Search results for: 5) genetic algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4772

Search results for: 5) genetic algorithm

1712 ISAR Imaging and Tracking Algorithm for Maneuvering Non-ellipsoidal Extended Objects Using Jump Markov Systems

Authors: Mohamed Barbary, Mohamed H. Abd El-azeem

Abstract:

Maneuvering non-ellipsoidal extended object tracking (M-NEOT) using high-resolution inverse synthetic aperture radar (ISAR) observations is gaining momentum recently. This work presents a new robust implementation of the Jump Markov (JM) multi-Bernoulli (MB) filter for M-NEOT, where the M-NEOT’s ISAR observations are characterized using a skewed (SK) non-symmetrically normal distribution. To cope with the possible abrupt change of kinematic state, extension, and observation distribution over an extended object when a target maneuvers, a multiple model technique is represented based on an MB-track-before-detect (TBD) filter supported by SK-sub-random matrix model (RMM) or sub-ellipses framework. Simulation results demonstrate this remarkable impact.

Keywords: maneuvering extended objects, ISAR, skewed normal distribution, sub-RMM, JM-MB-TBD filter

Procedia PDF Downloads 62
1711 Novel Coprocessor for DNA Sequence Alignment in Resequencing Applications

Authors: Atef Ibrahim, Hamed Elsimary, Abdullah Aljumah, Fayez Gebali

Abstract:

This paper presents a novel semi-systolic array architecture for an optimized parallel sequence alignment algorithm. This architecture has the advantage that it can be modified to be reused for multiple pass processing in order to increase the number of processing elements that can be packed into a single FPGA and to increase the number of sequences that can be aligned in parallel in a single FPGA. This resolves the potential problem of many FPGA resources left unused for designs that have large values of short read length. When using the previously published conventional hardware design. FPGA implementation results show that, for large values of short read lengths (M>128), the proposed design has a slightly higher speed up and FPGA utilization over the the conventional one.

Keywords: bioinformatics, genome sequence alignment, re-sequencing applications, systolic array

Procedia PDF Downloads 535
1710 Artificial Intelligence Based Analysis of Magnetic Resonance Signals for the Diagnosis of Tissue Abnormalities

Authors: Kapila Warnakulasuriya, Walimuni Janaka Mendis

Abstract:

In this study, an artificial intelligence-based approach is developed to diagnose abnormal tissues in human or animal bodies by analyzing magnetic resonance signals. As opposed to the conventional method of generating an image from the magnetic resonance signals, which are then evaluated by a radiologist for the diagnosis of abnormalities, in the discussed approach, the magnetic resonance signals are analyzed by an artificial intelligence algorithm without having to generate or analyze an image. The AI-based program compares magnetic resonance signals with millions of possible magnetic resonance waveforms which can be generated from various types of normal tissues. Waveforms generated by abnormal tissues are then identified, and images of the abnormal tissues are generated with the possible location of them in the body for further diagnostic tests.

Keywords: magnetic resonance, artificial intelligence, magnetic waveform analysis, abnormal tissues

Procedia PDF Downloads 95
1709 Molecular Diagnosis of Influenza Strains Was Carried Out on Patients of the Social Security Clinic in Karaj Using the RT-PCR Technique

Authors: A. Ferasat, S. Rostampour Yasouri

Abstract:

Seasonal flu is a highly contagious infection caused by influenza viruses. These viruses undergo genetic changes that result in new epidemics across the globe. Medical attention is crucial in severe cases, particularly for the elderly, frail, and those with chronic illnesses, as their immune systems are often weaker. The purpose of this study was to detect new subtypes of the influenza A virus rapidly using a specific RT-PCR method based on the HA gene (hemagglutinin). In the winter and spring of 2022_2023, 120 embryonated egg samples were cultured, suspected of seasonal influenza. RNA synthesis, followed by cDNA synthesis, was performed. Finally, the PCR technique was applied using a pair of specific primers designed based on the HA gene. The PCR product was identified after purification, and the nucleotide sequence of purified PCR products was compared with the sequences in the gene bank. The results showed a high similarity between the sequence of the positive samples isolated from the patients and the sequence of the new strains isolated in recent years. This RT-PCR technique is entirely specific in this study, enabling the detection and multiplication of influenza and its subspecies from clinical samples. The RT-PCR technique based on the HA gene, along with sequencing, is a fast, specific, and sensitive diagnostic method for those infected with influenza viruses and its new subtypes. Rapid molecular diagnosis of influenza is essential for suspected people to control and prevent the spread of the disease to others. It also prevents the occurrence of secondary (sometimes fatal) pneumonia that results from influenza and pathogenic bacteria. The critical role of rapid diagnosis of new strains of influenza is to prepare a drug vaccine against the latest viruses that did not exist in the community last year and are entirely new viruses.

Keywords: influenza, molecular diagnosis, patients, RT-PCR technique

Procedia PDF Downloads 79
1708 Conditions for Model Matching of Switched Asynchronous Sequential Machines with Output Feedback

Authors: Jung–Min Yang

Abstract:

Solvability of the model matching problem for input/output switched asynchronous sequential machines is discussed in this paper. The control objective is to determine the existence condition and design algorithm for a corrective controller that can match the stable-state behavior of the closed-loop system to that of a reference model. Switching operations and correction procedures are incorporated using output feedback so that the controlled switched machine can show the desired input/output behavior. A matrix expression is presented to address reachability of switched asynchronous sequential machines with output equivalence with respect to a model. The presented reachability condition for the controller design is validated in a simple example.

Keywords: asynchronous sequential machines, corrective control, model matching, input/output control

Procedia PDF Downloads 346
1707 Improoving Readability for Tweet Contextualization Using Bipartite Graphs

Authors: Amira Dhokar, Lobna Hlaoua, Lotfi Ben Romdhane

Abstract:

Tweet contextualization (TC) is a new issue that aims to answer questions of the form 'What is this tweet about?' The idea of this task was imagined as an extension of a previous area called multi-document summarization (MDS), which consists in generating a summary from many sources. In both TC and MDS, the summary should ideally contain the most relevant information of the topic that is being discussed in the source texts (for MDS) and related to the query (for TC). Furthermore of being informative, a summary should be coherent, i.e. well written to be readable and grammatically compact. Hence, coherence is an essential characteristic in order to produce comprehensible texts. In this paper, we propose a new approach to improve readability and coherence for tweet contextualization based on bipartite graphs. The main idea of our proposed method is to reorder sentences in a given paragraph by combining most expressive words detection and HITS (Hyperlink-Induced Topic Search) algorithm to make up a coherent context.

Keywords: bipartite graphs, readability, summarization, tweet contextualization

Procedia PDF Downloads 197
1706 An Early Detection Type 2 Diabetes Using K - Nearest Neighbor Algorithm

Authors: Ng Liang Shen, Ngahzaifa Abdul Ghani

Abstract:

This research aimed at developing an early warning system for pre-diabetic and diabetics by analyzing simple and easily determinable signs and symptoms of diabetes among the people living in Malaysia using Particle Swarm Optimized Artificial. With the skyrocketing prevalence of Type 2 diabetes in Malaysia, the system can be used to encourage affected people to seek further medical attention to prevent the onset of diabetes or start managing it early enough to avoid the associated complications. The study sought to find out the best predictive variables of Type 2 Diabetes Mellitus, developed a system to diagnose diabetes from the variables using Artificial Neural Networks and tested the system on accuracy to find out the patent generated from diabetes diagnosis result in machine learning algorithms even at primary or advanced stages.

Keywords: diabetes diagnosis, Artificial Neural Networks, artificial intelligence, soft computing, medical diagnosis

Procedia PDF Downloads 341
1705 Estimation and Forecasting with a Quantile AR Model for Financial Returns

Authors: Yuzhi Cai

Abstract:

This talk presents a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. We establish that the joint posterior distribution of the model parameters and future values is well defined. The associated MCMC algorithm for parameter estimation and forecasting converges to the posterior distribution quickly. We also present a combining forecasts technique to produce more accurate out-of-sample forecasts by using a weighted sequence of fitted QAR models. A moving window method to check the quality of the estimated conditional quantiles is developed. We verify our methodology using simulation studies and then apply it to currency exchange rate data. An application of the method to the USD to GBP daily currency exchange rates will also be discussed. The results obtained show that an unequally weighted combining method performs better than other forecasting methodology.

Keywords: combining forecasts, MCMC, quantile modelling, quantile forecasting, predictive density functions

Procedia PDF Downloads 348
1704 Trajectory Generation Procedure for Unmanned Aerial Vehicles

Authors: Amor Jnifene, Cedric Cocaud

Abstract:

One of the most constraining problems facing the development of autonomous vehicles is the limitations of current technologies. Guidance and navigation controllers need to be faster and more robust. Communication data links need to be more reliable and secure. For an Unmanned Aerial Vehicles (UAV) to be useful, and fully autonomous, one important feature that needs to be an integral part of the navigation system is autonomous trajectory planning. The work discussed in this paper presents a method for on-line trajectory planning for UAV’s. This method takes into account various constraints of different types including specific vectors of approach close to target points, multiple objectives, and other constraints related to speed, altitude, and obstacle avoidance. The trajectory produced by the proposed method ensures a smooth transition between different segments, satisfies the minimum curvature imposed by the dynamics of the UAV, and finds the optimum velocity based on available atmospheric conditions. Given a set of objective points and waypoints a skeleton of the trajectory is constructed first by linking all waypoints with straight segments based on the order in which they are encountered in the path. Secondly, vectors of approach (VoA) are assigned to objective waypoints and their preceding transitional waypoint if any. Thirdly, the straight segments are replaced by 3D curvilinear trajectories taking into account the aircraft dynamics. In summary, this work presents a method for on-line 3D trajectory generation (TG) of Unmanned Aerial Vehicles (UAVs). The method takes as inputs a series of waypoints and an optional vector of approach for each of the waypoints. Using a dynamic model based on the performance equations of fixed wing aircrafts, the TG computes a set of 3D parametric curves establishing a course between every pair of waypoints, and assembling these sets of curves to construct a complete trajectory. The algorithm ensures geometric continuity at each connection point between two sets of curves. The geometry of the trajectory is optimized according to the dynamic characteristics of the aircraft such that the result translates into a series of dynamically feasible maneuvers. In summary, this work presents a method for on-line 3D trajectory generation (TG) of Unmanned Aerial Vehicles (UAVs). The method takes as inputs a series of waypoints and an optional vector of approach for each of the waypoints. Using a dynamic model based on the performance equations of fixed wing aircraft, the TG computes a set of 3D parametric curves establishing a course between every pair of waypoints, and assembling these sets of curves to construct a complete trajectory. The algorithm ensures geometric continuity at each connection point between two sets of curves. The geometry of the trajectory is optimized according to the dynamic characteristics of the aircraft such that the result translates into a series of dynamically feasible maneuvers.

Keywords: trajectory planning, unmanned autonomous air vehicle, vector of approach, waypoints

Procedia PDF Downloads 412
1703 Hybrid Hierarchical Clustering Approach for Community Detection in Social Network

Authors: Radhia Toujani, Jalel Akaichi

Abstract:

Social Networks generally present a hierarchy of communities. To determine these communities and the relationship between them, detection algorithms should be applied. Most of the existing algorithms, proposed for hierarchical communities identification, are based on either agglomerative clustering or divisive clustering. In this paper, we present a hybrid hierarchical clustering approach for community detection based on both bottom-up and bottom-down clustering. Obviously, our approach provides more relevant community structure than hierarchical method which considers only divisive or agglomerative clustering to identify communities. Moreover, we performed some comparative experiments to enhance the quality of the clustering results and to show the effectiveness of our algorithm.

Keywords: agglomerative hierarchical clustering, community structure, divisive hierarchical clustering, hybrid hierarchical clustering, opinion mining, social network, social network analysis

Procedia PDF Downloads 372
1702 Radical Web Text Classification Using a Composite-Based Approach

Authors: Kolade Olawande Owoeye, George R. S. Weir

Abstract:

The widespread of terrorism and extremism activities on the internet has become a major threat to the government and national securities due to their potential dangers which have necessitated the need for intelligence gathering via web and real-time monitoring of potential websites for extremist activities. However, the manual classification for such contents is practically difficult or time-consuming. In response to this challenge, an automated classification system called composite technique was developed. This is a computational framework that explores the combination of both semantics and syntactic features of textual contents of a web. We implemented the framework on a set of extremist webpages dataset that has been subjected to the manual classification process. Therein, we developed a classification model on the data using J48 decision algorithm, this is to generate a measure of how well each page can be classified into their appropriate classes. The classification result obtained from our method when compared with other states of arts, indicated a 96% success rate in classifying overall webpages when matched against the manual classification.

Keywords: extremist, web pages, classification, semantics, posit

Procedia PDF Downloads 150
1701 Genetic Characterization of Acanthamoeba Isolates from Amoebic Keratitis Patients

Authors: Sumeeta Khurana, Kirti Megha, Amit Gupta, Rakesh Sehgal

Abstract:

Background: Amoebic keratitis is a painful vision threatening infection caused by a free living pathogenic amoeba Acanthamoeba. It can be misdiagnosed and very difficult to treat if not suspected early. The epidemiology of Acanthamoeba genotypes causing infection in our geographical area is not yet known to the best of our knowledge. Objective: To characterize Acanthamoeba isolates from amoebic keratitis patients. Methods: A total of 19 isolates obtained from patients with amoebic keratitis presenting to the Advanced Eye Centre at Postgraduate Institute of Medical Education and Research, a tertiary care centre of North India over a period of last 10 years were included. Their corneal scrapings, lens solution and lens case (in case of lens wearer) were collected for microscopic examination, culture and molecular diagnosis. All the isolates were maintained in the Non Nutrient agar culture medium overlaid with E.coli and 13 strains were axenised and maintained in modified Peptone Yeast Dextrose Agar. Identification of Acanthamoeba genotypes was based on amplification of diagnostic fragment 3 (DF3) region of the 18srRNA gene followed by sequencing. Nucleotide similarity search was performed by BLAST search of sequenced amplicons in GenBank database (http//www.ncbi.nlm.nih.gov/blast). Multiple Sequence alignments were determined by using CLUSTAL X. Results: Nine out of 19 Acanthamoeba isolates were found to belong to Genotype T4 followed by 6 isolates of genotype T11, 3 T5 and 1 T3 genotype. Conclusion: T4 is the predominant Acanthamoeba genotype in our geographical area. Further studies should focus on differences in pathogenicity of these genotypes and their clinical significance.

Keywords: Acanthamoeba, free living amoeba, keratitis, genotype, ocular

Procedia PDF Downloads 240
1700 Quantification and Identification of the Main Components of the Biomass of the Microalgae Scenedesmus SP. – Prospection of Molecules of Commercial Interest

Authors: Carolina V. Viegas, Monique Gonçalves, Gisel Chenard Diaz, Yordanka Reyes Cruz, Donato Alexandre Gomes Aranda

Abstract:

To develop the massive cultivation of microalgae, it is necessary to isolate and characterize the species, improving genetic tools in search of specific characteristics. Therefore, the detection, identification and quantification of the compounds that compose the Scenedesmus sp. were prerequisites to verify the potential of these microalgae. The main objective of this work was to carry out the characterization of Scenedesmus sp. as to the content of ash, carbohydrates, proteins and lipids as well as the determination of the composition of their lipid classes and main fatty acids. The biomass of Scenedesmus sp, showed 15,29 ± 0,23 % of ash and CaO (36,17 %) was the main component of this fraction, The total protein and carbohydrate content of the biomass was 40,74 ± 1,01 % and 23,37 ± 0,95 %, respectively, proving to be a potential source of proteins as well as carbohydrates for the production of ethanol via fermentation, The lipid contents extracted via Bligh & Dyer and in situ saponification were 8,18 ± 0,13 % and 4,11 ± 0,11 %, respectively. In the lipid extracts obtained via Bligh & Dyer, approximately 50 % of the composition of this fraction consists of fatty compounds, while the other half is composed of an unsaponifiable fraction composed mainly of chlorophylls, phytosterols and carotenes. From the lowest yield, it was possible to obtain a selectivity of 92,14 % for fatty components (fatty acids and fatty esters) confirmed through the infrared spectroscopy technique. The presence of polyunsaturated acids (~45 %) in the lipid extracts indicated the potential of this fraction as a source of nutraceuticals. The results indicate that the biomass of Scenedesmus sp, can become a promising potential source for obtaining polyunsaturated fatty acids, carotenoids and proteins as well as the simultaneous obtainment of different compounds of high commercial value.

Keywords: microalgae, Desmodesmus, lipid classes, fatty acid profile, proteins, carbohydrates

Procedia PDF Downloads 103
1699 Real-Time Nonintrusive Heart Rate Measurement: Comparative Case Study of LED Sensorics' Accuracy and Benefits in Heart Monitoring

Authors: Goran Begović

Abstract:

In recent years, many researchers are focusing on non-intrusive measuring methods when it comes to human biosignals. These methods provide solutions for everyday use, whether it’s health monitoring or finessing the workout routine. One of the biggest issues with these solutions is that the sensors’ accuracy is highly variable due to many factors, such as ambiental light, skin color diversity, etc. That is why we wanted to explore different outcomes under those kinds of circumstances in order to find the most optimal algorithm(s) for extracting heart rate (HR) information. The optimization of such algorithms can benefit the wider, cheaper, and safer application of home health monitoring, without having to visit medical professionals as often when it comes to observing heart irregularities. In this study, we explored the accuracy of infrared (IR), red, and green LED sensorics in a controlled environment and compared the results with a medically accurate ECG monitoring device.

Keywords: data science, ECG, heart rate, holter monitor, LED sensors

Procedia PDF Downloads 134
1698 Identification of Breeding Objectives for Begait Goat in Western Tigray, North Ethiopia

Authors: Hagos Abraham, Solomon Gizaw, Mengistu Urge

Abstract:

A sound breeding objective is the basis for genetic improvement in overall economic merit of farm animals. Begait goat is one of the identified breeds in Ethiopia, which is a multipurpose breed as it serves as source of cash income and source of food (meat and milk). Despite its importance, no formal breeding objectives exist for Begait goat. The objective of the present study was to identify breeding objectives for the breed through two approaches: using own-flock ranking experiment and developing deterministic bio-economic models as a preliminary step towards designing sustainable breeding programs for the breed. In the own-flock ranking experiment, a total of forty five households were visited at their homesteads and were asked to select, with reasons, the first best, second best, third best and the most inferior does from their own flock. Age, previous reproduction and production information of the identified animals were inquired; live body weight and some linear body measurements were taken. The bio-economic model included performance traits (weights, daily weight gain, kidding interval, litter size, milk yield, kid mortality, pregnancy and replacement rates) and economic (revenue and costs) parameters. It was observed that there was close agreement between the farmers’ ranking and bio-economic model results. In general, the results of the present study indicated that Begait goat owners could improve performance of their goats and profitability of their farms by selecting for litter size, six month weight, pre-weaning kid survival rate and milk yield.

Keywords: bio-economic model, economic parameters, own-flock ranking, performance traits

Procedia PDF Downloads 70
1697 A Phenomenological Approach to Computational Modeling of Analogy

Authors: José Eduardo García-Mendiola

Abstract:

In this work, a phenomenological approach to computational modeling of analogy processing is carried out. The paper goes through the consideration of the structure of the analogy, based on the possibility of sustaining the genesis of its elements regarding Husserl's genetic theory of association. Among particular processes which take place in order to get analogical inferences, there is one which arises crucial for enabling efficient base cases retrieval through long-term memory, namely analogical transference grounded on familiarity. In general, it has been argued that analogical reasoning is a way by which a conscious agent tries to determine or define a certain scope of objects and relationships between them using previous knowledge of other familiar domain of objects and relations. However, looking for a complete description of analogy process, a deeper consideration of phenomenological nature is required in so far, its simulation by computational programs is aimed. Also, one would get an idea of how complex it would be to have a fully computational account of the analogy elements. In fact, familiarity is not a result of a mere chain of repetitions of objects or events but generated insofar as the object/attribute or event in question is integrable inside a certain context that is taking shape as functionalities and functional approaches or perspectives of the object are being defined. Its familiarity is generated not by the identification of its parts or objective determinations as if they were isolated from those functionalities and approaches. Rather, at the core of such a familiarity between entities of different kinds lays the way they are functionally encoded. So, and hoping to make deeper inroads towards these topics, this essay allows us to consider that cognitive-computational perspectives can visualize, from the phenomenological projection of the analogy process reviewing achievements already obtained as well as exploration of new theoretical-experimental configurations towards implementation of analogy models in specific as well as in general purpose machines.

Keywords: analogy, association, encoding, retrieval

Procedia PDF Downloads 127
1696 Application of Fuzzy Logic in Voltage Regulation of Radial Feeder with Distributed Generators

Authors: Anubhav Shrivastava, Lakshya Bhat, Shivarudraswamy

Abstract:

Distributed Generation is the need of the hour. With current advancements in the DG technology, there are some major issues that need to be tackled in order to make this method of generation of energy more efficient and feasible. Among other problems, the control in voltage is the major issue that needs to be addressed. This paper focuses on control of voltage using reactive power control of DGs with the help of fuzzy logic. The membership functions have been defined accordingly and the control of the system is achieved. Finally, with the help of simulation results in Matlab, the control of voltage within the tolerance limit set (+/- 5%) is achieved. The voltage waveform graphs for the IEEE 14 bus system are obtained by using simple algorithm with MATLAB and then with fuzzy logic for 14 bus system. The goal of this project was to control the voltage within limits by controlling the reactive power of the DG using fuzzy logic.

Keywords: distributed generation, fuzzy logic, matlab, newton raphson, IEEE 14 bus, voltage regulation, radial network

Procedia PDF Downloads 641
1695 Cytogenetic Characterization of the VERO Cell Line Based on Comparisons with the Subline; Implication for Authorization and Quality Control of Animal Cell Lines

Authors: Fumio Kasai, Noriko Hirayama, Jorge Pereira, Azusa Ohtani, Masashi Iemura, Malcolm A. Ferguson Smith, Arihiro Kohara

Abstract:

The VERO cell line was established in 1962 from normal tissue of an African green monkey, Chlorocebus aethiops (2n=60), and has been commonly used worldwide for screening for toxins or as a cell substrate for the production of viral vaccines. The VERO genome was sequenced in 2014; however, its cytogenetic features have not been fully characterized as it contains several chromosome abnormalities and different karyotypes coexist in the cell line. In this study, the VERO cell line (JCRB0111) was compared with one of the sublines. In contrast to 59 chromosomes as the modal chromosome number in the VERO cell line, the subline had two peaks of 56 and 58 chromosomes. M-FISH analysis using human probes revealed that the VERO cell line was characterized by a translocation t(2;25) found in all metaphases, which was absent in the subline. Different abnormalities detected only in the subline show that the cell line is heterogeneous, indicating that the subline has the potential to change its genomic characteristics during cell culture. The various alterations in the two independent lineages suggest that genomic changes in both VERO cells can be accounted for by progressive rearrangements during their evolution in culture. Both t(5;X) and t(8;14) observed in all metaphases of the two cell lines might have a key role in VERO cells and could be used as genetic markers to identify VERO cells. The flow karyotype shows distinct differences from normal. Further analysis of sorted abnormal chromosomes may uncover other characteristics of VERO cells. Because of the absence of STR data, cytogenetic data are important in characterizing animal cell lines and can be an indicator of their quality control.

Keywords: VERO, cell culture passage, chromosome rearrangement, heterogeneous cells

Procedia PDF Downloads 423
1694 Monitoring Vaginal Electrical Resistance, Follicular Wave and Hormonal Profile during Estrus Cycle in Indigenous Sheep

Authors: T. A. Rosy, M. R. I. Talukdar, N. S. Juyena, F. Y. Bari, M. N. Islam

Abstract:

The ovarian follicular dynamics, vaginal electrical resistance (VER) and progesterone (P4) and estrogen (E2) profiles were investigated during estrus cycle in four indigenous ewes. Daily VER values were recorded with heat detector. The follicles were observed and measured by trans-rectal ultrasonography. Blood was collected daily for hormonal profiles. Results showed a significant variation in VER values (P<0.05) at estrus in regards to ewes and cycles. The day difference between two successive lower values in VER waves ranged from 13-17 days which might indicate the estrus cycle in indigenous ewes. Trans-rectal ultrasonography of ovaries revealed the presence of two to four waves of follicular growth during the study period. Results also showed that follicular diameter was negatively correlated with VER values. Study of hormonal profiles by ELISA revealed a positive correlation between E2 concentration and development of follicle and negative correlation between P4 concentration and development of follicle. The concentrations of estradiol increased at the time of estrus and then fall down in a basal level. Development of follicular size was accompanied by an increase in the concentration of serum estradiol. Inversely, when follicles heed to ovulation concentration of progesterone starts to fall down and after ovulation it turns its way to the zenith and remains at this state until next ovulatory follicle comes to its maximum diameter. This study could help scientists to set up a manipulative reproductive technique for improving genetic values of sheep in Bangladesh.

Keywords: ovarian follicle, hormonal profile, sheep, ultrasonography, vaginal electrical resistance

Procedia PDF Downloads 269
1693 Room Level Indoor Localization Using Relevant Channel Impulse Response Parameters

Authors: Raida Zouari, Iness Ahriz, Rafik Zayani, Ali Dziri, Ridha Bouallegue

Abstract:

This paper proposes a room level indoor localization algorithm based on the use Multi-Layer Neural Network (MLNN) classifiers and one versus one strategy. Seven parameters of the Channel Impulse Response (CIR) were used and Gram-Shmidt Orthogonalization was performed to study the relevance of the extracted parameters. Simulation results show that when relevant CIR parameters are used as position fingerprint and when optimal MLNN architecture is selected good room level localization score can be achieved. The current study showed also that some of the CIR parameters are not correlated to the location and can decrease the localization performance of the system.

Keywords: mobile indoor localization, multi-layer neural network (MLNN), channel impulse response (CIR), Gram-Shmidt orthogonalization

Procedia PDF Downloads 364
1692 Control of Doubly Star Induction Motor Using Direct Torque DTC Based To on RST Regulator

Authors: Nadia Akkari

Abstract:

This paper presents the analysis and simulation of the control of double star induction motor, using direct torque control (DTC) based on RST regulator. The DTC is an excellent solution for general- purpose induction drives in very wide range the short sampling time required by the TC schemes makes them suited to a very fast torque and flux controlled drives as well the simplicity of the control algorithm. DTC is inherently a motion sensorless control method. The RST regulator can improve the double star induction motor performance in terms of overshoot, rapidity, cancellation of disturbance, and capacity to maintain a high level of performance. Simulation results indicate that the proposed regulator has better performance responses. The implementation of the DTC applied to a double star induction motor based on RST regulator is validated with simulated results.

Keywords: Direct Torque Control (DTC), Double Star Induction Motor (DSIM), RST Regulator

Procedia PDF Downloads 522
1691 Mathematical Modeling for Diabetes Prediction: A Neuro-Fuzzy Approach

Authors: Vijay Kr. Yadav, Nilam Rathi

Abstract:

Accurate prediction of glucose level for diabetes mellitus is required to avoid affecting the functioning of major organs of human body. This study describes the fundamental assumptions and two different methodologies of the Blood glucose prediction. First is based on the back-propagation algorithm of Artificial Neural Network (ANN), and second is based on the Neuro-Fuzzy technique, called Fuzzy Inference System (FIS). Errors between proposed methods further discussed through various statistical methods such as mean square error (MSE), normalised mean absolute error (NMAE). The main objective of present study is to develop mathematical model for blood glucose prediction before 12 hours advanced using data set of three patients for 60 days. The comparative studies of the accuracy with other existing models are also made with same data set.

Keywords: back-propagation, diabetes mellitus, fuzzy inference system, neuro-fuzzy

Procedia PDF Downloads 263
1690 Timing and Noise Data Mining Algorithm and Software Tool in Very Large Scale Integration (VLSI) Design

Authors: Qing K. Zhu

Abstract:

Very Large Scale Integration (VLSI) design becomes very complex due to the continuous integration of millions of gates in one chip based on Moore’s law. Designers have encountered numerous report files during design iterations using timing and noise analysis tools. This paper presented our work using data mining techniques combined with HTML tables to extract and represent critical timing/noise data. When we apply this data-mining tool in real applications, the running speed is important. The software employs table look-up techniques in the programming for the reasonable running speed based on performance testing results. We added several advanced features for the application in one industry chip design.

Keywords: VLSI design, data mining, big data, HTML forms, web, VLSI, EDA, timing, noise

Procedia PDF Downloads 256
1689 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients

Authors: Karina Zaccari, Ernesto Cordeiro Marujo

Abstract:

This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.

Keywords: machine learning, medical diagnosis, meningitis detection, pediatric research

Procedia PDF Downloads 152
1688 Soft Exoskeleton Elastomer Pre-Tension Drive Control System

Authors: Andrey Yatsun, Andrei Malchikov

Abstract:

Exoskeletons are used to support and compensate for the load on the human musculoskeletal system. Elastomers are an important component of exoskeletons, providing additional support and compensating for the load. The algorithm of the active elastomer tension system provides the required auxiliary force depending on the angle of rotation and the tilt speed of the operator's torso. Feedback for the drive is provided by a force sensor integrated into the attachment of the exoskeleton vest. The use of direct force measurement ensures the required accuracy in all settings of the man-machine system. Non-adjustable elastic elements make it difficult to move without load, tilt forward and walk. A strategy for the organization of the auxiliary forces management system is proposed based on the allocation of 4 operating modes of the human-machine system.

Keywords: soft exoskeleton, mathematical modeling, pre-tension elastomer, human-machine interaction

Procedia PDF Downloads 72
1687 Mutation Analysis of the ATP7B Gene in 43 Vietnamese Wilson’s Disease Patients

Authors: Huong M. T. Nguyen, Hoa A. P. Nguyen, Mai P. T. Nguyen, Ngoc D. Ngo, Van T. Ta, Hai T. Le, Chi V. Phan

Abstract:

Wilson’s disease (WD) is an autosomal recessive disorder of the copper metabolism, which is caused by a mutation in the copper-transporting P-type ATPase (ATP7B). The mechanism of this disease is the failure of hepatic excretion of copper to bile, and leads to copper deposits in the liver and other organs. The ATP7B gene is located on the long arm of chromosome 13 (13q14.3). This study aimed to investigate the gene mutation in the Vietnamese patients with WD, and make a presymptomatic diagnosis for their familial members. Forty-three WD patients and their 65 siblings were identified as having ATP7B gene mutations. Genomic DNA was extracted from peripheral blood samples; 21 exons and exon-intron boundaries of the ATP7B gene were analyzed by direct sequencing. We recognized four mutations ([R723=; H724Tfs*34], V1042Cfs*79, D1027H, and IVS6+3A>G) in the sum of 20 detectable mutations, accounting for 87.2% of the total. Mutation S105* was determined to have a high rate (32.6%) in this study. The hotspot regions of ATP7B were found at exons 2, 16, and 8, and intron 14, in 39.6 %, 11.6 %, 9.3%, and 7 % of patients, respectively. Among nine homozygote/compound heterozygote siblings of the patients with WD, three individuals were determined as asymptomatic by screening mutations of the probands. They would begin treatment after diagnosis. In conclusion, 20 different mutations were detected in 43 WD patients. Of this number, four novel mutations were explored, including [R723=; H724Tfs*34], V1042Cfs*79, D1027H, and IVS6+3A>G. The mutation S105* is the most prevalent and has been considered as a biomarker that can be used in a rapid detection assay for diagnosis of WD patients. Exons 2, 8, and 16, and intron 14 should be screened initially for WD patients in Vietnam. Based on risk profile for WD, genetic testing for presymptomatic patients is also useful in diagnosis and treatment.

Keywords: ATP7B gene, mutation detection, presymptomatic diagnosis, Vietnamese Wilson’s disease

Procedia PDF Downloads 385
1686 Performance Evaluation of the CareSTART S1 Analyzer for Quantitative Point-Of-Care Measurement of Glucose-6-Phosphate Dehydrogenase Activity

Authors: Haiyoung Jung, Mi Joung Leem, Sun Hwa Lee

Abstract:

Background & Objective: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a genetic abnormality that results in an inadequate amount of G6PD, leading to increased susceptibility of red blood cells to reactive oxygen species and hemolysis. The present study aimed to evaluate the careSTARTTM S1 analyzer for measuring G6PD activity to hemoglobin (Hb) ratio. Methods: Precision for G6PD activity and hemoglobin measurement was evaluated using control materials with two levels on five repeated runs per day for five days. The analytic performance of the careSTARTTM S1 analyzer was compared with spectrophotometry in 40 patient samples. Reference ranges suggested by the manufacturer were validated in 20 healthy males and females each. Results: The careSTARTTM S1 analyzer demonstrated precision of 6.0% for low-level (14~45 U/dL) and 2.7% for high-level (60~90 U/dL) control in G6PD activity, and 1.4% in hemoglobin (7.9~16.3 u/g Hb). A comparison study of G6PD to Hb ratio between the careSTARTTM S1 analyzer and spectrophotometry showed an average difference of 29.1% with a positive bias of the careSTARTTM S1 analyzer. All normal samples from the healthy population were validated for the suggested reference range for males (≥2.19 U/g Hb) and females (≥5.83 U/g Hb). Conclusion: The careSTARTTM S1 analyzer demonstrated good analytical performance and can replace the current spectrophotometric measurement of G6PD enzyme activity. In the aspect of the management of clinical laboratories, it can be a reasonable option as a point-of-care analyzer with minimal handling of samples and reagents, in addition to the automatic calculation of the ratio of measured G6PD activity and Hb concentration, to minimize any clerical errors involved with manual calculation.

Keywords: POCT, G6PD, performance evaluation, careSTART

Procedia PDF Downloads 68
1685 A System to Detect Inappropriate Messages in Online Social Networks

Authors: Shivani Singh, Shantanu Nakhare, Kalyani Nair, Rohan Shetty

Abstract:

As social networking is growing at a rapid pace today it is vital that we work on improving its management. Research has shown that the content present in online social networks may have significant influence on impressionable minds. If such platforms are misused, it will lead to negative consequences. Detecting insults or inappropriate messages continues to be one of the most challenging aspects of Online Social Networks (OSNs) today. We address this problem through a Machine Learning Based Soft Text Classifier approach using Support Vector Machine algorithm. The proposed system acts as a screening mechanism the alerts the user about such messages. The messages are classified according to their subject matter and each comment is labeled for the presence of profanity and insults.

Keywords: machine learning, online social networks, soft text classifier, support vector machine

Procedia PDF Downloads 513
1684 Patient-Specific Modeling Algorithm for Medical Data Based on AUC

Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper

Abstract:

Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.

Keywords: approach instance-based, area under the ROC curve, patient-specific decision path, clinical predictions

Procedia PDF Downloads 483
1683 A Model Predictive Control Based Virtual Active Power Filter Using V2G Technology

Authors: Mahdi Zolfaghari, Seyed Hossein Hosseinian, Hossein Askarian Abyaneh, Mehrdad Abedi

Abstract:

This paper presents a virtual active power filter (VAPF) using vehicle to grid (V2G) technology to maintain power quality requirements. The optimal discrete operation of the power converter of electric vehicle (EV) is based on recognizing desired switching states using the model predictive control (MPC) algorithm. A fast dynamic response, lower total harmonic distortion (THD) and good reference tracking performance are realized through the presented control strategy. The simulation results using MATLAB/Simulink validate the effectiveness of the scheme in improving power quality as well as good dynamic response in power transferring capability.

Keywords: electric vehicle, model predictive control, power quality, V2G technology, virtual active power filter

Procedia PDF Downloads 436