams with unbonded reinforcement. The FEA model was compared to existing experimental data by other researchers. The existing experimental data consisted of 16 beams that varied from structurally sound beams to beams with unbonded reinforcement with different unbonded lengths and reinforcement ratios. The model was able to predict the ultimate flexural strength, load-deflection curve, and crack pattern of concrete beams with unbonded reinforcement. It was concluded that when the when the unbonded length is less than 45% of the span, there will be no decrease in the ultimate flexural strength due to the loss of bond between the steel reinforcement and the surrounding concrete regardless of the reinforcement ratio. Moreover, when the reinforcement ratio is relatively low, there will be no decrease in ultimate flexural strength regardless of the length of unbond.Keywords: FEA, ANSYS, unbond, strain
Procedia PDF Downloads 25514627 Application of the Total Least Squares Estimation Method for an Aircraft Aerodynamic Model Identification
Authors: Zaouche Mohamed, Amini Mohamed, Foughali Khaled, Aitkaid Souhila, Bouchiha Nihad Sarah
Abstract:
The aerodynamic coefficients are important in the evaluation of an aircraft performance and stability-control characteristics. These coefficients also can be used in the automatic flight control systems and mathematical model of flight simulator. The study of the aerodynamic aspect of flying systems is a reserved domain and inaccessible for the developers. Doing tests in a wind tunnel to extract aerodynamic forces and moments requires a specific and expensive means. Besides, the glaring lack of published documentation in this field of study makes the aerodynamic coefficients determination complicated. This work is devoted to the identification of an aerodynamic model, by using an aircraft in virtual simulated environment. We deal with the identification of the system, we present an environment framework based on Software In the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. We propose The Total Least Squares Estimation technique (TLSE) to identify the aerodynamic parameters, which are unknown, variable, classified and used in the expression of the piloting law. In this paper, we define each aerodynamic coefficient as the mean of its numerical values. All other variations are considered as modeling uncertainties that will be compensated by the robustness of the piloting control.Keywords: aircraft aerodynamic model, total least squares estimation, piloting the aircraft, robust control, Microsoft Flight Simulator, MQ-1 predator
Procedia PDF Downloads 28714626 3D Printing Perceptual Models of Preference Using a Fuzzy Extreme Learning Machine Approach
Authors: Xinyi Le
Abstract:
In this paper, 3D printing orientations were determined through our perceptual model. Some FDM (Fused Deposition Modeling) 3D printers, which are widely used in universities and industries, often require support structures during the additive manufacturing. After removing the residual material, some surface artifacts remain at the contact points. These artifacts will damage the function and visual effect of the model. To prevent the impact of these artifacts, we present a fuzzy extreme learning machine approach to find printing directions that avoid placing supports in perceptually significant regions. The proposed approach is able to solve the evaluation problem by combing both the subjective knowledge and objective information. Our method combines the advantages of fuzzy theory, auto-encoders, and extreme learning machine. Fuzzy set theory is applied for dealing with subjective preference information, and auto-encoder step is used to extract good features without supervised labels before extreme learning machine. An extreme learning machine method is then developed successfully for training and learning perceptual models. The performance of this perceptual model will be demonstrated on both natural and man-made objects. It is a good human-computer interaction practice which draws from supporting knowledge on both the machine side and the human side.Keywords: 3d printing, perceptual model, fuzzy evaluation, data-driven approach
Procedia PDF Downloads 43914625 Double Layer Security Model for Identification Friend or Foe
Authors: Buse T. Aydın, Enver Ozdemir
Abstract:
In this study, a double layer authentication scheme between the aircraft and the Air Traffic Control (ATC) tower is designed to prevent any unauthorized aircraft from introducing themselves as friends. The method is a combination of classical cryptographic methods and new generation physical layers. The first layer has employed the embedded key of the aircraft. The embedded key is assumed to installed during the construction of the utility. The other layer is a physical attribute (flight path, distance, etc.) between the aircraft and the ATC tower. We create a mathematical model so that two layers’ information is employed and an aircraft is authenticated as a friend or foe according to the accuracy of the results of the model. The results of the aircraft are compared with the results of the ATC tower and if the values found by the aircraft and ATC tower match within a certain error margin, we mark the aircraft as a friend. In this method, even if embedded key is captured by the enemy aircraft, without the information of the second layer, the enemy can easily be determined. Overall, in this work, we present a more reliable system by adding a physical layer in the authentication process.Keywords: ADS-B, communication with physical layer security, cryptography, identification friend or foe
Procedia PDF Downloads 16114624 Hybrid Fuzzy Weighted K-Nearest Neighbor to Predict Hospital Readmission for Diabetic Patients
Authors: Soha A. Bahanshal, Byung G. Kim
Abstract:
Identification of patients at high risk for hospital readmission is of crucial importance for quality health care and cost reduction. Predicting hospital readmissions among diabetic patients has been of great interest to many researchers and health decision makers. We build a prediction model to predict hospital readmission for diabetic patients within 30 days of discharge. The core of the prediction model is a modified k Nearest Neighbor called Hybrid Fuzzy Weighted k Nearest Neighbor algorithm. The prediction is performed on a patient dataset which consists of more than 70,000 patients with 50 attributes. We applied data preprocessing using different techniques in order to handle data imbalance and to fuzzify the data to suit the prediction algorithm. The model so far achieved classification accuracy of 80% compared to other models that only use k Nearest Neighbor.Keywords: machine learning, prediction, classification, hybrid fuzzy weighted k-nearest neighbor, diabetic hospital readmission
Procedia PDF Downloads 18714623 Integrated Genetic-A* Graph Search Algorithm Decision Model for Evaluating Cost and Quality of School Renovation Strategies
Authors: Yu-Ching Cheng, Yi-Kai Juan, Daniel Castro
Abstract:
Energy consumption of buildings has been an increasing concern for researchers and practitioners in the last decade. Sustainable building renovation can reduce energy consumption and carbon dioxide emissions; meanwhile, it also can extend existing buildings useful life and facilitate environmental sustainability while providing social and economic benefits to the society. School buildings are different from other designed spaces as they are more crowded and host the largest portion of daily activities and occupants. Strategies that focus on reducing energy use but also improve the students’ learning environment becomes a significant subject in sustainable school buildings development. A decision model is developed in this study to solve complicated and large-scale combinational, discrete and determinate problems such as school renovation projects. The task of this model is to automatically search for the most cost-effective (lower cost and higher quality) renovation strategies. In this study, the search process of optimal school building renovation solutions is by nature a large-scale zero-one programming determinate problem. A* is suitable for solving deterministic problems due to its stable and effective search process, and genetic algorithms (GA) provides opportunities to acquire global optimal solutions in a short time via its indeterminate search process based on probability. These two algorithms are combined in this study to consider trade-offs between renovation cost and improved quality, this decision model is able to evaluate current school environmental conditions and suggest an optimal scheme of sustainable school buildings renovation strategies. Through adoption of this decision model, school managers can overcome existing limitations and transform school buildings into spaces more beneficial to students and friendly to the environment.Keywords: decision model, school buildings, sustainable renovation, genetic algorithm, A* search algorithm
Procedia PDF Downloads 12114622 Assessment of Mountain Hydrological Processes in the Gumera Catchment, Ethiopia
Authors: Tewele Gebretsadkan Haile
Abstract:
Mountain terrains are essential to regional water resources by regulating hydrological processes that use downstream water supplies. Nevertheless, limited observed earth data in complex topography poses challenges for water resources regulation. That's why satellite product is implemented in this study. This study evaluates hydrological processes on mountain catchment of Gumera, Ethiopia using HBV-light model with satellite precipitation products (CHIRPS) for the temporal scale of 1996 to 2010 and area coverage of 1289 km2. The catchment is characterized by cultivation dominant and elevation ranges from 1788 to 3606 m above sea level. Three meteorological stations have been used for downscaling of the satellite data and one stream flow for calibration and validation. The result shows total annual water balance showed that precipitation 1410 mm, simulated 828 mm surface runoff compared to 1042 mm observed stream flow with actual evapotranspiration estimate 586mm and 1495mm potential evapotranspiration. The temperature range is 9°C in winter to 21°C. The catchment contributes 74% as quack runoff to the total runoff and 26% as lower groundwater storage, which sustains stream flow during low periods. The model uncertainty was measured using different metrics such as coefficient of determination, model efficiency, efficiency for log(Q) and flow weighted efficiency 0.76, 0.74, 0.66 and 0.70 respectively. The research result highlights that HBV model captures the mountain hydrology simulation and the result indicates quack runoff due to the traditional agricultural system, slope factor of the topography and adaptation measure for water resource management is recommended.Keywords: mountain hydrology, CHIRPS, Gumera, HBV model
Procedia PDF Downloads 1614621 Quantification of the Gumera Catchment's Mountain Hydrological Processes in Ethiopia
Authors: Tewele Gebretsadkan Haile
Abstract:
Mountain terrains are essential to regional water resources by regulating hydrological processes that use downstream water supplies. Nevertheless, limited observed earth data in complex topography poses challenges for water resources regulation. That's why satellite product is implemented in this study. This study evaluates hydrological processes on mountain catchment of Gumera, Ethiopia using HBV-light model with satellite precipitation products (CHIRPS) for the temporal scale of 1996 to 2010 and area coverage of 1289 km2. The catchment is characterized by cultivation dominant and elevation ranges from 1788 to 3606 m above sea level. Three meteorological stations have been used for downscaling of the satellite data and one stream flow for calibration and validation. The result shows total annual water balance showed that precipitation 1410 mm, simulated 828 mm surface runoff compared to 1042 mm observed stream flow with actual evapotranspiration estimate 586mm and 1495mm potential evapotranspiration. The temperature range is 9°C in winter to 21°C. The catchment contributes 74% as quack runoff to the total runoff and 26% as lower groundwater storage, which sustains stream flow during low periods. The model uncertainty was measured using different metrics such as coefficient of determination, model efficiency, efficiency for log(Q) and flow weighted efficiency 0.76, 0.74, 0.66 and 0.70 respectively. The research result highlights that HBV model captures the mountain hydrology simulation and the result indicates quack runoff due to the traditional agricultural system, slope factor of the topography and adaptation measure for water resource management is recommended.Keywords: mountain hydrology, CHIRPS, HBV model, Gumera
Procedia PDF Downloads 1414620 The Roots of the Robust and Looting Economy (poverty and inequality) in Iran after the 1979 Revolution, From the Perspective of Acem Oglu & Robinson theory
Authors: Vorya Shabrandi
Abstract:
The study factors of poverty and inequality causes in countries is the subject of many scholars and economists in the last century, theorists in various areas of economic science know different factors as the roots of poverty and inequality in Iran after the 1979 revolution. Economists have emphasized political elements and political scientists on political elements. This research reviews the political economy of poverty and corruption in Iran after the revolution. The findings of this research, based on AcemOgluand Robinson theory, show how the institutional structural dependence of Iran's economy to raw has led to the growth of its non-economic economic institutions and its consequence of the continuity of the release and looting economy and poverty and inequality in Iran's political economy Is. This research was carried out using descriptive-analytical and comparative methods. Many economists try to justify the conditions of the country based on war, sanctions; And the external factors, and ... knows. In this study, we tried to examine the roots of poverty and the looting economy of Iran by implementing Research AcemOgluand Robinson on the institutions and roots of poverty. Looking for a framework for understanding why countries, such as Iran, the reason for the difference in revenue in different countries, as well as the poor or wealth of countries, regardless of the non-effective and non-professional institutions, and why inefficient institutions in some countries, such as Iran, such as Iran It remains and does not have a voluntary political powers to change these institutions. Findings The research shows that institutions are broadly the main reason for the roots of the robust and looting economy (poverty and inequality) in Iran.Keywords: Iran, plunderable (Loot) economy, raw shopping, poverty and inequality, acem oglu and robinson, non-inclusive institutions
Procedia PDF Downloads 14114619 Experimental Study to Determine the Effect of Wire Mesh Pore Size on Natural Draft Chimney Performance
Authors: Md. Mizanur Rahman, Chu Chi Ming, Mohd Suffian Bin Misaran
Abstract:
Chimney is an important part of the industries to remove waste heat from the processes side to the atmosphere. The increased demand of energy helps to restart to think about the efficiency of chimney as well as to find out a valid option to replace forced draft chimney system from industries. In this study natural draft chimney model is air flow rate; exit air temperature and pressure losses are studied through modification with wire mesh screen and compare the results with without wire mesh screen chimney model. The heat load is varies from 0.1 kW to 1kW and three different wire mesh screens that have pore size 0.15 mm2, 0.40 mm2 and 4.0 mm2 respectively are used. The experimental results show that natural draft chimney model with wire mesh screens significantly restored the flow losses compared to the system without wire mesh screen. The natural draft chimney model with 0.40 mm2 pore size wire mesh screen can minimize the draft losses better than others and able to enhance velocity about 54 % exit air temperature about 41% and pressure loss decreased by about 20%. Therefore, it can be decided that the wire mesh screens significantly minimize the draft losses in the natural draft chimney and 0.40 mm2 pore size screen will be a suitable option.Keywords: natural draft dhimney, wire mesh screen, natural draft flow, mechanical engineering
Procedia PDF Downloads 31914618 Blood Flow Simulations to Understand the Role of the Distal Vascular Branches of Carotid Artery in the Stroke Prediction
Authors: Muhsin Kizhisseri, Jorg Schluter, Saleh Gharie
Abstract:
Atherosclerosis is the main reason of stroke, which is one of the deadliest diseases in the world. The carotid artery in the brain is the prominent location for atherosclerotic progression, which hinders the blood flow into the brain. The inclusion of computational fluid dynamics (CFD) into the diagnosis cycle to understand the hemodynamics of the patient-specific carotid artery can give insights into stroke prediction. Realistic outlet boundary conditions are an inevitable part of the numerical simulations, which is one of the major factors in determining the accuracy of the CFD results. The Windkessel model-based outlet boundary conditions can give more realistic characteristics of the distal vascular branches of the carotid artery, such as the resistance to the blood flow and compliance of the distal arterial walls. This study aims to find the most influential distal branches of the carotid artery by using the Windkessel model parameters in the outlet boundary conditions. The parametric study approach to Windkessel model parameters can include the geometrical features of the distal branches, such as radius and length. The incorporation of the variations of the geometrical features of the major distal branches such as the middle cerebral artery, anterior cerebral artery, and ophthalmic artery through the Windkessel model can aid in identifying the most influential distal branch in the carotid artery. The results from this study can help physicians and stroke neurologists to have a more detailed and accurate judgment of the patient's condition.Keywords: stroke, carotid artery, computational fluid dynamics, patient-specific, Windkessel model, distal vascular branches
Procedia PDF Downloads 21714617 A Homogenized Mechanical Model of Carbon Nanotubes/Polymer Composite with Interface Debonding
Authors: Wenya Shu, Ilinca Stanciulescu
Abstract:
Carbon nanotubes (CNTs) possess attractive properties, such as high stiffness and strength, and high thermal and electrical conductivities, making them promising filler in multifunctional nanocomposites. Although CNTs can be efficient reinforcements, the expected level of mechanical performance of CNT-polymers is not often reached in practice due to the poor mechanical behavior of the CNT-polymer interfaces. It is believed that the interactions of CNT and polymer mainly result from the Van der Waals force. The interface debonding is a fracture and delamination phenomenon. Thus, the cohesive zone modeling (CZM) is deemed to give good capture of the interface behavior. The detailed, cohesive zone modeling provides an option to consider the CNT-matrix interactions, but brings difficulties in mesh generation and also leads to high computational costs. Homogenized models that smear the fibers in the ground matrix and treat the material as homogeneous are studied in many researches to simplify simulations. But based on the perfect interface assumption, the traditional homogenized model obtained by mixing rules severely overestimates the stiffness of the composite, even comparing with the result of the CZM with artificially very strong interface. A mechanical model that can take into account the interface debonding and achieve comparable accuracy to the CZM is thus essential. The present study first investigates the CNT-matrix interactions by employing cohesive zone modeling. Three different coupled CZM laws, i.e., bilinear, exponential and polynomial, are considered. These studies indicate that the shapes of the CZM constitutive laws chosen do not influence significantly the simulations of interface debonding. Assuming a bilinear traction-separation relationship, the debonding process of single CNT in the matrix is divided into three phases and described by differential equations. The analytical solutions corresponding to these phases are derived. A homogenized model is then developed by introducing a parameter characterizing interface sliding into the mixing theory. The proposed mechanical model is implemented in FEAP8.5 as a user material. The accuracy and limitations of the model are discussed through several numerical examples. The CZM simulations in this study reveal important factors in the modeling of CNT-matrix interactions. The analytical solutions and proposed homogenized model provide alternative methods to efficiently investigate the mechanical behaviors of CNT/polymer composites.Keywords: carbon nanotube, cohesive zone modeling, homogenized model, interface debonding
Procedia PDF Downloads 13214616 Simulation of Acoustic Properties of Borate and Tellurite Glasses
Authors: M. S. Gaafar, S. Y. Marzouk, I. S. Mahmoud, S. Al-Zobaidi
Abstract:
Makishima and Mackenzie model was used to simulation of acoustic properties (longitudinal and shear ultrasonic wave velocities, elastic moduli theoretically for many tellurite and borate glasses. The model was proposed mainly depending on the values of the experimentally measured density, which are obtained before. In this search work, we are trying to obtain the values of densities of amorphous glasses (as the density depends on the geometry of the network structure of these glasses). In addition, the problem of simulating the slope of linear regression between the experimentally determined bulk modulus and the product of packing density and experimental Young's modulus, were solved in this search work. The results showed good agreement between the experimentally measured values of densities and both ultrasonic wave velocities, and those theoretically determined.Keywords: glasses, ultrasonic wave velocities, elastic modulus, Makishima & Mackenzie Model
Procedia PDF Downloads 38914615 Green Function and Eshelby Tensor Based on Mindlin’s 2nd Gradient Model: An Explicit Study of Spherical Inclusion Case
Authors: A. Selmi, A. Bisharat
Abstract:
Using Fourier transform and based on the Mindlin's 2nd gradient model that involves two length scale parameters, the Green's function, the Eshelby tensor, and the Eshelby-like tensor for a spherical inclusion are derived. It is proved that the Eshelby tensor consists of two parts; the classical Eshelby tensor and a gradient part including the length scale parameters which enable the interpretation of the size effect. When the strain gradient is not taken into account, the obtained Green's function and Eshelby tensor reduce to its analogue based on the classical elasticity. The Eshelby tensor in and outside the inclusion, the volume average of the gradient part and the Eshelby-like tensor are explicitly obtained. Unlike the classical Eshelby tensor, the results show that the components of the new Eshelby tensor vary with the position and the inclusion dimensions. It is demonstrated that the contribution of the gradient part should not be neglected.Keywords: Eshelby tensor, Eshelby-like tensor, Green’s function, Mindlin’s 2nd gradient model, spherical inclusion
Procedia PDF Downloads 27114614 Exchanging Radiology Reporting System with Electronic Health Record: Designing a Conceptual Model
Authors: Azadeh Bashiri
Abstract:
Introduction: In order to better designing of electronic health record system in Iran, integration of health information systems based on a common language must be done to interpret and exchange this information with this system is required. Background: This study, provides a conceptual model of radiology reporting system using unified modeling language. The proposed model can solve the problem of integration this information system with electronic health record system. By using this model and design its service based, easily connect to electronic health record in Iran and facilitate transfer radiology report data. Methods: This is a cross-sectional study that was conducted in 2013. The student community was 22 experts that working at the Imaging Center in Imam Khomeini Hospital in Tehran and the sample was accorded with the community. Research tool was a questionnaire that prepared by the researcher to determine the information requirements. Content validity and test-retest method was used to measure validity and reliability of questioner respectively. Data analyzed with average index, using SPSS. Also, Visual Paradigm software was used to design a conceptual model. Result: Based on the requirements assessment of experts and related texts, administrative, demographic and clinical data and radiological examination results and if the anesthesia procedure performed, anesthesia data suggested as minimum data set for radiology report and based it class diagram designed. Also by identifying radiology reporting system process, use case was drawn. Conclusion: According to the application of radiology reports in electronic health record system for diagnosing and managing of clinical problem of the patient, provide the conceptual Model for radiology reporting system; in order to systematically design it, the problem of data sharing between these systems and electronic health records system would eliminate.Keywords: structured radiology report, information needs, minimum data set, electronic health record system in Iran
Procedia PDF Downloads 25514613 Global Low Carbon Transitions in the Power Sector: A Machine Learning Archetypical Clustering Approach
Authors: Abdullah Alotaiq, David Wallom, Malcolm McCulloch
Abstract:
This study presents an archetype-based approach to designing effective strategies for low-carbon transitions in the power sector. To achieve global energy transition goals, a renewable energy transition is critical, and understanding diverse energy landscapes across different countries is essential to design effective renewable energy policies and strategies. Using a clustering approach, this study identifies 12 energy archetypes based on the electricity mix, socio-economic indicators, and renewable energy contribution potential of 187 UN countries. Each archetype is characterized by distinct challenges and opportunities, ranging from high dependence on fossil fuels to low electricity access, low economic growth, and insufficient contribution potential of renewables. Archetype A, for instance, consists of countries with low electricity access, high poverty rates, and limited power infrastructure, while Archetype J comprises developed countries with high electricity demand and installed renewables. The study findings have significant implications for renewable energy policymaking and investment decisions, with policymakers and investors able to use the archetype approach to identify suitable renewable energy policies and measures and assess renewable energy potential and risks. Overall, the archetype approach provides a comprehensive framework for understanding diverse energy landscapes and accelerating decarbonisation of the power sector.Keywords: fossil fuels, power plants, energy transition, renewable energy, archetypes
Procedia PDF Downloads 5514612 Application of Observational Medical Outcomes Partnership-Common Data Model (OMOP-CDM) Database in Nursing Health Problems with Prostate Cancer-a Pilot Study
Authors: Hung Lin-Zin, Lai Mei-Yen
Abstract:
Prostate cancer is the most commonly diagnosed male cancer in the U.S. The prevalence is around 1 in 8. The etiology of prostate cancer is still unknown, but some predisposing factors, such as age, black race, family history, and obesity, may increase the risk of the disease. In 2020, a total of 7,178 Taiwanese people were nearly diagnosed with prostate cancer, accounting for 5.88% of all cancer cases, and the incidence rate ranked fifth among men. In that year, the total number of deaths from prostate cancer was 1,730, accounting for 3.45% of all cancer deaths, and the death rate ranked 6th among men, accounting for 94.34% of the cases of male reproductive organs. Looking for domestic and foreign literature on the use of OMOP (Observational Medical Outcomes Partnership, hereinafter referred to as OMOP) database analysis, there are currently nearly a hundred literature published related to nursing-related health problems and nursing measures built in the OMOP general data model database of medical institutions are extremely rare. The OMOP common data model construction analysis platform is a system developed by the FDA in 2007, using a common data model (common data model, CDM) to analyze and monitor healthcare data. It is important to build up relevant nursing information from the OMOP- CDM database to assist our daily practice. Therefore, we choose prostate cancer patients who are our popular care objects and use the OMOP- CDM database to explore the common associated health problems. With the assistance of OMOP-CDM database analysis, we can expect early diagnosis and prevention of prostate cancer patients' comorbidities to improve patient care.Keywords: OMOP, nursing diagnosis, health problem, prostate cancer
Procedia PDF Downloads 7414611 The Doctor-Patient Interaction Experience Hierarchy Using Rasch Measurement Model Analysis
Authors: Wan Nur'ashiqin Wan Mohamad, Zarina Othman, Mohd Azman Abas, Azizah Ya'acob, Rozmel Abdul Latiff
Abstract:
Effective doctor-patient interaction is vital to both doctor and patient relationship. It is the cornerstone of good practice and an integral quality of a healthcare institution. This paper presented the hierarchy of the communication elements in doctor-patient interaction during medical consultations in a medical centre in Malaysia. This study adapted The Picker Patient Experience Questionnaire (2002) to obtain the information from patients. The questionnaire survey was responded by 100 patients between the ages of 20 and 50. Data collected were analysed using Rasch Measurement Model to yield the hierarchy of the communication elements in doctor-patient interaction. The findings showed that the three highest ranking on the doctor-patient interaction were doctor’s treatment, important information delivery and patient satisfaction of doctor’s responses. The results are valuable in developing the framework for communication ethics of doctors.Keywords: communication elements, doctor-patient interaction, hierarchy, Rasch measurement model
Procedia PDF Downloads 16414610 Numerical Analysis of Fluid Mixing in Three Split and Recombine Micromixers at Different Inlets Volume Ratio
Authors: Vladimir Viktorov, M. Readul Mahmud, Carmen Visconte
Abstract:
Numerical simulation were carried out to study the mixing of miscible liquid at different inlets volume ratio (1 to 3) within two existing mixers namely Chain, Tear-drop and one new “C-H” mixer. The new passive C-H micromixer is developed based on split and recombine principles, combining the operation concepts of known Chain mixer and H mixer. The mixing performances of the three micromixers were predicted by a preliminary numerical analysis of the flow patterns inside the channel in terms of the segregation or distribution of path lines. Afterward, the efficiency and the pressure drop were investigated numerically, taking into account species transport. All numerical calculations were computed at a wide range of Reynolds number from 1 to 100. Among the presented three micromixers, tear-drop provides fairly good efficiency except in the middle range of Re numbers but has high-pressure drop. In addition, inlets flow ratio has a significant influence on efficiency, especially at the Re number range of 10 to 50, Moreover maximum increase of efficiency is almost 10% when inlets flow ratio is increased by 1. Chain mixer presents relatively low mixing efficiency at low and middle range of Re numbers (5≤Re≤50) but has reasonable pressure drop. Furthermore, Chain mixer shows almost no dependence on inlets flow ratio. Whereas, C-H mixer poses excellent mixing efficiency (more than 93%) for all range of Re numbers and causes the lowest pressure drop, On top of that efficiency has slight dependency on inlets flow ratio. In addition, C-H mixer shows respectively about three and two times lower pressure drop than Tear-drop and Chain mixers.Keywords: CFD, micromixing, passive micromixer, SAR
Procedia PDF Downloads 48414609 Model of Elastic Fracture Toughness for Ductile Metal Pipes with External Longitudinal Cracks
Authors: Guoyang Fu, Wei Yang, Chun-Qing Li
Abstract:
The most common type of cracks that appear on metal pipes is longitudinal cracks. For ductile metal pipes, the existence of plasticity eases the stress intensity at the crack front and consequently increases the fracture resistance. It should be noted that linear elastic fracture mechanics (LEFM) has been widely accepted by engineers. In order to make the LEFM applicable to ductile metal materials, the increase of fracture toughness due to plasticity should be excluded from the total fracture toughness of the ductile metal. This paper aims to develop a model of elastic fracture toughness for ductile metal pipes with external longitudinal cracks. The derived elastic fracture toughness is a function of crack geometry and material properties of the cracked pipe. The significance of the derived model is that the well-established LEFM can be used for ductile metal material in predicting the fracture failure.Keywords: Ductile metal pipes, elastic fracture toughness, longitudinal crack, plasticity
Procedia PDF Downloads 25014608 Back Stepping Sliding Mode Control of Blood Glucose for Type I Diabetes
Authors: N. Tadrisi Parsa, A. R. Vali, R. Ghasemi
Abstract:
Diabetes is a growing health problem in worldwide. Especially, the patients with Type 1 diabetes need strict glycemic control because they have deficiency of insulin production. This paper attempts to control blood glucose based on body mathematical body model. The Bergman minimal mathematical model is used to develop the nonlinear controller. A novel back-stepping based sliding mode control (B-SMC) strategy is proposed as a solution that guarantees practical tracking of a desired glucose concentration. In order to show the performance of the proposed design, it is compared with conventional linear and fuzzy controllers which have been done in previous researches. The numerical simulation result shows the advantages of sliding mode back stepping controller design to linear and fuzzy controllers.Keywords: bergman model, nonlinear control, back stepping, sliding mode control
Procedia PDF Downloads 38314607 The Practise of Hand Drawing as a Premier Form of Representation in Architectural Design Teaching: The Case of FAUP
Authors: Rafael Santos, Clara Pimenta Do Vale, Barbara Bogoni, Poul Henning Kirkegaard
Abstract:
In the last decades, the relevance of hand drawing has decreased in the scope of architectural education. However, some schools continue to recognize its decisive role, not only in the architectural design teaching, but in the whole of architectural training. With this paper it is intended to present the results of a research developed on the following problem: the practise of hand drawing as a premier form of representation in architectural design teaching. The research had as its object the educational model of the Faculty of Architecture of the University of Porto (FAUP) and was led by three main objectives: to identify the circumstance that promoted hand drawing as a form of representation in FAUP's model; to characterize the types of hand drawing and their role in that model; to determine the particularities of hand drawing as a premier form of representation in architectural design teaching. Methodologically, the research was conducted according to a qualitative embedded single-case study design. The object – i.e., the educational model – was approached in FAUP case considering its Context and three embedded unities of analysis: the educational Purposes, Principles and Practices. In order to guide the procedures of data collection and analysis, a Matrix for the Characterization (MCC) was developed. As a methodological tool, the MCC allowed to relate the three embedded unities of analysis with the three main sources of evidence where the object manifests itself: the professors, expressing how the model is Assumed; the architectural design classes, expressing how the model is Achieved; and the students, expressing how the model is Acquired. The main research methods used were the naturalistic and participatory observation, in-person-interview and documentary and bibliographic review. The results reveal that the educational model of FAUP – following the model of the former Porto School – was largely due to the methodological foundations created with the hand drawing teaching-learning processes. In the absence of a culture of explicit theoretical elaboration or systematic research, hand drawing was the support for the continuity of the school, an expression of a unified thought about what should be the reflection and practice of architecture. As a form of representation, hand drawing plays a transversal role in the entire educational model, since its purposes are not limited to the conception of architectural design – it is also a means for perception, analysis and synthesis. Regarding the architectural design teaching, there seems to be an understanding of three complementary dimensions of didactics: the instrumental, methodological and propositional dimension. At FAUP, hand drawing is recognized as the common denominator among these dimensions, according to the idea of "globality of drawing". It is expected that the knowledge base developed in this research may have three main contributions: to contribute to the maintenance and valorisation of FAUP’s model; through the precise description of the methodological procedures, to contribute by transferability to similar studies; through the critical and objective framework of the problem underlying the hand drawing in architectural design teaching, to contribute to the broader discussion concerning the contemporary challenges on architectural education.Keywords: architectural design teaching, architectural education, forms of representation, hand drawing
Procedia PDF Downloads 13214606 A Flexible Bayesian State-Space Modelling for Population Dynamics of Wildlife and Livestock Populations
Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Hans-Peter Piepho
Abstract:
We aim to model dynamics of wildlife or pastoral livestock population for understanding of their population change and hence for wildlife conservation and promoting human welfare. The study is motivated by an age-sex structured population counts in different regions of Serengeti-Mara during the period 1989-2003. Developing reliable and realistic models for population dynamics of large herbivore population can be a very complex and challenging exercise. However, the Bayesian statistical domain offers some flexible computational methods that enable the development and efficient implementation of complex population dynamics models. In this work, we have used a novel Bayesian state-space model to analyse the dynamics of topi and hartebeest populations in the Serengeti-Mara Ecosystem of East Africa. The state-space model involves survival probabilities of the animals which further depend on various factors like monthly rainfall, size of habitat, etc. that cause recent declines in numbers of the herbivore populations and potentially threaten their future population viability in the ecosystem. Our study shows that seasonal rainfall is the most important factors shaping the population size of animals and indicates the age-class which most severely affected by any change in weather conditions.Keywords: bayesian state-space model, Markov Chain Monte Carlo, population dynamics, conservation
Procedia PDF Downloads 21114605 Optimization of Bills Assignment to Different Skill-Levels of Data Entry Operators in a Business Process Outsourcing Industry
Authors: M. S. Maglasang, S. O. Palacio, L. P. Ogdoc
Abstract:
Business Process Outsourcing has been one of the fastest growing and emerging industry in the Philippines today. Unlike most of the contact service centers, more popularly known as "call centers", The BPO Industry’s primary outsourced service is performing audits of the global clients' logistics. As a service industry, manpower is considered as the most important yet the most expensive resource in the company. Because of this, there is a need to maximize the human resources so people are effectively and efficiently utilized. The main purpose of the study is to optimize the current manpower resources through effective distribution and assignment of different types of bills to the different skill-level of data entry operators. The assignment model parameters include the average observed time matrix gathered from through time study, which incorporates the learning curve concept. Subsequently, a simulation model was made to duplicate the arrival rate of demand which includes the different batches and types of bill per day. Next, a mathematical linear programming model was formulated. Its objective is to minimize direct labor cost per bill by allocating the different types of bills to the different skill-levels of operators. Finally, a hypothesis test was done to validate the model, comparing the actual and simulated results. The analysis of results revealed that the there’s low utilization of effective capacity because of its failure to determine the product-mix, skill-mix, and simulated demand as model parameters. Moreover, failure to consider the effects of learning curve leads to overestimation of labor needs. From 107 current number of operators, the proposed model gives a result of 79 operators. This results to an increase of utilization of effective capacity to 14.94%. It is recommended that the excess 28 operators would be reallocated to the other areas of the department. Finally, a manpower capacity planning model is also recommended in support to management’s decisions on what to do when the current capacity would reach its limit with the expected increasing demand.Keywords: optimization modelling, linear programming, simulation, time and motion study, capacity planning
Procedia PDF Downloads 52014604 Detection Method of Federated Learning Backdoor Based on Weighted K-Medoids
Authors: Xun Li, Haojie Wang
Abstract:
Federated learning is a kind of distributed training and centralized training mode, which is of great value in the protection of user privacy. In order to solve the problem that the model is vulnerable to backdoor attacks in federated learning, a backdoor attack detection method based on a weighted k-medoids algorithm is proposed. First of all, this paper collates the update parameters of the client to construct a vector group, then uses the principal components analysis (PCA) algorithm to extract the corresponding feature information from the vector group, and finally uses the improved k-medoids clustering algorithm to identify the normal and backdoor update parameters. In this paper, the backdoor is implanted in the federation learning model through the model replacement attack method in the simulation experiment, and the update parameters from the attacker are effectively detected and removed by the defense method proposed in this paper.Keywords: federated learning, backdoor attack, PCA, k-medoids, backdoor defense
Procedia PDF Downloads 116