Search results for: reading training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4739

Search results for: reading training

1649 God, The Master Programmer: The Relationship Between God and Computers

Authors: Mohammad Sabbagh

Abstract:

Anyone who reads the Torah or the Quran learns that GOD created everything that is around us, seen and unseen, in six days. Within HIS plan of creation, HE placed for us a key proof of HIS existence which is essentially computers and the ability to program them. Digital computer programming began with binary instructions, which eventually evolved to what is known as high-level programming languages. Any programmer in our modern time can attest that you are essentially giving the computer commands by words and when the program is compiled, whatever is processed as output is limited to what the computer was given as an ability and furthermore as an instruction. So one can deduce that GOD created everything around us with HIS words, programming everything around in six days, just like how we can program a virtual world on the computer. GOD did mention in the Quran that one day where GOD’s throne is, is 1000 years of what we count; therefore, one might understand that GOD spoke non-stop for 6000 years of what we count, and gave everything it’s the function, attributes, class, methods and interactions. Similar to what we do in object-oriented programming. Of course, GOD has the higher example, and what HE created is much more than OOP. So when GOD said that everything is already predetermined, it is because any input, whether physical, spiritual or by thought, is outputted by any of HIS creatures, the answer has already been programmed. Any path, any thought, any idea has already been laid out with a reaction to any decision an inputter makes. Exalted is GOD!. GOD refers to HIMSELF as The Fastest Accountant in The Quran; the Arabic word that was used is close to processor or calculator. If you create a 3D simulation of a supernova explosion to understand how GOD produces certain elements and fuses protons together to spread more of HIS blessings around HIS skies; in 2022 you are going to require one of the strongest, fastest, most capable supercomputers of the world that has a theoretical speed of 50 petaFLOPS to accomplish that. In other words, the ability to perform one quadrillion (1015) floating-point operations per second. A number a human cannot even fathom. To put in more of a perspective, GOD is calculating when the computer is going through those 50 petaFLOPS calculations per second and HE is also calculating all the physics of every atom and what is smaller than that in all the actual explosion, and it’s all in truth. When GOD said HE created the world in truth, one of the meanings a person can understand is that when certain things occur around you, whether how a car crashes or how a tree grows; there is a science and a way to understand it, and whatever programming or science you deduce from whatever event you observed, it can relate to other similar events. That is why GOD might have said in The Quran that it is the people of knowledge, scholars, or scientist that fears GOD the most! One thing that is essential for us to keep up with what the computer is doing and for us to track our progress along with any errors is we incorporate logging mechanisms and backups. GOD in The Quran said that ‘WE used to copy what you used to do’. Essentially as the world is running, think of it as an interactive movie that is being played out in front of you, in a full-immersive non-virtual reality setting. GOD is recording it, from every angle to every thought, to every action. This brings the idea of how scary the Day of Judgment will be when one might realize that it’s going to be a fully immersive video when we would be getting and reading our book.

Keywords: programming, the Quran, object orientation, computers and humans, GOD

Procedia PDF Downloads 107
1648 mKDNAD: A Network Flow Anomaly Detection Method Based On Multi-teacher Knowledge Distillation

Authors: Yang Yang, Dan Liu

Abstract:

Anomaly detection models for network flow based on machine learning have poor detection performance under extremely unbalanced training data conditions and also have slow detection speed and large resource consumption when deploying on network edge devices. Embedding multi-teacher knowledge distillation (mKD) in anomaly detection can transfer knowledge from multiple teacher models to a single model. Inspired by this, we proposed a state-of-the-art model, mKDNAD, to improve detection performance. mKDNAD mine and integrate the knowledge of one-dimensional sequence and two-dimensional image implicit in network flow to improve the detection accuracy of small sample classes. The multi-teacher knowledge distillation method guides the train of the student model, thus speeding up the model's detection speed and reducing the number of model parameters. Experiments in the CICIDS2017 dataset verify the improvements of our method in the detection speed and the detection accuracy in dealing with the small sample classes.

Keywords: network flow anomaly detection (NAD), multi-teacher knowledge distillation, machine learning, deep learning

Procedia PDF Downloads 122
1647 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem

Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq

Abstract:

High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.

Keywords: artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch

Procedia PDF Downloads 189
1646 Getting to Know the Enemy: Utilization of Phone Record Analysis Simulations to Uncover a Target’s Personal Life Attributes

Authors: David S. Byrne

Abstract:

The purpose of this paper is to understand how phone record analysis can enable identification of subjects in communication with a target of a terrorist plot. This study also sought to understand the advantages of the implementation of simulations to develop the skills of future intelligence analysts to enhance national security. Through the examination of phone reports which in essence consist of the call traffic of incoming and outgoing numbers (and not by listening to calls or reading the content of text messages), patterns can be uncovered that point toward members of a criminal group and activities planned. Through temporal and frequency analysis, conclusions were drawn to offer insights into the identity of participants and the potential scheme being undertaken. The challenge lies in the accurate identification of the users of the phones in contact with the target. Often investigators rely on proprietary databases and open sources to accomplish this task, however it is difficult to ascertain the accuracy of the information found. Thus, this paper poses two research questions: how effective are freely available web sources of information at determining the actual identification of callers? Secondly, does the identity of the callers enable an understanding of the lifestyle and habits of the target? The methodology for this research consisted of the analysis of the call detail records of the author’s personal phone activity spanning the period of a year combined with a hypothetical theory that the owner of said phone was a leader of terrorist cell. The goal was to reveal the identity of his accomplices and understand how his personal attributes can further paint a picture of the target’s intentions. The results of the study were interesting, nearly 80% of the calls were identified with over a 75% accuracy rating via datamining of open sources. The suspected terrorist’s inner circle was recognized including relatives and potential collaborators as well as financial institutions [money laundering], restaurants [meetings], a sporting goods store [purchase of supplies], and airline and hotels [travel itinerary]. The outcome of this research showed the benefits of cellphone analysis without more intrusive and time-consuming methodologies though it may be instrumental for potential surveillance, interviews, and developing probable cause for wiretaps. Furthermore, this research highlights the importance of building upon the skills of future intelligence analysts through phone record analysis via simulations; that hands-on learning in this case study emphasizes the development of the competencies necessary to improve investigations overall.

Keywords: hands-on learning, intelligence analysis, intelligence education, phone record analysis, simulations

Procedia PDF Downloads 16
1645 Complementing Assessment Processes with Standardized Tests: A Work in Progress

Authors: Amparo Camacho

Abstract:

ABET accredited programs must assess the development of student learning outcomes (SOs) in engineering programs. Different institutions implement different strategies for this assessment, and they are usually designed “in house.” This paper presents a proposal for including standardized tests to complement the ABET assessment model in an engineering college made up of six distinct engineering programs. The engineering college formulated a model of quality assurance in education to be implemented throughout the six engineering programs to regularly assess and evaluate the achievement of SOs in each program offered. The model uses diverse techniques and sources of data to assess student performance and to implement actions of improvement based on the results of this assessment. The model is called “Assessment Process Model” and it includes SOs A through K, as defined by ABET. SOs can be divided into two categories: “hard skills” and “professional skills” (soft skills). The first includes abilities, such as: applying knowledge of mathematics, science, and engineering and designing and conducting experiments, as well as analyzing and interpreting data. The second category, “professional skills”, includes communicating effectively, and understanding professional and ethnical responsibility. Within the Assessment Process Model, various tools were used to assess SOs, related to both “hard” as well as “soft” skills. The assessment tools designed included: rubrics, surveys, questionnaires, and portfolios. In addition to these instruments, the Engineering College decided to use tools that systematically gather consistent quantitative data. For this reason, an in-house exam was designed and implemented, based on the curriculum of each program. Even though this exam was administered during various academic periods, it is not currently considered standardized. In 2017, the Engineering College included three standardized tests: one to assess mathematical and scientific reasoning and two more to assess reading and writing abilities. With these exams, the college hopes to obtain complementary information that can help better measure the development of both hard and soft skills of students in the different engineering programs. In the first semester of 2017, the three exams were given to three sample groups of students from the six different engineering programs. Students in the sample groups were either from the first, fifth, and tenth semester cohorts. At the time of submission of this paper, the engineering college has descriptive statistical data and is working with various statisticians to have a more in-depth and detailed analysis of the sample group of students’ achievement on the three exams. The overall objective of including standardized exams in the assessment model is to identify more precisely the least developed SOs in order to define and implement educational strategies necessary for students to achieve them in each engineering program.

Keywords: assessment, hard skills, soft skills, standardized tests

Procedia PDF Downloads 284
1644 Emotional Intelligence and General Self-Efficacy as Predictors of Career Commitment of Secondary School Teachers in Nigeria

Authors: Moyosola Jude Akomolafe

Abstract:

Career commitment among employees is crucial to the success of any organization. However, career commitment has been reported to be very low among teachers in the public secondary schools in Nigeria. This study, therefore, examined the contributions of emotional intelligence and general self-efficacy to career commitment of among secondary school teachers in Nigeria. Descriptive research design of correlational type was adopted for the study. It made use of stratified random sampling technique was used in selecting two hundred and fifty (250) secondary schools teachers for the study. Three standardized instruments namely: The Big Five Inventory (BFI), Emotional Intelligence Scale (EIS), General Self-Efficacy Scale (GSES) and Career Commitment Scale (CCS) were adopted for the study. Three hypotheses were tested at 0.05 level of significance. Data collected were analyzed through Multiple Regression Analysis to investigate the predicting capacity of emotional intelligence and general self-efficacy on career commitment of secondary school teachers. The results showed that the variables when taken as a whole significantly predicted career commitment among secondary school teachers. The relative contribution of each variable revealed that emotional intelligence and general self-efficacy significantly predicted career commitment among secondary school teachers in Nigeria. The researcher recommended that secondary school teachers should be exposed to emotional intelligence and self-efficacy training to enhance their career commitment.

Keywords: career commitment, emotional intelligence, general self-efficacy, secondary school teachers

Procedia PDF Downloads 387
1643 Design of a Real Time Heart Sounds Recognition System

Authors: Omer Abdalla Ishag, Magdi Baker Amien

Abstract:

Physicians used the stethoscope for listening patient heart sounds in order to make a diagnosis. However, the determination of heart conditions by acoustic stethoscope is a difficult task so it requires special training of medical staff. This study developed an accurate model for analyzing the phonocardiograph signal based on PC and DSP processor. The system has been realized into two phases; offline and real time phase. In offline phase, 30 cases of heart sounds files were collected from medical students and doctor's world website. For experimental phase (real time), an electronic stethoscope has been designed, implemented and recorded signals from 30 volunteers, 17 were normal cases and 13 were various pathologies cases, these acquired 30 signals were preprocessed using an adaptive filter to remove lung sounds. The background noise has been removed from both offline and real data, using wavelet transform, then graphical and statistics features vector elements were extracted, finally a look-up table was used for classification heart sounds cases. The obtained results of the implemented system showed accuracy of 90%, 80% and sensitivity of 87.5%, 82.4% for offline data, and real data respectively. The whole system has been designed on TMS320VC5509a DSP Platform.

Keywords: code composer studio, heart sounds, phonocardiograph, wavelet transform

Procedia PDF Downloads 446
1642 Relationship between ICTs Application with Production and Protection Technology: Lesson from Rural Punjab-Pakistan

Authors: Tahir Munir Butt, Gao Qijie, Babar Shahbaz, Muhammad Zakaria Yousaf Hassan, Zhnag Chuanhong

Abstract:

The main objective of this paper is to identify the relationship between Information Communication Technology (ICTs) applications with Agricultural development in the process of communication at rural Punjab-Pakistan. The authors analyzed the relationship of ICTs applications with the most prominent factor for the Agricultural Information Services (AIS) in the Agricultural Extension Approaches (AEA). The data collection procedure was started from Jan. 2015 and completed in July 2015. It is the one of the part in PhD studies at China Agriculture, University Hadian-Beijng China. It was observed that on major constraint in the AIS disseminated was the limited number of farmers especially and unknown the farmers about new ICTs technology for Agriculture at rural areas. Majority of ICTs application e.g. Toll free number; Robo Calls; Text message was highly significances in the AIS approach. The recommendation is communication and capacity building one of the indispensable elements for sustainable and agricultural development and Agricultural extension should be provided training to farmer about new ICTs technologies to access and use of it for Sustainable Agriculture Development (SAD) and update the scenario of flow of information also with try to established ICTs hub at the village level.

Keywords: ICTs, AEA, AIS, SAD, rural farmers

Procedia PDF Downloads 301
1641 Implementing Community Policing in Nigeria: Problems and Prospects

Authors: Mohammed Jamilu Haruna, Kawu Adamu Sule

Abstract:

This paper examines the evolution of modern policing in Nigeria to the present day, with a focus on the newly introduced community policing, which seeks to cement the operational vacuum created by the repressive and oppressive approach of the Nigeria Police Force (NPF), which renders the police incapable of addressing the twin problems of crime and disorder. Thus, the primary purpose for the implementation of community policing was to use it as a mechanism for building the lost trust between the police and the public, perhaps due to the long history of antagonistic and repressive relationships between them. If properly implemented, community policing has the prospect of empowering Nigerian citizens with the skills to protect themselves against invaders of their private security so that crimes can be prevented before anyone is victimized. Other prospects include, but are not limited to, (i) a favorable public view of the police, (ii) building of mutual trust, (iii) increased information flow through effective communication between the police and the public, and above all, (iv) increased police accountability. Unfortunately, problems such as aged suspicious and distrustful relationships, inadequate funding, poor training of officers, poor monitoring and evaluation of the community policing project, lack of public awareness of the benefits of the program, and sabotage by some of the personnel of the police who benefits from the status quo, were some of the reasons that troubled the implementation of community policing.

Keywords: community, policing, problems, prospects, problem solving

Procedia PDF Downloads 76
1640 Assessment of Records Management in Registry Department of Kebbi State University of Science and Technology, Aliero Nigeria

Authors: Murtala Aminu, Salisu Adamu Aliero, Adamu Muhammed

Abstract:

Records are a vital asset in ensuring that the institution is governed effectively and efficiently, and is accountable to its staff, students and the community that it serves. The major purpose of this study was to assess record management of the registry department of Kebbi state University of science and technology Aliero. To be able to achieve this objective, research questions were formulated and answers obtained, which centered on records creation, record management policy, challenges facing records management. The review of related literature revealed that there is need for records to be properly managed and in doing so there is need for good records management policy that clearly spells out the various programs required for effective records management. Survey research method was used involving questionnaire, and observation. The findings revealed that the registry department of the University still has a long way to go with respect to day-today records management. The study recommended provision for adequate, modern, safe and functional storage facilities, sufficient and regular funding, recruitment of trained personnel, on the job training for existing staff, computerization of all units records, and uninterrupted power supply to all parts of the unit as a means of ensuring proper records management.

Keywords: records, management, records management policy, registry

Procedia PDF Downloads 316
1639 In-situ Mental Health Simulation with Airline Pilot Observation of Human Factors

Authors: Mumtaz Mooncey, Alexander Jolly, Megan Fisher, Kerry Robinson, Robert Lloyd, Dave Fielding

Abstract:

Introduction: The integration of the WingFactors in-situ simulation programme has transformed the education landscape at the Whittington Health NHS Trust. To date, there have been a total of 90 simulations - 19 aimed at Paediatric trainees, including 2 Child and Adolescent Mental Health (CAMHS) scenarios. The opportunity for joint debriefs provided by clinical faculty and airline pilots, has created a new exciting avenue to explore human factors within psychiatry. Through the use of real clinical environments and primed actors; the benefits of high fidelity simulation, interdisciplinary and interprofessional learning has been highlighted. The use of in-situ simulation within Psychiatry is a newly emerging concept and its success here has been recognised by unanimously positive feedback from participants and acknowledgement through nomination for the Health Service Journal (HSJ) Award (Best Education Programme 2021). Methodology: The first CAMHS simulation featured a collapsed patient in the toilet with a ligature tied around her neck, accompanied by a distressed parent. This required participants to consider:; emergency physical management of the case, alongside helping to contain the mother and maintaining situational awareness when transferring the patient to an appropriate clinical area. The second simulation was based on a 17- year- old girl attempting to leave the ward after presenting with an overdose, posing potential risk to herself. The safe learning environment enabled participants to explore techniques to engage the young person and understand their concerns, and consider the involvement of other members of the multidisciplinary team. The scenarios were followed by an immediate ‘hot’ debrief, combining technical feedback with Human Factors feedback from uniformed airline pilots and clinicians. The importance of psychological safety was paramount, encouraging open and honest contributions from all participants. Key learning points were summarized into written documents and circulated. Findings: The in-situ simulations demonstrated the need for practical changes both in the Emergency Department and on the Paediatric ward. The presence of airline pilots provided a novel way to debrief on Human Factors. The following key themes were identified: -Team-briefing (‘Golden 5 minutes’) - Taking a few moments to establish experience, initial roles and strategies amongst the team can reduce the need for conversations in front of a distressed patient or anxious relative. -Use of checklists / guidelines - Principles associated with checklist usage (control of pace, rigor, team situational awareness), instead of reliance on accurate memory recall when under pressure. -Read-back - Immediate repetition of safety critical instructions (e.g. drug / dosage) to mitigate the risks associated with miscommunication. -Distraction management - Balancing the risk of losing a team member to manage a distressed relative, versus it impacting on the care of the young person. -Task allocation - The value of the implementation of ‘The 5A’s’ (Availability, Address, Allocate, Ask, Advise), for effective task allocation. Conclusion: 100% of participants have requested more simulation training. Involvement of airline pilots has led to a shift in hospital culture, bringing to the forefront the value of Human Factors focused training and multidisciplinary simulation. This has been of significant value in not only physical health, but also mental health simulation.

Keywords: human factors, in-situ simulation, inter-professional, multidisciplinary

Procedia PDF Downloads 108
1638 Neural Machine Translation for Low-Resource African Languages: Benchmarking State-of-the-Art Transformer for Wolof

Authors: Cheikh Bamba Dione, Alla Lo, Elhadji Mamadou Nguer, Siley O. Ba

Abstract:

In this paper, we propose two neural machine translation (NMT) systems (French-to-Wolof and Wolof-to-French) based on sequence-to-sequence with attention and transformer architectures. We trained our models on a parallel French-Wolof corpus of about 83k sentence pairs. Because of the low-resource setting, we experimented with advanced methods for handling data sparsity, including subword segmentation, back translation, and the copied corpus method. We evaluate the models using the BLEU score and find that transformer outperforms the classic seq2seq model in all settings, in addition to being less sensitive to noise. In general, the best scores are achieved when training the models on word-level-based units. For subword-level models, using back translation proves to be slightly beneficial in low-resource (WO) to high-resource (FR) language translation for the transformer (but not for the seq2seq) models. A slight improvement can also be observed when injecting copied monolingual text in the target language. Moreover, combining the copied method data with back translation leads to a substantial improvement of the translation quality.

Keywords: backtranslation, low-resource language, neural machine translation, sequence-to-sequence, transformer, Wolof

Procedia PDF Downloads 147
1637 Development of a Small-Group Teaching Method for Enhancing the Learning of Basic Acupuncture Manipulation Optimized with the Theory of Motor Learning

Authors: Wen-Chao Tang, Tang-Yi Liu, Ming Gao, Gang Xu, Hua-Yuan Yang

Abstract:

This study developed a method for teaching acupuncture manipulation in small groups optimized with the theory of motor learning. Sixty acupuncture students and their teacher participated in our research. Motion videos were recorded of their manipulations using the lifting-thrusting method. These videos were analyzed using Simi Motion software to acquire the movement parameters of the thumb tip. The parameter velocity curves along Y axis was used to generate small teaching groups clustered by a self-organized map (SOM) and K-means. Ten groups were generated. All the targeted instruction based on the comparative results groups as well as the videos of teacher and student was provided to the members of each group respectively. According to the theory and research of motor learning, the factors or technologies such as video instruction, observational learning, external focus and summary feedback were integrated into this teaching method. Such efforts were desired to improve and enhance the effectiveness of current acupuncture teaching methods in limited classroom teaching time and extracurricular training.

Keywords: acupuncture, group teaching, video instruction, observational learning, external focus, summary feedback

Procedia PDF Downloads 180
1636 The Church of San Paolo in Ferrara, Restoration and Accessibility

Authors: Benedetta Caglioti

Abstract:

The ecclesiastical complex of San Paolo in Ferrara represents a monument of great historical, religious and architectural importance. Its long and articulated story, over time, is already manifested by the mere reading of its planimetric and altimetric configuration, apparently unitary but, in reality, marked by modifications and repeated additions, even of high quality. It follows, in terms of protection, restoration and enhancement, a commitment of due respect for how the ancient building was built and enriched over its centuries of life. Hence a rigorous methodological approach, while being aware of the fact that every monument, in order to live and make use of the indispensable maintenance, must always be enjoyed and visited, therefore it must enjoy, in the right measure and compatibly with its nature, the possibility of improvements and functional, distributive, technological adjustments and related to the safety of people and things. The methodological approach substantiates the different elements of the project (such as distribution functionality, safety, structural solidity, environmental comfort, the character of the site, building and urban planning regulations, financial resources and materials, the same organization methods of the construction site) through the guiding principles of restoration, defined for a long time: the 'minimum intervention,' the 'recognisability' or 'distinguishability' of old and new, the Physico-chemical and figurative 'compatibility,' the 'durability' and the, at least potential, 'reversibility' of what is done, leading to the definition of appropriate "critical choices." The project tackles, together with the strictly functional ones, also the directly conservative and restoration issues, of a static, structural and material technology nature, with special attention to precious architectural surfaces, In order to ensure the best architectural quality through conscious enhancement, the project involves a redistribution of the interior and service spaces, an accurate lighting system inside and outside the church and a reorganization of the adjacent urban space. The reorganization of the interior is designed with particular attention to the issue of accessibility for people with disabilities. To accompany the community to regain possession of the use of the church's own space, already in its construction phase, the project proposal has hypothesized a permeability and flexibility in the management of the works such as to allow the perception of the found Monument to gradually become more and more familiar at the citizenship. Once the interventions have been completed, it is expected that the Church of San Paolo, second in importance only to the Cathedral, from which it is a few steps away, will be inserted in an already existing circuit of use of the city which over the years has systematized the different aspects of culture, the environment and tourism for the creation of greater awareness in the perception of what Ferrara can offer in cultural terms.

Keywords: conservation, accessibility, regeneration, urban space

Procedia PDF Downloads 108
1635 Design of Speed Bump Recognition System Integrated with Adjustable Shock Absorber Control

Authors: Ming-Yen Chang, Sheng-Hung Ke

Abstract:

This research focuses on the development of a speed bump identification system for real-time control of adjustable shock absorbers in vehicular suspension systems. The study initially involved the collection of images of various speed bumps, and rubber speed bump profiles found on roadways. These images were utilized for training and recognition purposes through the deep learning object detection algorithm YOLOv5. Subsequently, the trained speed bump identification program was integrated with an in-vehicle camera system for live image capture during driving. These images were instantly transmitted to a computer for processing. Using the principles of monocular vision ranging, the distance between the vehicle and an approaching speed bump was determined. The appropriate control distance was established through both practical vehicle measurements and theoretical calculations. Collaboratively, with the electronically adjustable shock absorbers equipped in the vehicle, a shock absorber control system was devised to dynamically adapt the damping force just prior to encountering a speed bump. This system effectively mitigates passenger discomfort and enhances ride quality.

Keywords: adjustable shock absorbers, image recognition, monocular vision ranging, ride

Procedia PDF Downloads 67
1634 Deep Supervision Based-Unet to Detect Buildings Changes from VHR Aerial Imagery

Authors: Shimaa Holail, Tamer Saleh, Xiongwu Xiao

Abstract:

Building change detection (BCD) from satellite imagery is an essential topic in urbanization monitoring, agricultural land management, and updating geospatial databases. Recently, methods for detecting changes based on deep learning have made significant progress and impressive results. However, it has the problem of being insensitive to changes in buildings with complex spectral differences, and the features being extracted are not discriminatory enough, resulting in incomplete buildings and irregular boundaries. To overcome these problems, we propose a dual Siamese network based on the Unet model with the addition of a deep supervision strategy (DS) in this paper. This network consists of a backbone (encoder) based on ImageNet pre-training, a fusion block, and feature pyramid networks (FPN) to enhance the step-by-step information of the changing regions and obtain a more accurate BCD map. To train the proposed method, we created a new dataset (EGY-BCD) of high-resolution and multi-temporal aerial images captured over New Cairo in Egypt to detect building changes for this purpose. The experimental results showed that the proposed method is effective and performs well with the EGY-BCD dataset regarding the overall accuracy, F1-score, and mIoU, which were 91.6 %, 80.1 %, and 73.5 %, respectively.

Keywords: building change detection, deep supervision, semantic segmentation, EGY-BCD dataset

Procedia PDF Downloads 120
1633 Detection and Classification of Myocardial Infarction Using New Extracted Features from Standard 12-Lead ECG Signals

Authors: Naser Safdarian, Nader Jafarnia Dabanloo

Abstract:

In this paper we used four features i.e. Q-wave integral, QRS complex integral, T-wave integral and total integral as extracted feature from normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ventricle of heart. In our research we focused on detection and localization of MI in standard ECG. We use the Q-wave integral and T-wave integral because this feature is important impression in detection of MI. We used some pattern recognition method such as Artificial Neural Network (ANN) to detect and localize the MI. Because these methods have good accuracy for classification of normal and abnormal signals. We used one type of Radial Basis Function (RBF) that called Probabilistic Neural Network (PNN) because of its nonlinearity property, and used other classifier such as k-Nearest Neighbors (KNN), Multilayer Perceptron (MLP) and Naive Bayes Classification. We used PhysioNet database as our training and test data. We reached over 80% for accuracy in test data for localization and over 95% for detection of MI. Main advantages of our method are simplicity and its good accuracy. Also we can improve accuracy of classification by adding more features in this method. A simple method based on using only four features which extracted from standard ECG is presented which has good accuracy in MI localization.

Keywords: ECG signal processing, myocardial infarction, features extraction, pattern recognition

Procedia PDF Downloads 456
1632 Basic Research on Applying Temporary Work Engineering at the Design Phase

Authors: Jin Woong Lee, Kyuman Cho, Taehoon Kim

Abstract:

The application of constructability is increasingly required not only in the construction phase but also in the whole project stage. In particular, the proper application of construction experience and knowledge during the design phase enables the minimization of inefficiencies such as design changes and improvements in constructability during the construction phase. In order to apply knowledge effectively, engineering technology efforts should be implemented with design progress. Among many engineering technologies, engineering for temporary works, including facilities, equipment, and other related construction methods, is important to improve constructability. Therefore, as basic research, this study investigates the applicability of temporary work engineering during the design phase in the building construction industry. As a result, application of temporary work engineering has a greater impact on construction cost reduction and constructability improvement. In contrast to the existing design-bid-build method, the turn-key and CM (construct management) procurement methods currently being implemented in Korea are expected to have a significant impact on the direction of temporary work engineering. To introduce temporary work engineering, expert/professional organization training is first required, and a lack of client awareness should be preferentially improved. The results of this study are expected to be useful as reference material for the development of more effective temporary work engineering tasks and work processes in the future.

Keywords: Temporary Work Engineering, Design Phase, Constructability, Building Construction

Procedia PDF Downloads 387
1631 The French Ekang Ethnographic Dictionary. The Quantum Approach

Authors: Henda Gnakate Biba, Ndassa Mouafon Issa

Abstract:

Dictionaries modeled on the Western model [tonic accent languages] are not suitable and do not account for tonal languages phonologically, which is why the [prosodic and phonological] ethnographic dictionary was designed. It is a glossary that expresses the tones and the rhythm of words. It recreates exactly the speaking or singing of a tonal language, and allows the non-speaker of this language to pronounce the words as if they were a native. It is a dictionary adapted to tonal languages. It was built from ethnomusicological theorems and phonological processes, according to Jean. J. Rousseau 1776 hypothesis /To say and to sing were once the same thing/. Each word in the French dictionary finds its corresponding language, ekaη. And each word ekaη is written on a musical staff. This ethnographic dictionary is also an inventive, original and innovative research thesis, but it is also an inventive, original and innovative research thesis. A contribution to the theoretical, musicological, ethno musicological and linguistic conceptualization of languages, giving rise to the practice of interlocution between the social and cognitive sciences, the activities of artistic creation and the question of modeling in the human sciences: mathematics, computer science, translation automation and artificial intelligence. When you apply this theory to any text of a folksong of a world-tone language, you do not only piece together the exact melody, rhythm, and harmonies of that song as if you knew it in advance but also the exact speaking of this language. The author believes that the issue of the disappearance of tonal languages and their preservation has been structurally resolved, as well as one of the greatest cultural equations related to the composition and creation of tonal, polytonal and random music. The experimentation confirming the theorization designed a semi-digital, semi-analog application which translates the tonal languages of Africa (about 2,100 languages) into blues, jazz, world music, polyphonic music, tonal and anatonal music and deterministic and random music). To test this application, I use a music reading and writing software that allows me to collect the data extracted from my mother tongue, which is already modeled in the musical staves saved in the ethnographic (semiotic) dictionary for automatic translation ( volume 2 of the book). Translation is done (from writing to writing, from writing to speech and from writing to music). Mode of operation: you type a text on your computer, a structured song (chorus-verse), and you command the machine a melody of blues, jazz and, world music or, variety etc. The software runs, giving you the option to choose harmonies, and then you select your melody.

Keywords: music, language, entenglement, science, research

Procedia PDF Downloads 69
1630 A Comprehensive Review of Yoga and Core Strength: Strengthening Core Muscles as Important Method for Injury Prevention (Lower Back Pain) and Performance Enhancement in Sports

Authors: Pintu Modak

Abstract:

The core strength is essential not only for athletes but also for everyone to perform everyday's household chores with ease and efficiency. Core strength means to strengthen the muscles deep within the abdomen which connect to the spine and pelvis which control the position and movement of the central portion of the body. Strengthening of core muscles is important for injury prevention (lower back pain) and performance enhancement in sports. The purpose of the study was to review the literature and findings on the effects of Yoga exercise as a part of sports training method and fitness programs. Fifteen papers were found to be relevant for this review. There are five simple yoga poses: Ardha Phalakasana (Low plank), Vasisthasana (side plank), Purvottanasana (inclined plane), Sarvangasana (shoulder stand), and Virabhadrasana (Warrior) are found to be very effective for strengthening core muscles. They are the most effective poses to build core strength and flexibility to the core muscles. The study suggests that sports and fitness trainers should include these yoga exercises in their programs to strengthen core muscles.

Keywords: core strength, yoga, injuries, lower back

Procedia PDF Downloads 276
1629 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic

Authors: Fei Gao, Rodolfo C. Raga Jr.

Abstract:

This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.

Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle

Procedia PDF Downloads 75
1628 The Perception of Stallholders About the Early Childhood Education Male Teachers: A Systematic Review

Authors: Endale Fantahun Tadesse, Sabika Khalid

Abstract:

The global call for increased male representation in early childhood education (ECE) has garnered significant attention. Emerging studies have indicated that involving men in ECE can yield positive outcomes for children's physical and psychological development. Challenging the prevailing misconception and stereotype that women dominate the ECE sector is crucial. In light of this, the present study undertakes a systematic review of nine studies on males working in ECE, revealing a dearth of male presence in the field in China as well. To address this issue, substantial structural changes must be implemented to enhance the inadequate pay and working conditions that dissuade both men and women from pursuing a sustainable career in ECE. It is recommended that school leadership raise awareness among female teachers and parents, encouraging them to support and uphold virtuous values for male teachers. Additionally, governing bodies should provide explicit guidelines during training programs to address concerns regarding potential abuse and gender biases. The findings of this review underscore the need for future studies to examine the self-identities of male teachers from various stakeholders' perspectives and explore the consequences of being in the profession through rigorous and robust methodologies that can inform policymakers.

Keywords: male teachers, Early Childhood Education (ECE), self-identity, perception of stakeholders

Procedia PDF Downloads 38
1627 The Impact of Democratic Leadership on Job Satisfaction Among Teachers in South Hebron Directorate Schools

Authors: Mohammad Mahmoud Rjoob

Abstract:

This study aimed to explore the impact of democratic leadership on job satisfaction among teachers in the South Hebron Directorate schools. The study was applied to a random sample representing the study population of teachers in the South Hebron Directorate of Education, with a sample size of 301 teachers from 12 schools. The researcher adopted the descriptive approach as it is the most suitable for the nature of this study, and a questionnaire was used as a tool for data collection and measuring various variables. The study recommended the importance of enhancing the concept of democratic leadership in schools to boost teachers' morale and improve the quality of the educational process. It also encouraged the adoption of democratic leadership styles by administrations, educational areas, and new principals due to their positive and effective impact on job performance. Additionally, the study suggested providing training courses for school principals and new teachers on how to apply the principles of democratic leadership that contribute to creating a positive educational environment and enhance the spirit of cooperation to achieve the school's goals. Finally, the study called for granting school principals more authority and powers to increase their ability to effectively deal with challenges and problems, which contributes to improving the educational process and enhances teachers' job satisfaction.

Keywords: democratic leadership, job satisfaction, teachers, South Hebron Directorate Schools

Procedia PDF Downloads 11
1626 Identification System for Grading Banana in Food Processing Industry

Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan

Abstract:

In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.

Keywords: banana, food processing, identification system, neural network

Procedia PDF Downloads 471
1625 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.

Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset

Procedia PDF Downloads 353
1624 Design and Characterization of a Smart Composite Fabric for Knee Brace

Authors: Rohith J. K., Amir Nazemi, Abbas S. Milani

Abstract:

In Paralympic sports, athletes often depend on some form of equipment to enable competitive sporting, where most of this equipment would only allow passive physiological supports and discrete physiological measurements. Active feedback physiological support and continuous detection of performance indicators, without time or space constraints, would be beneficial in more effective training and performance measures of Paralympic athletes. Moreover, occasionally the athletes suffer from fatigue and muscular stains due to improper monitoring systems. The latter challenges can be overcome by using Smart Composites technology when manufacturing, e.g., knee brace and other sports wearables utilities, where the sensors can be fused together into the fabric and an assisted system actively support the athlete. This paper shows how different sensing functionality may be created by intrinsic and extrinsic modifications onto different types of composite fabrics, depending on the level of integration and the employed functional elements. Results demonstrate that fabric sensors can be well-tailored to measure muscular strain and be used in the fabrication of a smart knee brace as a sample potential application. Materials, connectors, fabric circuits, interconnects, encapsulation and fabrication methods associated with such smart fabric technologies prove to be customizable and versatile.

Keywords: smart composites, sensors, smart fabrics, knee brace

Procedia PDF Downloads 178
1623 Using Satellite Images Datasets for Road Intersection Detection in Route Planning

Authors: Fatma El-Zahraa El-Taher, Ayman Taha, Jane Courtney, Susan Mckeever

Abstract:

Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated.

Keywords: satellite images, remote sensing images, data acquisition, autonomous vehicles

Procedia PDF Downloads 145
1622 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations

Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu

Abstract:

Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.

Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10

Procedia PDF Downloads 111
1621 Electroencephalogram Based Approach for Mental Stress Detection during Gameplay with Level Prediction

Authors: Priyadarsini Samal, Rajesh Singla

Abstract:

Many mobile games come with the benefits of entertainment by introducing stress to the human brain. In recognizing this mental stress, the brain-computer interface (BCI) plays an important role. It has various neuroimaging approaches which help in analyzing the brain signals. Electroencephalogram (EEG) is the most commonly used method among them as it is non-invasive, portable, and economical. Here, this paper investigates the pattern in brain signals when introduced with mental stress. Two healthy volunteers played a game whose aim was to search hidden words from the grid, and the levels were chosen randomly. The EEG signals during gameplay were recorded to investigate the impacts of stress with the changing levels from easy to medium to hard. A total of 16 features of EEG were analyzed for this experiment which includes power band features with relative powers, event-related desynchronization, along statistical features. Support vector machine was used as the classifier, which resulted in an accuracy of 93.9% for three-level stress analysis; for two levels, the accuracy of 92% and 98% are achieved. In addition to that, another game that was similar in nature was played by the volunteers. A suitable regression model was designed for prediction where the feature sets of the first and second game were used for testing and training purposes, respectively, and an accuracy of 73% was found.

Keywords: brain computer interface, electroencephalogram, regression model, stress, word search

Procedia PDF Downloads 187
1620 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition

Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang

Abstract:

Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.

Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor

Procedia PDF Downloads 150