Search results for: panel data analysis
39252 Accounting Knowledge Management and Value Creation of SME in Chatuchak Market: Case Study Ceramics Product
Authors: Runglaksamee Rodkam
Abstract:
The purpose of this research was to study the influence of accountants’ potential performance on their working process, a case study of Government Savings Banks in the northeast of Thailand. The independent variables included accounting knowledge, accounting skill, accounting value, accounting ethics, and accounting attitude, while the dependent variable included the success of the working process. A total of 155 accountants working for Government Savings Banks were selected by random sampling. A questionnaire was used as a tool for collecting data. Descriptive statistics in this research included percentage, mean, and multiple regression analyses. The findings revealed that the majority of accountants were female with an age between 35-40 years old. Most of the respondents had an undergraduate degree with ten years of experience. Moreover, the factors of accounting knowledge, accounting skill, accounting a value and accounting ethics and accounting attitude were rated at a high level. The findings from regression analysis of observation data revealed a causal relationship in that the observation data could explain at least 51 percent of the success in the accountants’ working process.Keywords: influence, potential performance, success, working process
Procedia PDF Downloads 25639251 Deposit Characteristics of Jakarta, Indonesia: A Stratigraphy Study of Jakarta Subsurface
Authors: Girlly Marchlina Listyono, Abdurrokhim Abdurrokhim, Emi Sukiyah, Pulung Arya Pranantya
Abstract:
Jakarta Area is composed by deposit which has various lithology characteristics. Based on its lithology types, colors, textures, mineral dan organic content from 22 wells scattered on Jakarta, lithofacies analysis and intra-wells data correlation can be done. From the analysis, it can be interpretated that Jakarta deposit deposited in marine, transition and terrestrial depositional environments. Terrestrial deposit characterized by domination of relatively coarse clastics and content of remaining roots, woods, plants, high content of quartz, lithic fragment, calcareous and oxidated appearace. The thickness of terrestrial deposit is thickening to south. Transitional deposit characterized by fine to medium clastics with dark color, high content of organic matter, various thickness in any ways. Marine deposit characterized by finer clastics, contain remain of shells, fosil, coral, limestone fragments, glauconites, calcareous. Marine deposit relatively thickening to north. Those lateral variety caused by tectonic, subsidence and stratigraphic condition. Deposition of Jakarta deposit from the data research was started on marine depositional environment which surrounded by the event of cycle of regression and transgression then ended with regression which ongoing until form shore line in north Jakarta nowadays.Keywords: deposit, Indonesia, Jakarta, sediment, stratigraphy
Procedia PDF Downloads 25439250 Multiscale Connected Component Labelling and Applications to Scientific Microscopy Image Processing
Authors: Yayun Hsu, Henry Horng-Shing Lu
Abstract:
In this paper, a new method is proposed to extending the method of connected component labeling from processing binary images to multi-scale modeling of images. By using the adaptive threshold of multi-scale attributes, this approach minimizes the possibility of missing those important components with weak intensities. In addition, the computational cost of this approach remains similar to that of the typical approach of component labeling. Then, this methodology is applied to grain boundary detection and Drosophila Brain-bow neuron segmentation. These demonstrate the feasibility of the proposed approach in the analysis of challenging microscopy images for scientific discovery.Keywords: microscopic image processing, scientific data mining, multi-scale modeling, data mining
Procedia PDF Downloads 43539249 Regional Dynamics of Innovation and Entrepreneurship in the Optics and Photonics Industry
Authors: Mustafa İlhan Akbaş, Özlem Garibay, Ivan Garibay
Abstract:
The economic entities in innovation ecosystems form various industry clusters, in which they compete and cooperate to survive and grow. Within a successful and stable industry cluster, the entities acquire different roles that complement each other in the system. The universities and research centers have been accepted to have a critical role in these systems for the creation and development of innovations. However, the real effect of research institutions on regional economic growth is difficult to assess. In this paper, we present our approach for the identification of the impact of research activities on the regional entrepreneurship for a specific high-tech industry: optics and photonics. The optics and photonics has been defined as an enabling industry, which combines the high-tech photonics technology with the developing optics industry. The recent literature suggests that the growth of optics and photonics firms depends on three important factors: the embedded regional specializations in the labor market, the research and development infrastructure, and a dynamic small firm network capable of absorbing new technologies, products and processes. Therefore, the role of each factor and the dynamics among them must be understood to identify the requirements of the entrepreneurship activities in optics and photonics industry. There are three main contributions of our approach. The recent studies show that the innovation in optics and photonics industry is mostly located around metropolitan areas. There are also studies mentioning the importance of research center locations and universities in the regional development of optics and photonics industry. These studies are mostly limited with the number of patents received within a short period of time or some limited survey results. Therefore the first contribution of our approach is conducting a comprehensive analysis for the state and recent history of the photonics and optics research in the US. For this purpose, both the research centers specialized in optics and photonics and the related research groups in various departments of institutions (e.g. Electrical Engineering, Materials Science) are identified and a geographical study of their locations is presented. The second contribution of the paper is the analysis of regional entrepreneurship activities in optics and photonics in recent years. We use the membership data of the International Society for Optics and Photonics (SPIE) and the regional photonics clusters to identify the optics and photonics companies in the US. Then the profiles and activities of these companies are gathered by extracting and integrating the related data from the National Establishment Time Series (NETS) database, ES-202 database and the data sets from the regional photonics clusters. The number of start-ups, their employee numbers and sales are some examples of the extracted data for the industry. Our third contribution is the utilization of collected data to investigate the impact of research institutions on the regional optics and photonics industry growth and entrepreneurship. In this analysis, the regional and periodical conditions of the overall market are taken into consideration while discovering and quantifying the statistical correlations.Keywords: entrepreneurship, industrial clusters, optics, photonics, emerging industries, research centers
Procedia PDF Downloads 40739248 Determination of LS-DYNA MAT162 Material input Parameters for Low Velocity Impact Analysis of Layered Composites
Authors: Mustafa Albayrak, Mete Onur Kaman, Ilyas Bozkurt
Abstract:
In this study, the necessary material parameters were determined to be able to conduct progressive damage analysis of layered composites under low velocity impact by using the MAT162 material module in the LS-DYNA program. The material module MAT162 based on Hashin failure criterion requires 34 parameters in total. Some of these parameters were obtained directly as a result of dynamic and quasi-static mechanical tests, and the remaining part was calibrated and determined by comparing numerical and experimental results. Woven glass/epoxy was used as the composite material and it was produced by vacuum infusion method. In the numerical model, composites are modeled as three-dimensional and layered. As a result, the acquisition of MAT162 material module parameters, which will enable progressive damage analysis, is given in detail and step by step, and the selection methods of the parameters are explained. Numerical data consistent with the experimental results are given in graphics.Keywords: Composite Impact, Finite Element Simulation, Progressive Damage Analyze, LS-DYNA, MAT162
Procedia PDF Downloads 10639247 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales
Authors: Philipp Sommer, Amgad Agoub
Abstract:
The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning
Procedia PDF Downloads 5739246 Evaluating Alternative Structures for Prefix Trees
Authors: Feras Hanandeh, Izzat Alsmadi, Muhammad M. Kwafha
Abstract:
Prefix trees or tries are data structures that are used to store data or index of data. The goal is to be able to store and retrieve data by executing queries in quick and reliable manners. In principle, the structure of the trie depends on having letters in nodes at the different levels to point to the actual words in the leafs. However, the exact structure of the trie may vary based on several aspects. In this paper, we evaluated different structures for building tries. Using datasets of words of different sizes, we evaluated the different forms of trie structures. Results showed that some characteristics may impact significantly, positively or negatively, the size and the performance of the trie. We investigated different forms and structures for the trie. Results showed that using an array of pointers in each level to represent the different alphabet letters is the best choice.Keywords: data structures, indexing, tree structure, trie, information retrieval
Procedia PDF Downloads 45239245 Exploring Women's Needs Referring to Health Care Centers for Doing Pap Smear Test
Authors: Arezoo Fallahi, Fateme Aslibigi, Parvaneh Taymoori, Babak Nematshahrbabaki
Abstract:
Background and Aims: Cancer of the cervix, one of cancer-related death, is the second most common cancer in women worldwide. It develops over time but it is one of the most preventable types of cancer and there is the available proper screening program for its preventing. Since Pap smear test is vital to prevent and control of disease but women do not accomplish it regularly. Therefore, this study was aimed to explore women's needs referring to health care centers for doing Pap smear test. Material and methods: In this study, an inductive qualitative method with content analysis approach was used. This survey was done in varamin city (is located capital of Iran) in year 2014. Through the purposive sampling 15 women's view of point referring to health care centers of for doing Pap smear test was surveyed. Inclusion criteria were: 20-50 years old married women, having experience Pap smear test and attendance to participate in the Study. Recorded semi- structured interviews were typed and analyzed through of content analysis method. To obtain trustworthiness and rigor of the data, the criteria of credibility, dependability, confirmability and transferability was used. Results: During the data analysis, four main categories of “role of health care team”, “role of organizations”, “social support” and “policies and administration system” were developed. The participants emphasized on making motivational rules and coordination among organizations to do behaviors related to women health. Conclusion: The findings of study showed that doing Pap smear test are attributed to appropriate and intimate interactions with health professionals, family support, encouraging legislation and policies and coordination and notification of organizations. Therefore, designers and stockholders of policies and health system should more consider to growth and involve other organizations toward women's health.Keywords: qualitative approach, pap smear test, women, health care centers
Procedia PDF Downloads 49639244 A Comparison of Caesarean Section Indications and Characteristics in 2009 and 2020 in a Saudi Tertiary Hospital
Authors: Sarah K. Basudan, Ragad I. Al Jazzar, Zeinah Sulaihim, Hanan M. Al-Kadri
Abstract:
Background: Cesarean section has been increasing in recent years, with a wide range of etiologies contributing to this rise. This study aimed to assess the indications, outcomes, and complications in Riyadh, Saudi Arabia. Methods: A Retrospective Cohort study was conducted at King Abdulaziz medical city. The study includes two cohorts: G1 (2009) and G2 (2020) groups who met the inclusion criteria. The data was transferred to the SPSS (statistical package for social sciences) version 24 for analysis. The initial descriptive statistics were run for all variables, including numerical and categorical data. The numerical data were reported as median, and standard deviation and categorical data were reported as frequencies and percentages. Results: The data were collected from 399 women who were divided into two groups, G1(199) and G2(200). The mean age of all participants is 32+-6; G1 and G2 had significant differences in age means with 30+-6 and 34+-5, respectively, with a p-value of <0.001, which indicates delayed fertility by four years. Moreover, a breech presentation was less likely to occur in G2 (OR 0.64, CI: 0.21-0.62. P<0.001). Nonetheless, maternal causes such as repeated C-sections and maternal medical conditions were more likely to happen in G2 (OR 1.5, CI: 1.04-2.38, p=0.03) and (OR 5.4, CI: 1.12-23.9, P=0.01), respectively. Furthermore, postpartum hemorrhage showed an increase of 12% in G2 (OR 5.4, CI: 2.2-13.4, p<0.001). G2 was more likely to be admitted to the neonatal intensive care unit (NICU) (OR 16, CI: 7.4-38.7) and to special care baby (SCB) (OR 7.2, CI: 3.9-13.1), both with a p-value<0.001 compared to regular nursery admission. Conclusion: There are multiple factors that are contributing to the increase in c section rate in a Saudi tertiary hospitals. The factors were suggested to be previous c-sections, abnormal fetal heart rate, malpresentation, and maternal or fetal medical conditions.Keywords: cesarean sections, maternal indications, maternal complications, neonatal condition
Procedia PDF Downloads 8839243 An Efficient Approach for Speed up Non-Negative Matrix Factorization for High Dimensional Data
Authors: Bharat Singh Om Prakash Vyas
Abstract:
Now a day’s applications deal with High Dimensional Data have tremendously used in the popular areas. To tackle with such kind of data various approached has been developed by researchers in the last few decades. To tackle with such kind of data various approached has been developed by researchers in the last few decades. One of the problems with the NMF approaches, its randomized valued could not provide absolute optimization in limited iteration, but having local optimization. Due to this, we have proposed a new approach that considers the initial values of the decomposition to tackle the issues of computationally expensive. We have devised an algorithm for initializing the values of the decomposed matrix based on the PSO (Particle Swarm Optimization). Through the experimental result, we will show the proposed method converse very fast in comparison to other row rank approximation like simple NMF multiplicative, and ACLS techniques.Keywords: ALS, NMF, high dimensional data, RMSE
Procedia PDF Downloads 34239242 Analysis of Spatial Heterogeneity of Residential Prices in Guangzhou: An Actual Study Based on Point of Interest Geographically Weighted Regression Model
Authors: Zichun Guo
Abstract:
Guangzhou's house price has long been lower than the other three major cities; with the gradual increase in Guangzhou's house price, the influencing factors of house price have gradually been paid attention to; this paper tries to use house price data and POI (Point of Interest) data, and explores the distribution of house price and influencing factors by applying the Kriging spatial interpolation method and geographically weighted regression model in ArcGIS. The results show that the interpolation result of house price has a significant relationship with the economic development and development potential of the region and that different POI types have different impacts on the growth of house prices in different regions.Keywords: POI, house price, spatial heterogeneity, Guangzhou
Procedia PDF Downloads 5539241 Optimization of Ultrasound Assisted Extraction of Polysaccharides from Plant Waste Materials: Selected Model Material is Hazelnut Skin
Abstract:
In this study, optimization of ultrasound assisted extraction (UAE) of hemicellulose based polysaccharides from plant waste material has been studied. Selected material is hazelnut skin. Extraction variables for the operation are extraction time, amplitude and application temperature. Optimum conditions have been evaluated depending on responses such as amount of wet crude polysaccharide, total carbohydrate content and dried sample. Pretreated hazelnut skin powders were used for the experiments. 10 grams of samples were suspended in 100 ml water in a jacketed vessel with additional magnetic stirring. Mixture was sonicated by immersing ultrasonic probe processor. After the extraction procedures, ethanol soluble and insoluble sides were separated for further examinations. The obtained experimental data were analyzed by analysis of variance (ANOVA). Second order polynomial models were developed using multiple regression analysis. The individual and interactive effects of applied variables were evaluated by Box Behnken Design. The models developed from the experimental design were predictive and good fit with the experimental data with high correlation coefficient value (R2 more than 0.95). Extracted polysaccharides from hazelnut skin are assumed to be pectic polysaccharides according to the literature survey of Fourier Transform Spectrometry (FTIR) analysis results. No more change can be observed between spectrums of different sonication times. Application of UAE at optimized condition has an important effect on extraction of hemicellulose from plant material by satisfying partial hydrolysis to break the bounds with other components in plant cell wall material. This effect can be summarized by varied intensity of microjets and microstreaming at varied sonication conditions.Keywords: hazelnut skin, optimization, polysaccharide, ultrasound assisted extraction
Procedia PDF Downloads 33139240 Multi-Class Text Classification Using Ensembles of Classifiers
Authors: Syed Basit Ali Shah Bukhari, Yan Qiang, Saad Abdul Rauf, Syed Saqlaina Bukhari
Abstract:
Text Classification is the methodology to classify any given text into the respective category from a given set of categories. It is highly important and vital to use proper set of pre-processing , feature selection and classification techniques to achieve this purpose. In this paper we have used different ensemble techniques along with variance in feature selection parameters to see the change in overall accuracy of the result and also on some other individual class based features which include precision value of each individual category of the text. After subjecting our data through pre-processing and feature selection techniques , different individual classifiers were tested first and after that classifiers were combined to form ensembles to increase their accuracy. Later we also studied the impact of decreasing the classification categories on over all accuracy of data. Text classification is highly used in sentiment analysis on social media sites such as twitter for realizing people’s opinions about any cause or it is also used to analyze customer’s reviews about certain products or services. Opinion mining is a vital task in data mining and text categorization is a back-bone to opinion mining.Keywords: Natural Language Processing, Ensemble Classifier, Bagging Classifier, AdaBoost
Procedia PDF Downloads 23239239 Earthquake Risk Assessment Using Out-of-Sequence Thrust Movement
Authors: Rajkumar Ghosh
Abstract:
Earthquakes are natural disasters that pose a significant risk to human life and infrastructure. Effective earthquake mitigation measures require a thorough understanding of the dynamics of seismic occurrences, including thrust movement. Traditionally, estimating thrust movement has relied on typical techniques that may not capture the full complexity of these events. Therefore, investigating alternative approaches, such as incorporating out-of-sequence thrust movement data, could enhance earthquake mitigation strategies. This review aims to provide an overview of the applications of out-of-sequence thrust movement in earthquake mitigation. By examining existing research and studies, the objective is to understand how precise estimation of thrust movement can contribute to improving structural design, analyzing infrastructure risk, and developing early warning systems. The study demonstrates how to estimate out-of-sequence thrust movement using multiple data sources, including GPS measurements, satellite imagery, and seismic recordings. By analyzing and synthesizing these diverse datasets, researchers can gain a more comprehensive understanding of thrust movement dynamics during seismic occurrences. The review identifies potential advantages of incorporating out-of-sequence data in earthquake mitigation techniques. These include improving the efficiency of structural design, enhancing infrastructure risk analysis, and developing more accurate early warning systems. By considering out-of-sequence thrust movement estimates, researchers and policymakers can make informed decisions to mitigate the impact of earthquakes. This study contributes to the field of seismic monitoring and earthquake risk assessment by highlighting the benefits of incorporating out-of-sequence thrust movement data. By broadening the scope of analysis beyond traditional techniques, researchers can enhance their knowledge of earthquake dynamics and improve the effectiveness of mitigation measures. The study collects data from various sources, including GPS measurements, satellite imagery, and seismic recordings. These datasets are then analyzed using appropriate statistical and computational techniques to estimate out-of-sequence thrust movement. The review integrates findings from multiple studies to provide a comprehensive assessment of the topic. The study concludes that incorporating out-of-sequence thrust movement data can significantly enhance earthquake mitigation measures. By utilizing diverse data sources, researchers and policymakers can gain a more comprehensive understanding of seismic dynamics and make informed decisions. However, challenges exist, such as data quality difficulties, modelling uncertainties, and computational complications. To address these obstacles and improve the accuracy of estimates, further research and advancements in methodology are recommended. Overall, this review serves as a valuable resource for researchers, engineers, and policymakers involved in earthquake mitigation, as it encourages the development of innovative strategies based on a better understanding of thrust movement dynamics.Keywords: earthquake, out-of-sequence thrust, disaster, human life
Procedia PDF Downloads 7739238 Integrating Time-Series and High-Spatial Remote Sensing Data Based on Multilevel Decision Fusion
Authors: Xudong Guan, Ainong Li, Gaohuan Liu, Chong Huang, Wei Zhao
Abstract:
Due to the low spatial resolution of MODIS data, the accuracy of small-area plaque extraction with a high degree of landscape fragmentation is greatly limited. To this end, the study combines Landsat data with higher spatial resolution and MODIS data with higher temporal resolution for decision-level fusion. Considering the importance of the land heterogeneity factor in the fusion process, it is superimposed with the weighting factor, which is to linearly weight the Landsat classification result and the MOIDS classification result. Three levels were used to complete the process of data fusion, that is the pixel of MODIS data, the pixel of Landsat data, and objects level that connect between these two levels. The multilevel decision fusion scheme was tested in two sites of the lower Mekong basin. We put forth a comparison test, and it was proved that the classification accuracy was improved compared with the single data source classification results in terms of the overall accuracy. The method was also compared with the two-level combination results and a weighted sum decision rule-based approach. The decision fusion scheme is extensible to other multi-resolution data decision fusion applications.Keywords: image classification, decision fusion, multi-temporal, remote sensing
Procedia PDF Downloads 12439237 Containment/Penetration Analysis for the Protection of Aircraft Engine External Configuration and Nuclear Power Plant Structures
Authors: Dong Wook Lee, Adrian Mistreanu
Abstract:
The authors have studied a method for analyzing containment and penetration using an explicit nonlinear Finite Element Analysis. This method may be used in the stage of concept design for the protection of external configurations or components of aircraft engines and nuclear power plant structures. This paper consists of the modeling method, the results obtained from the method and the comparison of the results with those calculated from simple analytical method. It shows that the containment capability obtained by proposed method matches well with analytically calculated containment capability.Keywords: computer aided engineering, containment analysis, finite element analysis, impact analysis, penetration analysis
Procedia PDF Downloads 13839236 Effects of a Head Mounted Display Adaptation on Reaching Behaviour: Implications for a Therapeutic Approach in Unilateral Neglect
Authors: Taku Numao, Kazu Amimoto, Tomoko Shimada, Kyohei Ichikawa
Abstract:
Background: Unilateral spatial neglect (USN) is a common syndrome following damage to one hemisphere of the brain (usually the right side), in which a patient fails to report or respond to stimulation from the contralesional side. These symptoms are not due to primary sensory or motor deficits, but instead, reflect an inability to process input from that side of their environment. Prism adaptation (PA) is a therapeutic treatment for USN, wherein a patient’s visual field is artificially shifted laterally, resulting in a sensory-motor adaptation. However, patients with USN also tend to perceive a left-leaning subjective vertical in the frontal plane. The traditional PA cannot be used to correct a tilt in the subjective vertical, because a prism can only polarize, not twist, the surroundings. However, this can be accomplished using a head mounted display (HMD) and a web-camera. Therefore, this study investigated whether an HMD system could be used to correct the spatial perception of USN patients in the frontal as well as the horizontal plane. We recruited healthy subjects in order to collect data for the refinement of USN patient therapy. Methods: Eight healthy subjects sat on a chair wearing a HMD (Oculus rift DK2), with a web-camera (Ovrvision) displaying a 10 degree leftward rotation and a 10 degree counter-clockwise rotation along the frontal plane. Subjects attempted to point a finger at one of four targets, assigned randomly, a total of 48 times. Before and after the intervention, each subject’s body-centre judgment (BCJ) was tested by asking them to point a finger at a touch panel straight in front of their xiphisternum, 10 times sight unseen. Results: Intervention caused the location pointed to during the BCJ to shift 35 ± 17 mm (Ave ± SD) leftward in the horizontal plane, and 46 ± 29 mm downward in the frontal plane. The results in both planes were significant by paired-t-test (p<.01). Conclusions: The results in the horizontal plane are consistent with those observed following PA. Furthermore, the HMD and web-camera were able to elicit 3D effects, including in both the horizontal and frontal planes. Future work will focus on applying this method to patients with and without USN, and investigating whether subject posture is also affected by the HMD system.Keywords: head mounted display, posture, prism adaptation, unilateral spatial neglect
Procedia PDF Downloads 28039235 The Study of Implications on Modern Businesses Performances by Digital Communities: Case of Data Leak
Authors: Asim Majeed, Anwar Ul Haq, Ayesha Asim, Mike Lloyd-Williams, Arshad Jamal, Usman Butt
Abstract:
This study aims to investigate the impact of data leak of M&S customers on digital communities. Modern businesses are using digital communities as an important public relations tool for marketing purposes. This form of communication helps companies to build better relationship with their customers which also act as another source of information. The communication between the customers and the organizations is not regulated so users may post positive and negative comments. There are new platforms being developed on a daily basis and it is very crucial for the businesses to not only get themselves familiar with those but also know how to reach their existing and perspective consumers. The driving force of marketing and communication in modern businesses is the digital communities and these are continuously increasing and developing. This phenomenon is changing the way marketing is conducted. The current research has discussed the implications on M&S business performance since the data was exploited on digital communities; users contacted M&S and raised the security concerns. M&S closed down its website for few hours to try to resolve the issue. The next day M&S made a public apology about this incidence. This information was proliferated on various digital communities and it has impacted negatively on M&S brand name, sales and customers. The content analysis approach is being used to collect qualitative data from 100 digital bloggers including social media communities such as Facebook and Twitter. The results and finding provide useful new insights into the nature and form of security concerns of digital users. Findings have theoretical and practical implications. This research will showcase a large corporation utilizing various digital community platforms and can serve as a model for future organizations.Keywords: Digital, communities, performance, dissemination, implications, data, exploitation
Procedia PDF Downloads 40239234 The Relationship among Exercise Participation, Job Stress and Job Satisfaction: A Study on Food Service Employees in Taiwan
Authors: Jui-Hsiu Chang
Abstract:
As an increasing number of restaurants are growing, the demand for man force in the food service industry is dramatically increasing as well. However, food service workers often complete the heavy workload, infrequent breaks, long hours and shifts. With the overwhelming workload, many workers have experienced high injury rates. As a result, the restaurant industry reports a higher employee turnover rate compare to other service industries in Taiwan. Restaurant managers are seeing ways to retain good employees in order to provide good quality service for daily operation. The purpose of this study was to explore the relationship among exercise participation, job stress and job satisfaction on the food service employees. In addition, to examine how the job stress affected their job satisfaction. A survey using a self-reported questionnaire was conducted to collect data, and 269 questionnaires were collected for data analysis. The obtained materials were analyzed using descriptive statistic, independent t-test, one-way ANOVA, linear regression analysis. The results show that 1. Job stress had a significantly negative influence on employees’ job satisfaction. 2. Exercise participation had significantly positive influence on employees’ job satisfaction. 3. Job stress and job satisfaction varied among the groups of respondent with different level of exercise involvement. Furthermore, the practical implications were proposed for the food service company management when developing daily operational strategies.Keywords: exercise participation, food service employees, job satisfaction, job stress
Procedia PDF Downloads 26839233 Determination of ILSS of Composite Materials Using Micromechanical FEA Analysis
Authors: K. Rana, H.A.Saeed, S. Zahir
Abstract:
Inter Laminar Shear Stress (ILSS) is a main key parameter which quantify the properties of composite materials. These properties can ascertain the use of material for a specific purpose like aerospace, automotive etc. A modelling approach for determination of ILSS is presented in this paper. Geometric modelling of composite material is performed in TEXGEN software where reinforcement, cured matrix and their interfaces are modelled separately as per actual geometry. Mechanical properties of matrix and reinforcements are modelled separately which incorporated anisotropy in the real world composite material. ASTM D2344 is modelled in ANSYS for ILSS. In macroscopic analysis model approximates the anisotropy of the material and uses orthotropic properties by applying homogenization techniques. Shear Stress analysis in that case does not show the actual real world scenario and rather approximates it. In this paper actual geometry and properties of reinforcement and matrix are modelled to capture the actual stress state during the testing of samples as per ASTM standards. Testing of samples is also performed in order to validate the results. Fibre volume fraction of yarn is determined by image analysis of manufactured samples. Fibre volume fraction data is incorporated into the numerical model for correction of transversely isotropic properties of yarn. A comparison between experimental and simulated results is presented.Keywords: ILSS, FEA, micromechanical, fibre volume fraction, image analysis
Procedia PDF Downloads 37339232 Qualitative and Quantitative Research Methodology Theoretical Framework and Descriptive Theory: PhD Construction Management
Authors: Samuel Quashie
Abstract:
PhDs in Construction Management often designs their methods based on those established in social sciences using theoretical models, to collect, gather and analysis data to answer research questions. Work aim is to apply qualitative and quantitative as a data analysis method, and as part of the theoretical framework - descriptive theory. To improve the ability to replicate the contribution to knowledge the research. Using practical triangulation approach, which covers, interviews and observations, literature review and (archival) document studies, project-based case studies, questionnaires surveys and review of integrated systems used in, construction and construction related industries. The clarification of organisational context and management delivery that influences organizational performance and quality of product and measures are achieved. Results illustrate improved reliability in this research approach when interpreting real world phenomena; cumulative results of research can be applied with confidence under similar environments. Assisted validity of the PhD research outcomes and strengthens the confidence to apply cumulative results of research under similar conditions in the Built Environment research systems, which have been criticised for the lack of reliability in approaches when interpreting real world phenomena.Keywords: case studies, descriptive theory, theoretical framework, qualitative and quantitative research
Procedia PDF Downloads 38639231 An As-Is Analysis and Approach for Updating Building Information Models and Laser Scans
Authors: Rene Hellmuth
Abstract:
Factory planning has the task of designing products, plants, processes, organization, areas, and the construction of a factory. The requirements for factory planning and the building of a factory have changed in recent years. Regular restructuring of the factory building is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity & Ambiguity) lead to more frequent restructuring measures within a factory. A building information model (BIM) is the planning basis for rebuilding measures and becomes an indispensable data repository to be able to react quickly to changes. Use as a planning basis for restructuring measures in factories only succeeds if the BIM model has adequate data quality. Under this aspect and the industrial requirement, three data quality factors are particularly important for this paper regarding the BIM model: up-to-dateness, completeness, and correctness. The research question is: how can a BIM model be kept up to date with required data quality and which visualization techniques can be applied in a short period of time on the construction site during conversion measures? An as-is analysis is made of how BIM models and digital factory models (including laser scans) are currently being kept up to date. Industrial companies are interviewed, and expert interviews are conducted. Subsequently, the results are evaluated, and a procedure conceived how cost-effective and timesaving updating processes can be carried out. The availability of low-cost hardware and the simplicity of the process are of importance to enable service personnel from facility mnagement to keep digital factory models (BIM models and laser scans) up to date. The approach includes the detection of changes to the building, the recording of the changing area, and the insertion into the overall digital twin. Finally, an overview of the possibilities for visualizations suitable for construction sites is compiled. An augmented reality application is created based on an updated BIM model of a factory and installed on a tablet. Conversion scenarios with costs and time expenditure are displayed. A user interface is designed in such a way that all relevant conversion information is available at a glance for the respective conversion scenario. A total of three essential research results are achieved: As-is analysis of current update processes for BIM models and laser scans, development of a time-saving and cost-effective update process and the conception and implementation of an augmented reality solution for BIM models suitable for construction sites.Keywords: building information modeling, digital factory model, factory planning, restructuring
Procedia PDF Downloads 11439230 Simulation Aided Life Cycle Sustainability Assessment Framework for Manufacturing Design and Management
Authors: Mijoh A. Gbededo, Kapila Liyanage, Ilias Oraifige
Abstract:
Decision making for sustainable manufacturing design and management requires critical considerations due to the complexity and partly conflicting issues of economic, social and environmental factors. Although there are tools capable of assessing the combination of one or two of the sustainability factors, the frameworks have not adequately integrated all the three factors. Case study and review of existing simulation applications also shows the approach lacks integration of the sustainability factors. In this paper we discussed the development of a simulation based framework for support of a holistic assessment of sustainable manufacturing design and management. To achieve this, a strategic approach is introduced to investigate the strengths and weaknesses of the existing decision supporting tools. Investigation reveals that Discrete Event Simulation (DES) can serve as a rock base for other Life Cycle Analysis frameworks. Simio-DES application optimizes systems for both economic and competitive advantage, Granta CES EduPack and SimaPro collate data for Material Flow Analysis and environmental Life Cycle Assessment, while social and stakeholders’ analysis is supported by Analytical Hierarchy Process, a Multi-Criteria Decision Analysis method. Such a common and integrated framework creates a platform for companies to build a computer simulation model of a real system and assess the impact of alternative solutions before implementing a chosen solution.Keywords: discrete event simulation, life cycle sustainability analysis, manufacturing, sustainability
Procedia PDF Downloads 27939229 A Numerical Model for Simulation of Blood Flow in Vascular Networks
Authors: Houman Tamaddon, Mehrdad Behnia, Masud Behnia
Abstract:
An accurate study of blood flow is associated with an accurate vascular pattern and geometrical properties of the organ of interest. Due to the complexity of vascular networks and poor accessibility in vivo, it is challenging to reconstruct the entire vasculature of any organ experimentally. The objective of this study is to introduce an innovative approach for the reconstruction of a full vascular tree from available morphometric data. Our method consists of implementing morphometric data on those parts of the vascular tree that are smaller than the resolution of medical imaging methods. This technique reconstructs the entire arterial tree down to the capillaries. Vessels greater than 2 mm are obtained from direct volume and surface analysis using contrast enhanced computed tomography (CT). Vessels smaller than 2mm are reconstructed from available morphometric and distensibility data and rearranged by applying Murray’s Laws. Implementation of morphometric data to reconstruct the branching pattern and applying Murray’s Laws to every vessel bifurcation simultaneously, lead to an accurate vascular tree reconstruction. The reconstruction algorithm generates full arterial tree topography down to the first capillary bifurcation. Geometry of each order of the vascular tree is generated separately to minimize the construction and simulation time. The node-to-node connectivity along with the diameter and length of every vessel segment is established and order numbers, according to the diameter-defined Strahler system, are assigned. During the simulation, we used the averaged flow rate for each order to predict the pressure drop and once the pressure drop is predicted, the flow rate is corrected to match the computed pressure drop for each vessel. The final results for 3 cardiac cycles is presented and compared to the clinical data.Keywords: blood flow, morphometric data, vascular tree, Strahler ordering system
Procedia PDF Downloads 27239228 Disagreement in Spousal Report of Current Contraceptive Use in India and Its Determinants
Authors: Dipti Govil, Nidhi Khosla
Abstract:
Couple-level reports of contraception are important as wives and husbands may give different reports about contraceptive use. Using matched couple-data (N=62910), from India's NFHS–IV (2015-16), this paper examines concordance in spousal reports of current contraceptive use and its differentials. Reporting of contraceptive use was higher among wives (59%) than husbands (25%). Concordance was low; 16.5% of couples reported the use of the same method, while 21% reported the use of any method. There existed a huge denial from husbands on the use of female sterilization. Reconstruction of contraceptive use among men increased concordance by 10%. Multivariate analysis shows that concordance was low in urban and Southern India, among younger women and women with lower wealth-index. Men's control over household decision-making and negative attitudes towards contraception were associated with a lower concordance. Findings highlight the importance of using couple-level data to estimate contraceptive prevalence, the role of education programs to inculcate positive attitudes towards contraception, fostering gender equality, and involving men into family planning efforts. The results also raise the issue of data quality as the questions were asked differently from men and women, which might have contributed to wide discordance.Keywords: concordance, contraceptive use, couple, female sterilisation, India
Procedia PDF Downloads 12939227 Statistical Time-Series and Neural Architecture of Malaria Patients Records in Lagos, Nigeria
Authors: Akinbo Razak Yinka, Adesanya Kehinde Kazeem, Oladokun Oluwagbenga Peter
Abstract:
Time series data are sequences of observations collected over a period of time. Such data can be used to predict health outcomes, such as disease progression, mortality, hospitalization, etc. The Statistical approach is based on mathematical models that capture the patterns and trends of the data, such as autocorrelation, seasonality, and noise, while Neural methods are based on artificial neural networks, which are computational models that mimic the structure and function of biological neurons. This paper compared both parametric and non-parametric time series models of patients treated for malaria in Maternal and Child Health Centres in Lagos State, Nigeria. The forecast methods considered linear regression, Integrated Moving Average, ARIMA and SARIMA Modeling for the parametric approach, while Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Network were used for the non-parametric model. The performance of each method is evaluated using the Mean Absolute Error (MAE), R-squared (R2) and Root Mean Square Error (RMSE) as criteria to determine the accuracy of each model. The study revealed that the best performance in terms of error was found in MLP, followed by the LSTM and ARIMA models. In addition, the Bootstrap Aggregating technique was used to make robust forecasts when there are uncertainties in the data.Keywords: ARIMA, bootstrap aggregation, MLP, LSTM, SARIMA, time-series analysis
Procedia PDF Downloads 7539226 A New Approach to Achieve the Regime Equations in Sand-Bed Rivers
Authors: Farhad Imanshoar
Abstract:
The regime or equilibrium geometry of alluvial rivers remains a topic of fundamental scientific and engineering interest. There are several approaches to analyze the problem, namely: empirical formulas, semi-theoretical methods and rational (extreme) procedures. However, none of them is widely accepted at present, due to lack of knowledge of some physical processes associated with channel formation and the simplification hypotheses imposed in order to reduce the high quantity of involved variables. The study presented in this paper shows a new approach to estimate stable width and depth of sand-bed rivers by using developed stream power equation (DSPE). At first, a new procedure based on theoretical analysis and by considering DSPE and ultimate sediment concentration were developed. Then, experimental data for regime condition in sand-bed rivers (flow depth, flow width, sediment feed rate for several cases) were gathered. Finally, the results of this research (regime equations) are compared with the field data and other regime equations. A good agreement was observed between the field data and the values resulted from developed regime equation.Keywords: regime equations, developed stream power equation, sand-bed rivers, semi-theoretical methods
Procedia PDF Downloads 26839225 Investigation of the Capability of REALP5 to Solve Complex Fuel Geometry
Authors: D. Abdelrazek, M. NaguibAly, A. A. Badawi, Asmaa G. Abo Elnour, A. A. El-Kafas
Abstract:
This work is developed within IAEA Coordinated Research Program 1496, “Innovative methods in research reactor analysis: Benchmark against experimental data on neutronics and thermal-hydraulic computational methods and tools for operation and safety analysis of research reactors.” The study investigates the capability of Code RELAP5/Mod3.4 to solve complex geometry complexity. Its results are compared to the results of PARET, a common code in thermal hydraulic analysis for research reactors, belonging to MTR-PC groups. The WWR-SM reactor at the Institute of Nuclear Physics (INP) in the Republic of Uzbekistan is simulated using both PARET and RELAP5 at steady state. Results from the two codes are compared. REALP5 code succeeded in solving the complex fuel geometry. The PARET code needed some calculations to obtain the final result. Although the final results from the PARET are more accurate, the small differences in both results makes using RELAP5 code recommended in case of complex fuel assemblies.Keywords: complex fuel geometry, PARET, RELAP5, WWR-SM reactor
Procedia PDF Downloads 33339224 Empirical Investigations on Speed Differentiations of Traffic Flow: A Case Study on a Basic Freeway Segment of O-2 in Istanbul
Authors: Hamed Rashid Sarand, Kemal Selçuk Öğüt
Abstract:
Speed is one of the fundamental variables of road traffic flow that stands as an important evaluation criterion for traffic analyses in several aspects. In particular, varieties of speed variable, such as average speed, free flow speed, optimum speed (capacity speed), acceleration/deceleration speed and so on, have been explicitly considered in the analysis of not only road safety but also road capacity. In the purpose of realizing 'road speed – maximum speed difference across lanes' and 'road flow rate – maximum speed difference across lanes' relations on freeway traffic, this study presents a case study conducted on a basic freeway segment of O-2 in Istanbul. The traffic data employed in this study have been obtained from 5 remote traffic microwave sensors operated by Istanbul Metropolitan Municipality. The study stretch is located between two successive freeway interchanges: Ümraniye and Kavacık. Daily traffic data of 4 years (2011-2014) summer months, July and August are used. The speed data are analyzed into two main flow areas such as uncongested and congested flows. In this study, the regression analyses were carried out in order to examine the relationship between maximum speed difference across lanes and road speed. These investigations were implemented at uncongested and congested flows, separately. Moreover, the relationship between maximum speed difference across lanes and road flow rate were evaluated by applying regression analyses for both uncongested and congested flows separately. It is concluded that there is the moderate relationship between maximum speed difference across lanes and road speed in 50% cases. Additionally, it is indicated that there is the moderate relationship between maximum speed difference across lanes and road flow rate in 30% cases. The maximum speed difference across lanes decreases as the road flow rate increases.Keywords: maximum speed difference, regression analysis, remote traffic microwave sensor, speed differentiation, traffic flow
Procedia PDF Downloads 36739223 Impact of Urbanization on the Performance of Higher Education Institutions
Authors: Chandan Jha, Amit Sachan, Arnab Adhikari, Sayantan Kundu
Abstract:
The purpose of this study is to evaluate the performance of Higher Education Institutions (HEIs) of India and examine the impact of urbanization on the performance of HEIs. In this study, the Data Envelopment Analysis (DEA) has been used, and the authors have collected the required data related to performance measures from the National Institutional Ranking Framework web portal. In this study, the authors have evaluated the performance of HEIs by using two different DEA models. In the first model, geographic locations of the institutes have been categorized into two categories, i.e., Urban Vs. Non-Urban. However, in the second model, these geographic locations have been classified into three categories, i.e., Urban, Semi-Urban, Non-Urban. The findings of this study provide several insights related to the degree of urbanization and the performance of HEIs.Keywords: DEA, higher education, performance evaluation, urbanization
Procedia PDF Downloads 215