Search results for: stochastic errors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1387

Search results for: stochastic errors

1117 Accelerated Evaluation of Structural Reliability under Tsunami Loading

Authors: Sai Hung Cheung, Zhe Shao

Abstract:

It is of our great interest to quantify the risk to structural dynamic systems due to earthquake-induced tsunamis in view of recent earthquake-induced tsunamis in Padang, 2004 and Tohoku, 2011 which brought huge losses of lives and properties. Despite continuous advancement in computational simulation of the tsunami and wave-structure interaction modeling, it still remains computationally challenging to evaluate the reliability of a structural dynamic system when uncertainties related to the system and its modeling are taken into account. The failure of the structure in a tsunami-wave-structural system is defined as any response quantities of the system exceeding specified thresholds during the time when the structure is subjected to dynamic wave impact due to earthquake-induced tsunamis. In this paper, an approach based on a novel integration of a recently proposed moving least squares response surface approach for stochastic sampling and the Subset Simulation algorithm is proposed. The effectiveness of the proposed approach is discussed by comparing its results with those obtained from the Subset Simulation algorithm without using the response surface approach.

Keywords: response surface, stochastic simulation, structural reliability tsunami, risk

Procedia PDF Downloads 673
1116 Response of Buildings with Soil-Structure Interaction with Varying Soil Types

Authors: Shreya Thusoo, Karan Modi, Rajesh Kumar, Hitesh Madahar

Abstract:

Over the years, it has been extensively established that the practice of assuming a structure being fixed at base, leads to gross errors in evaluation of its overall response due to dynamic loadings and overestimations in design. The extent of these errors depends on a number of variables; soil type being one of the major factor. This paper studies the effect of Soil Structure Interaction (SSI) on multi-storey buildings with varying under-laying soil types after proper validation of the effect of SSI. Analysis for soft, stiff and very stiff base soils has been carried out, using a powerful Finite Element Method (FEM) software package ANSYS v14.5. Results lead to some very important conclusions regarding time period, deflection and acceleration responses.

Keywords: dynamic response, multi-storey building, soil-structure interaction, varying soil types

Procedia PDF Downloads 482
1115 Capacity Estimation of Hybrid Automated Repeat Request Protocol for Low Earth Orbit Mega-Constellations

Authors: Arif Armagan Gozutok, Alper Kule, Burak Tos, Selman Demirel

Abstract:

Wireless communication chain requires effective ways to keep throughput efficiency high while it suffers location-dependent, time-varying burst errors. Several techniques are developed in order to assure that the receiver recovers the transmitted information without errors. The most fundamental approaches are error checking and correction besides re-transmission of the non-acknowledged packets. In this paper, stop & wait (SAW) and chase combined (CC) hybrid automated repeat request (HARQ) protocols are compared and analyzed in terms of throughput and average delay for the usage of low earth orbit (LEO) mega-constellations case. Several assumptions and technological implementations are considered as well as usage of low-density parity check (LDPC) codes together with several constellation orbit configurations.

Keywords: HARQ, LEO, satellite constellation, throughput

Procedia PDF Downloads 143
1114 Pitfalls and Drawbacks in Visual Modelling of Learning Knowledge by Students

Authors: Tatyana Gavrilova, Vadim Onufriev

Abstract:

Knowledge-based systems’ design requires the developer’s owning the advanced analytical skills. The efficient development of that skills within university courses needs a deep understanding of main pitfalls and drawbacks, which students usually make during their analytical work in form of visual modeling. Thus, it was necessary to hold an analysis of 5-th year students’ learning exercises within courses of 'Intelligent systems' and 'Knowledge engineering' in Saint-Petersburg Polytechnic University. The analysis shows that both lack of system thinking skills and methodological mistakes in course design cause the errors that are discussed in the paper. The conclusion contains an exploration of the issues and topics necessary and sufficient for the implementation of the improved practices in educational design for future curricula of teaching programs.

Keywords: knowledge based systems, knowledge engineering, students’ errors, visual modeling

Procedia PDF Downloads 309
1113 Heteroscedastic Parametric and Semiparametric Smooth Coefficient Stochastic Frontier Application to Technical Efficiency Measurement

Authors: Rebecca Owusu Coffie, Atakelty Hailu

Abstract:

Variants of production frontier models have emerged, however, only a limited number of them are applied in empirical research. Hence the effects of these alternative frontier models are not well understood, particularly within sub-Saharan Africa. In this paper, we apply recent advances in the production frontier to examine levels of technical efficiency and efficiency drivers. Specifically, we compare the heteroscedastic parametric and the semiparametric stochastic smooth coefficient (SPSC) models. Using rice production data from Ghana, our empirical estimates reveal that alternative specification of efficiency estimators results in either downward or upward bias in the technical efficiency estimates. Methodologically, we find that the SPSC model is more suitable and generates high-efficiency estimates. Within the parametric framework, we find that parameterization of both the mean and variance of the pre-truncated function is the best model. For the drivers of technical efficiency, we observed that longer farm distances increase inefficiency through a reduction in labor productivity. High soil quality, however, increases productivity through increased land productivity.

Keywords: pre-truncated, rice production, smooth coefficient, technical efficiency

Procedia PDF Downloads 443
1112 Application of Stochastic Models on the Portuguese Population and Distortion to Workers Compensation Pensioners Experience

Authors: Nkwenti Mbelli Njah

Abstract:

This research was motivated by a project requested by AXA on the topic of pensions payable under the workers compensation (WC) line of business. There are two types of pensions: the compulsorily recoverable and the not compulsorily recoverable. A pension is compulsorily recoverable for a victim when there is less than 30% of disability and the pension amount per year is less than six times the minimal national salary. The law defines that the mathematical provisions for compulsory recoverable pensions must be calculated by applying the following bases: mortality table TD88/90 and rate of interest 5.25% (maybe with rate of management). To manage pensions which are not compulsorily recoverable is a more complex task because technical bases are not defined by law and much more complex computations are required. In particular, companies have to predict the amount of payments discounted reflecting the mortality effect for all pensioners (this task is monitored monthly in AXA). The purpose of this research was thus to develop a stochastic model for the future mortality of the worker’s compensation pensioners of both the Portuguese market workers and AXA portfolio. Not only is past mortality modeled, also projections about future mortality are made for the general population of Portugal as well as for the two portfolios mentioned earlier. The global model was split in two parts: a stochastic model for population mortality which allows for forecasts, combined with a point estimate from a portfolio mortality model obtained through three different relational models (Cox Proportional, Brass Linear and Workgroup PLT). The one-year death probabilities for ages 0-110 for the period 2013-2113 are obtained for the general population and the portfolios. These probabilities are used to compute different life table functions as well as the not compulsorily recoverable reserves for each of the models required for the pensioners, their spouses and children under 21. The results obtained are compared with the not compulsory recoverable reserves computed using the static mortality table (TD 73/77) that is currently being used by AXA, to see the impact on this reserve if AXA adopted the dynamic tables.

Keywords: compulsorily recoverable, life table functions, relational models, worker’s compensation pensioners

Procedia PDF Downloads 163
1111 Human Factors Interventions for Risk and Reliability Management of Defence Systems

Authors: Chitra Rajagopal, Indra Deo Kumar, Ila Chauhan, Ruchi Joshi, Binoy Bhargavan

Abstract:

Reliability and safety are essential for the success of mission-critical and safety-critical defense systems. Humans are part of the entire life cycle of defense systems development and deployment. The majority of industrial accidents or disasters are attributed to human errors. Therefore, considerations of human performance and human reliability are critical in all complex systems, including defense systems. Defense systems are operating from the ground, naval and aerial platforms in diverse conditions impose unique physical and psychological challenges to the human operators. Some of the safety and mission-critical defense systems with human-machine interactions are fighter planes, submarines, warships, combat vehicles, aerial and naval platforms based missiles, etc. Human roles and responsibilities are also going through a transition due to the infusion of artificial intelligence and cyber technologies. Human operators, not accustomed to such challenges, are more likely to commit errors, which may lead to accidents or loss events. In such a scenario, it is imperative to understand the human factors in defense systems for better systems performance, safety, and cost-effectiveness. A case study using Task Analysis (TA) based methodology for assessment and reduction of human errors in the Air and Missile Defense System in the context of emerging technologies were presented. Action-oriented task analysis techniques such as Hierarchical Task Analysis (HTA) and Operator Action Event Tree (OAET) along with Critical Action and Decision Event Tree (CADET) for cognitive task analysis was used. Human factors assessment based on the task analysis helps in realizing safe and reliable defense systems. These techniques helped in the identification of human errors during different phases of Air and Missile Defence operations, leading to meet the requirement of a safe, reliable and cost-effective mission.

Keywords: defence systems, reliability, risk, safety

Procedia PDF Downloads 134
1110 Informed Urban Design: Minimizing Urban Heat Island Intensity via Stochastic Optimization

Authors: Luis Guilherme Resende Santos, Ido Nevat, Leslie Norford

Abstract:

The Urban Heat Island (UHI) is characterized by increased air temperatures in urban areas compared to undeveloped rural surrounding environments. With urbanization and densification, the intensity of UHI increases, bringing negative impacts on livability, health and economy. In order to reduce those effects, it is required to take into consideration design factors when planning future developments. Given design constraints such as population size and availability of area for development, non-trivial decisions regarding the buildings’ dimensions and their spatial distribution are required. We develop a framework for optimization of urban design in order to jointly minimize UHI intensity and buildings’ energy consumption. First, the design constraints are defined according to spatial and population limits in order to establish realistic boundaries that would be applicable in real life decisions. Second, the tools Urban Weather Generator (UWG) and EnergyPlus are used to generate outputs of UHI intensity and total buildings’ energy consumption, respectively. Those outputs are changed based on a set of variable inputs related to urban morphology aspects, such as building height, urban canyon width and population density. Lastly, an optimization problem is cast where the utility function quantifies the performance of each design candidate (e.g. minimizing a linear combination of UHI and energy consumption), and a set of constraints to be met is set. Solving this optimization problem is difficult, since there is no simple analytic form which represents the UWG and EnergyPlus models. We therefore cannot use any direct optimization techniques, but instead, develop an indirect “black box” optimization algorithm. To this end we develop a solution that is based on stochastic optimization method, known as the Cross Entropy method (CEM). The CEM translates the deterministic optimization problem into an associated stochastic optimization problem which is simple to solve analytically. We illustrate our model on a typical residential area in Singapore. Due to fast growth in population and built area and land availability generated by land reclamation, urban planning decisions are of the most importance for the country. Furthermore, the hot and humid climate in the country raises the concern for the impact of UHI. The problem presented is highly relevant to early urban design stages and the objective of such framework is to guide decision makers and assist them to include and evaluate urban microclimate and energy aspects in the process of urban planning.

Keywords: building energy consumption, stochastic optimization, urban design, urban heat island, urban weather generator

Procedia PDF Downloads 130
1109 Stochastic Richelieu River Flood Modeling and Comparison of Flood Propagation Models: WMS (1D) and SRH (2D)

Authors: Maryam Safrai, Tewfik Mahdi

Abstract:

This article presents the stochastic modeling of the Richelieu River flood in Quebec, Canada, occurred in the spring of 2011. With the aid of the one-dimensional Watershed Modeling System (WMS (v.10.1) and HEC-RAS (v.4.1) as a flood simulator, the delineation of the probabilistic flooded areas was considered. Based on the Monte Carlo method, WMS (v.10.1) delineated the probabilistic flooded areas with corresponding occurrence percentages. Furthermore, results of this one-dimensional model were compared with the results of two-dimensional model (SRH-2D) for the evaluation of efficiency and precision of each applied model. Based on this comparison, computational process in two-dimensional model is longer and more complicated versus brief one-dimensional one. Although, two-dimensional models are more accurate than one-dimensional method, but according to existing modellers, delineation of probabilistic flooded areas based on Monte Carlo method is achievable via one-dimensional modeler. The applied software in this case study greatly responded to verify the research objectives. As a result, flood risk maps of the Richelieu River with the two applied models (1d, 2d) could elucidate the flood risk factors in hydrological, hydraulic, and managerial terms.

Keywords: flood modeling, HEC-RAS, model comparison, Monte Carlo simulation, probabilistic flooded area, SRH-2D, WMS

Procedia PDF Downloads 139
1108 Modelling Water Usage for Farming

Authors: Ozgu Turgut

Abstract:

Water scarcity is a problem for many regions which requires immediate action, and solutions cannot be postponed for a long time. It is known that farming consumes a significant portion of usable water. Although in recent years, the efforts to make the transition to dripping or spring watering systems instead of using surface watering started to pay off. It is also known that this transition is not necessarily translated into an increase in the capacity dedicated to other water consumption channels such as city water or power usage. In order to control and allocate the water resource more purposefully, new watering systems have to be used with monitoring abilities that can limit the usage capacity for each farm. In this study, a decision support model which relies on a bi-objective stochastic linear optimization is proposed, which takes crop yield and price volatility into account. The model generates annual planting plans as well as water usage limits for each farmer in the region while taking the total value (i.e., profit) of the overall harvest. The mathematical model is solved using the L-shaped method optimally. The decision support model can be especially useful for regional administrations to plan next year's planting and water incomes and expenses. That is why not only a single optimum but also a set of representative solutions from the Pareto set is generated with the proposed approach.

Keywords: decision support, farming, water, tactical planning, optimization, stochastic, pareto

Procedia PDF Downloads 70
1107 The Martingale Options Price Valuation for European Puts Using Stochastic Differential Equation Models

Authors: H. C. Chinwenyi, H. D. Ibrahim, F. A. Ahmed

Abstract:

In modern financial mathematics, valuing derivatives such as options is often a tedious task. This is simply because their fair and correct prices in the future are often probabilistic. This paper examines three different Stochastic Differential Equation (SDE) models in finance; the Constant Elasticity of Variance (CEV) model, the Balck-Karasinski model, and the Heston model. The various Martingales option price valuation formulas for these three models were obtained using the replicating portfolio method. Also, the numerical solution of the derived Martingales options price valuation equations for the SDEs models was carried out using the Monte Carlo method which was implemented using MATLAB. Furthermore, results from the numerical examples using published data from the Nigeria Stock Exchange (NSE), all share index data show the effect of increase in the underlying asset value (stock price) on the value of the European Put Option for these models. From the results obtained, we see that an increase in the stock price yields a decrease in the value of the European put option price. Hence, this guides the option holder in making a quality decision by not exercising his right on the option.

Keywords: equivalent martingale measure, European put option, girsanov theorem, martingales, monte carlo method, option price valuation formula

Procedia PDF Downloads 131
1106 Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization

Authors: Tomoaki Hashimoto

Abstract:

Recently, feedback control systems using random dither quantizers have been proposed for linear discrete-time systems. However, the constraints imposed on state and control variables have not yet been taken into account for the design of feedback control systems with random dither quantization. Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. An important advantage of model predictive control is its ability to handle constraints imposed on state and control variables. Based on the model predictive control approach, the objective of this paper is to present a control method that satisfies probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. In other words, this paper provides a method for solving the optimal control problems subject to probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization.

Keywords: optimal control, stochastic systems, random dither, quantization

Procedia PDF Downloads 441
1105 Study of Error Analysis and Sources of Uncertainty in the Measurement of Residual Stresses by the X-Ray Diffraction

Authors: E. T. Carvalho Filho, J. T. N. Medeiros, L. G. Martinez

Abstract:

Residual stresses are self equilibrating in a rigid body that acts on the microstructure of the material without application of an external load. They are elastic stresses and can be induced by mechanical, thermal and chemical processes causing a deformation gradient in the crystal lattice favoring premature failure in mechanicals components. The search for measurements with good reliability has been of great importance for the manufacturing industries. Several methods are able to quantify these stresses according to physical principles and the response of the mechanical behavior of the material. The diffraction X-ray technique is one of the most sensitive techniques for small variations of the crystalline lattice since the X-ray beam interacts with the interplanar distance. Being very sensitive technique is also susceptible to variations in measurements requiring a study of the factors that influence the final result of the measurement. Instrumental, operational factors, form deviations of the samples and geometry of analyzes are some variables that need to be considered and analyzed in order for the true measurement. The aim of this work is to analyze the sources of errors inherent to the residual stress measurement process by X-ray diffraction technique making an interlaboratory comparison to verify the reproducibility of the measurements. In this work, two specimens were machined, differing from each other by the surface finishing: grinding and polishing. Additionally, iron powder with particle size less than 45 µm was selected in order to be a reference (as recommended by ASTM E915 standard) for the tests. To verify the deviations caused by the equipment, those specimens were positioned and with the same analysis condition, seven measurements were carried out at 11Ψ tilts. To verify sample positioning errors, seven measurements were performed by positioning the sample at each measurement. To check geometry errors, measurements were repeated for the geometry and Bragg Brentano parallel beams. In order to verify the reproducibility of the method, the measurements were performed in two different laboratories and equipments. The results were statistically worked out and the quantification of the errors.

Keywords: residual stress, x-ray diffraction, repeatability, reproducibility, error analysis

Procedia PDF Downloads 181
1104 A Dynamic Equation for Downscaling Surface Air Temperature

Authors: Ch. Surawut, D. Sukawat

Abstract:

In order to utilize results from global climate models, dynamical and statistical downscaling techniques have been developed. For dynamical downscaling, usually a limited area numerical model is used, with associated high computational cost. This research proposes dynamic equation for specific space-time regional climate downscaling from the Educational Global Climate Model (EdGCM) for Southeast Asia. The equation is for surface air temperature. These equations provide downscaling values of surface air temperature at any specific location and time without running a regional climate model. In the proposed equations, surface air temperature is approximated from ground temperature, sensible heat flux and 2m wind speed. Results from the application of the equation show that the errors from the proposed equations are less than the errors for direct interpolation from EdGCM.

Keywords: dynamic equation, downscaling, inverse distance, weight interpolation

Procedia PDF Downloads 301
1103 Spatial Organization of Organelles in Living Cells: Insights from Mathematical Modelling

Authors: Congping Lin

Abstract:

Intracellular transport in fungi has a number of important roles in, e.g., filamentous fungal growth and cellular metabolism. Two basic mechanisms for intracellular transport are motor-driven trafficking along microtubules (MTs) and diffusion. Mathematical modelling has been actively developed to understand such intracellular transport and provide unique insight into cellular complexity. Based on live-cell imaging data in Ustilago hyphal cells, probabilistic models have been developed to study mechanism underlying spatial organization of molecular motors and organelles. In particular, anther mechanism - stochastic motility of dynein motors along MTs has been found to contribute to half of its accumulation at hyphal tip in order to support early endosome (EE) recycling. The EE trafficking not only facilitates the directed motion of peroxisomes but also enhances their diffusive motion. Considering the importance of spatial organization of early endosomes in supporting peroxisome movement, computational and experimental approaches have been combined to a whole-cell level. Results from this interdisciplinary study promise insights into requirements for other membrane trafficking systems (e.g., in neurons), but also may inform future 'synthetic biology' studies.

Keywords: intracellular transport, stochastic process, molecular motors, spatial organization

Procedia PDF Downloads 132
1102 Human Errors in IT Services, HFACS Model in Root Cause Categorization

Authors: Kari Saarelainen, Marko Jantti

Abstract:

IT service trending of root causes of service incidents and problems is an important part of proactive problem management and service improvement. Human error related root causes are an important root cause category also in IT service management, although it’s proportion among root causes is smaller than in the other industries. The research problem in this study is: How root causes of incidents related to human errors should be categorized in an ITSM organization to effectively support service improvement. Categorization based on IT service management processes and based on Human Factors Analysis and Classification System (HFACS) taxonomy was studied in a case study. HFACS is widely used in human error root cause categorization across many industries. Combining these two categorization models in a two dimensional matrix was found effective, yet impractical for daily work.

Keywords: IT service management, ITIL, incident, problem, HFACS, swiss cheese model

Procedia PDF Downloads 486
1101 Assessment of Students Skills in Error Detection in SQL Classes using Rubric Framework - An Empirical Study

Authors: Dirson Santos De Campos, Deller James Ferreira, Anderson Cavalcante Gonçalves, Uyara Ferreira Silva

Abstract:

Rubrics to learning research provide many evaluation criteria and expected performance standards linked to defined student activity for learning and pedagogical objectives. Despite the rubric being used in education at all levels, academic literature on rubrics as a tool to support research in SQL Education is quite rare. There is a large class of SQL queries is syntactically correct, but certainly, not all are semantically correct. Detecting and correcting errors is a recurring problem in SQL education. In this paper, we usthe Rubric Abstract Framework (RAF), which consists of steps, that allows us to map the information to measure student performance guided by didactic objectives defined by the teacher as long as it is contextualized domain modeling by rubric. An empirical study was done that demonstrates how rubrics can mitigate student difficulties in finding logical errors and easing teacher workload in SQL education. Detecting and correcting logical errors is an important skill for students. Researchers have proposed several ways to improve SQL education because understanding this paradigm skills are crucial in software engineering and computer science. The RAF instantiation was using in an empirical study developed during the COVID-19 pandemic in database course. The pandemic transformed face-to-face and remote education, without presential classes. The lab activities were conducted remotely, which hinders the teaching-learning process, in particular for this research, in verifying the evidence or statements of knowledge, skills, and abilities (KSAs) of students. Various research in academia and industry involved databases. The innovation proposed in this paper is the approach used where the results obtained when using rubrics to map logical errors in query formulation have been analyzed with gains obtained by students empirically verified. The research approach can be used in the post-pandemic period in both classroom and distance learning.

Keywords: rubric, logical error, structured query language (SQL), empirical study, SQL education

Procedia PDF Downloads 188
1100 Annual Water Level Simulation Using Support Vector Machine

Authors: Maryam Khalilzadeh Poshtegal, Seyed Ahmad Mirbagheri, Mojtaba Noury

Abstract:

In this paper, by application of the input yearly data of rainfall, temperature and flow to the Urmia Lake, the simulation of water level fluctuation were applied by means of three models. According to the climate change investigation the fluctuation of lakes water level are of high interest. This study investigate data-driven models, support vector machines (SVM), SVM method which is a new regression procedure in water resources are applied to the yearly level data of Lake Urmia that is the biggest and the hyper saline lake in Iran. The evaluated lake levels are found to be in good correlation with the observed values. The results of SVM simulation show better accuracy and implementation. The mean square errors, mean absolute relative errors and determination coefficient statistics are used as comparison criteria.

Keywords: simulation, water level fluctuation, urmia lake, support vector machine

Procedia PDF Downloads 365
1099 Enhancing Nursing Students’ Communication Using TeamSTEPPS to Improve Patient Safety

Authors: Stefanie Santorsola, Natasha Frank

Abstract:

Improving healthcare safety necessitates examining current trends and beliefs about safety and devising strategies to improve. Errors in healthcare continue to increase and be experienced by patients, which is preventable and directly correlated to a breakdown in healthcare communication. TeamSTEPPS is an evidence-based process designed to improve the quality and safety of healthcare by improving communication and team processes. Communication is at the core of effective team collaboration and is vital for patient safety. TeamSTEPPS offers insights and strategies for improving communication and teamwork and reducing preventable errors to create a safer healthcare environment for patients. The academic, clinical, and educational environment for nursing students is vital in preparing them for professional practice by providing them with foundational knowledge and abilities. This environment provides them with a prime opportunity to learn about errors and the importance of effective communication to enhance patient safety, as nursing students are often unprepared to deal with errors. Proactively introducing and discussing errors through a supportive culture during the nursing student’s academic beginnings has the potential to carry key concepts into practice to improve and enhance patient safety. TeamSTEPPS has been used globally and has collectively positively impacted improvements in patient safety and teamwork. A workshop study was introduced in winter 2023 of registered practical nurses (RPN) students bridging to the baccalaureate nursing program; the majority of the RPNs in the bridging program were actively employed in a variety of healthcare facilities during the semester. The workshop study did receive academic institution ethics board approval, and participants signed a consent form prior to participating in the study. The premise of the workshop was to introduce TeamSTEPPS and a variety of strategies to these students and have students keep a reflective journal to incorporate the presented communication strategies in their practicum setting and keep a reflective journal on the effect and outcomes of the strategies in the healthcare setting. Findings from the workshop study supported the objective of the project, resulting in students verbalizing notable improvements in team functioning in the healthcare environment resulting from the incorporation of enhanced communication strategies from TeamSTEPPS that they were introduced to in the workshop study. Implication for educational institutions is the potential of further advancing the safety literacy and abilities of nursing students in preparing them for entering the workforce and improving safety for patients.

Keywords: teamstepps, education, patient safety, communication

Procedia PDF Downloads 57
1098 An Optimal Algorithm for Finding (R, Q) Policy in a Price-Dependent Order Quantity Inventory System with Soft Budget Constraint

Authors: S. Hamid Mirmohammadi, Shahrazad Tamjidzad

Abstract:

This paper is concerned with the single-item continuous review inventory system in which demand is stochastic and discrete. The budget consumed for purchasing the ordered items is not restricted but it incurs extra cost when exceeding specific value. The unit purchasing price depends on the quantity ordered under the all-units discounts cost structure. In many actual systems, the budget as a resource which is occupied by the purchased items is limited and the system is able to confront the resource shortage by charging more costs. Thus, considering the resource shortage costs as a part of system costs, especially when the amount of resource occupied by the purchased item is influenced by quantity discounts, is well motivated by practical concerns. In this paper, an optimization problem is formulated for finding the optimal (R, Q) policy, when the system is influenced by the budget limitation and a discount pricing simultaneously. Properties of the cost function are investigated and then an algorithm based on a one-dimensional search procedure is proposed for finding an optimal (R, Q) policy which minimizes the expected system costs .

Keywords: (R, Q) policy, stochastic demand, backorders, limited resource, quantity discounts

Procedia PDF Downloads 640
1097 The Response of the Central Bank to the Exchange Rate Movement: A Dynamic Stochastic General Equilibrium-Vector Autoregressive Approach for Tunisian Economy

Authors: Abdelli Soulaima, Belhadj Besma

Abstract:

The paper examines the choice of the central bank toward the movements of the nominal exchange rate and evaluates its effects on the volatility of the output growth and the inflation. The novel hybrid method of the dynamic stochastic general equilibrium called the DSGE-VAR is proposed for analyzing this policy experiment in a small scale open economy in particular Tunisia. The contribution is provided to the empirical literature as we apply the Tunisian data with this model, which is rarely used in this context. Note additionally that the issue of treating the degree of response of the central bank to the exchange rate in Tunisia is special. To ameliorate the estimation, the Bayesian technique is carried out for the sample 1980:q1 to 2011 q4. Our results reveal that the central bank should not react or softly react to the exchange rate. The variance decomposition displayed that the overall inflation volatility is more pronounced with the fixed exchange rate regime for most of the shocks except for the productivity and the interest rate. The output volatility is also higher with this regime with the majority of the shocks exempting the foreign interest rate and the interest rate shocks.

Keywords: DSGE-VAR modeling, exchange rate, monetary policy, Bayesian estimation

Procedia PDF Downloads 293
1096 Influence and Dissemination of Solecism among Moroccan High School and University Students

Authors: Rachid Ed-Dali, Khalid Elasri

Abstract:

Mass media seem to provide a rich content for language acquisition. Exposure to television, the Internet, the mobile phone and other technological gadgets and devices helps enrich the student’s lexicon positively as well as negatively. The difficulties encountered by students while learning and acquiring second languages in addition to their eagerness to comprehend the content of a particular program prompt them to diversify their methods so as to achieve their targets. The present study highlights the significance of certain media channels and their involvement in language acquisition with the employment of the Natural Approach to further grasp whether students, especially secondary and high school students, learn and acquire errors through watching subtitled television programs. The chief objective is investigating the deductive and inductive relevance of certain programs beside the involvement of peripheral learning while acquiring mistakes.

Keywords: errors, mistakes, Natural Approach, peripheral learning, solecism

Procedia PDF Downloads 115
1095 Technical Efficiency of Small-Scale Honey Producer in Ethiopia: A Stochastic Frontier Analysis

Authors: Kaleb Shiferaw, Berhanu Geberemedhin

Abstract:

Ethiopian farmers have a long tradition of beekeeping and the country has huge potential for honey production. However traditional mode of production still dominates the sub sector which negatively affect the total production and productivity. A number of studies have been conducted to better understand the working honey production, however, none of them systematically investigate the extent of technical efficiency of the sub-sector. This paper uses Stochastic Frontier production model to quantifying the extent of technical efficiency and identify exogenous determinant of inefficiency. The result showed that consistent with other studies traditional practice dominate small scale honey production in Ethiopia. The finding also revealed that use of purchased inputs such as bee forage and other supplement is very limited among honey producers indicating that natural bee forage is the primary source of bee forage. The immediate consequence of all these is low production and productivity. The number of hives the household owns, whether the household used improved apiculture technologies, availability of natural forest which is the primary sources of nectar for bees and amount of land owned by the households were found to have a significant influence on the amount of honey produced by beekeeper. Our result further showed that the mean technical efficiency of honey producers is 0.79 implying that, on average honey producer produce 80 percent of the maximum output. The implication is that 20 percent of the potential output is lost due to technical inefficiency. Number of hives owned by a honey produces, distance to district town-a proxy to market access, household wealth, and whether the household head has a leadership role in the PA affect the technical efficiency of honey producers. The finding suggest that policies that aim to expand the use of improved hives is expected to increase the honey production at household level. The result also suggest that investment on rural infrastructure would be instrumental in improving technical efficiency of honey producer.

Keywords: small-scale honey producer, Ethiopia, technical efficiency in apiculture, stochastic frontier analysis

Procedia PDF Downloads 234
1094 Parameter Estimation for Contact Tracing in Graph-Based Models

Authors: Augustine Okolie, Johannes Müller, Mirjam Kretzchmar

Abstract:

We adopt a maximum-likelihood framework to estimate parameters of a stochastic susceptible-infected-recovered (SIR) model with contact tracing on a rooted random tree. Given the number of detectees per index case, our estimator allows to determine the degree distribution of the random tree as well as the tracing probability. Since we do not discover all infectees via contact tracing, this estimation is non-trivial. To keep things simple and stable, we develop an approximation suited for realistic situations (contract tracing probability small, or the probability for the detection of index cases small). In this approximation, the only epidemiological parameter entering the estimator is the basic reproduction number R0. The estimator is tested in a simulation study and applied to covid-19 contact tracing data from India. The simulation study underlines the efficiency of the method. For the empirical covid-19 data, we are able to compare different degree distributions and perform a sensitivity analysis. We find that particularly a power-law and a negative binomial degree distribution meet the data well and that the tracing probability is rather large. The sensitivity analysis shows no strong dependency on the reproduction number.

Keywords: stochastic SIR model on graph, contact tracing, branching process, parameter inference

Procedia PDF Downloads 75
1093 The Use of Surveys to Combat Fake News in Media Literacy Education

Authors: Jaejun Jong

Abstract:

Fake news has recently become a serious international problem. Therefore, researchers and policymakers worldwide have sought to understand fake news and develop strategies to combat it. This study consists of two primary parts: (1) a literature review of how surveys were used to understand fake news and identify problems caused by fake news, and (2) a discussion of how surveys were used to fight back against fake news in educational settings. This second section specifically analyzes surveys used to evaluate a South Korean elementary school program designed to improve students’ metacognition and critical thinking. This section seeks to identify potential problems that may occur in the elementary school setting. The literature review shows that surveys can help people to understand fake news based on its traits rather than its definition due to the lack of agreement on the definition of fake news. The literature review also shows that people are not good at identifying fake news or evaluating their own ability to identify fake news; indeed, they are more likely to share information that aligns with their previous beliefs. In addition, the elementary school survey data shows that there may be substantial errors in the program evaluation process, likely caused by processing errors or the survey procedure, though the exact cause is not specified. Such a significant error in evaluating the effects of the educational program prevents teachers from making proper decisions and accurately evaluating the program. Therefore, identifying the source of such errors would improve the overall quality of education, which would benefit both teachers and students.

Keywords: critical thinking, elementary education, program evaluation, survey

Procedia PDF Downloads 102
1092 A Stochastic Vehicle Routing Problem with Ordered Customers and Collection of Two Similar Products

Authors: Epaminondas G. Kyriakidis, Theodosis D. Dimitrakos, Constantinos C. Karamatsoukis

Abstract:

The vehicle routing problem (VRP) is a well-known problem in Operations Research and has been widely studied during the last fifty-five years. The context of the VRP is that of delivering or collecting products to or from customers who are scattered in a geographical area and have placed orders for these products. A vehicle or a fleet of vehicles start their routes from a depot and visit the customers in order to satisfy their demands. Special attention has been given to the capacitated VRP in which the vehicles have limited carrying capacity for the goods that are delivered or collected. In the present work, we present a specific capacitated stochastic vehicle routing problem which has many realistic applications. We develop and analyze a mathematical model for a specific vehicle routing problem in which a vehicle starts its route from a depot and visits N customers according to a particular sequence in order to collect from them two similar but not identical products. We name these products, product 1 and product 2. Each customer possesses items either of product 1 or product 2 with known probabilities. The number of the items of product 1 or product 2 that each customer possesses is a discrete random variable with known distribution. The actual quantity and the actual type of product that each customer possesses are revealed only when the vehicle arrives at the customer’s site. It is assumed that the vehicle has two compartments. We name these compartments, compartment 1 and compartment 2. It is assumed that compartment 1 is suitable for loading product 1 and compartment 2 is suitable for loading product 2. However, it is permitted to load items of product 1 into compartment 2 and items of product 2 into compartment 1. These actions cause costs that are due to extra labor. The vehicle is allowed during its route to return to the depot to unload the items of both products. The travel costs between consecutive customers and the travel costs between the customers and the depot are known. The objective is to find the optimal routing strategy, i.e. the routing strategy that minimizes the total expected cost among all possible strategies for servicing all customers. It is possible to develop a suitable dynamic programming algorithm for the determination of the optimal routing strategy. It is also possible to prove that the optimal routing strategy has a specific threshold-type strategy. Specifically, it is shown that for each customer the optimal actions are characterized by some critical integers. This structural result enables us to design a special-purpose dynamic programming algorithm that operates only over these strategies having this structural property. Extensive numerical results provide strong evidence that the special-purpose dynamic programming algorithm is considerably more efficient than the initial dynamic programming algorithm. Furthermore, if we consider the same problem without the assumption that the customers are ordered, numerical experiments indicate that the optimal routing strategy can be computed if N is smaller or equal to eight.

Keywords: dynamic programming, similar products, stochastic demands, stochastic preferences, vehicle routing problem

Procedia PDF Downloads 256
1091 Comparative Study on the Evaluation of Patient Safety in Malaysian Retail Pharmacy Setup

Authors: Palanisamy Sivanandy, Tan Tyng Wei, Tan Wee Loon, Lim Chong Yee

Abstract:

Background: Patient safety has become a major concern over recent years with elevated medication errors; particularly prescribing and dispensing errors. Meticulous prescription screening and diligent drug dispensing is therefore important to prevent drug-related adverse events from inflicting harm to patients. Hence, pharmacists play a significant role in this scenario. The evaluation of patient safety in a pharmacy setup is crucial to contemplate current practices, attitude and perception of pharmacists towards patient safety. Method: The questionnaire for Pharmacy Survey on Patient Safety Culture developed by the Agency for Healthcare and Research Quality (AHRQ) was used to assess patient safety. Main objectives of the study was to evaluate the attitude and perception of pharmacists towards patient safety in retail pharmacies setup in Malaysia. Results: 417 questionnaire were distributed via convenience sampling in three different states of Malaysia, where 390 participants were responded and the response rate was 93.52%. The overall positive response rate (PRR) was ranged from 31.20% to 87.43% and the average PRR was found to be 67%. The overall patient safety grade for our pharmacies was appreciable and it ranges from good to very good. The study found a significant difference in the perception of senior and junior pharmacists towards patient safety. The internal consistency of the questionnaire contents /dimensions was satisfactory (Cronbach’s alpha - 0.92). Conclusion: Our results reflect that there was positive attitude and perception of retail pharmacists towards patient safety. Despite this, various efforts can be implemented in the future to amplify patient safety in retail pharmacies setup.

Keywords: patient safety, attitude, perception, positive response rate, medication errors

Procedia PDF Downloads 318
1090 Error Detection and Correction for Onboard Satellite Computers Using Hamming Code

Authors: Rafsan Al Mamun, Md. Motaharul Islam, Rabana Tajrin, Nabiha Noor, Shafinaz Qader

Abstract:

In an attempt to enrich the lives of billions of people by providing proper information, security and a way of communicating with others, the need for efficient and improved satellites is constantly growing. Thus, there is an increasing demand for better error detection and correction (EDAC) schemes, which are capable of protecting the data onboard the satellites. The paper is aimed towards detecting and correcting such errors using a special algorithm called the Hamming Code, which uses the concept of parity and parity bits to prevent single-bit errors onboard a satellite in Low Earth Orbit. This paper focuses on the study of Low Earth Orbit satellites and the process of generating the Hamming Code matrix to be used for EDAC using computer programs. The most effective version of Hamming Code generated was the Hamming (16, 11, 4) version using MATLAB, and the paper compares this particular scheme with other EDAC mechanisms, including other versions of Hamming Codes and Cyclic Redundancy Check (CRC), and the limitations of this scheme. This particular version of the Hamming Code guarantees single-bit error corrections as well as double-bit error detections. Furthermore, this version of Hamming Code has proved to be fast with a checking time of 5.669 nanoseconds, that has a relatively higher code rate and lower bit overhead compared to the other versions and can detect a greater percentage of errors per length of code than other EDAC schemes with similar capabilities. In conclusion, with the proper implementation of the system, it is quite possible to ensure a relatively uncorrupted satellite storage system.

Keywords: bit-flips, Hamming code, low earth orbit, parity bits, satellite, single error upset

Procedia PDF Downloads 128
1089 Coupling Random Demand and Route Selection in the Transportation Network Design Problem

Authors: Shabnam Najafi, Metin Turkay

Abstract:

Network design problem (NDP) is used to determine the set of optimal values for certain pre-specified decision variables such as capacity expansion of nodes and links by optimizing various system performance measures including safety, congestion, and accessibility. The designed transportation network should improve objective functions defined for the system by considering the route choice behaviors of network users at the same time. The NDP studies mostly investigated the random demand and route selection constraints separately due to computational challenges. In this work, we consider both random demand and route selection constraints simultaneously. This work presents a nonlinear stochastic model for land use and road network design problem to address the development of different functional zones in urban areas by considering both cost function and air pollution. This model minimizes cost function and air pollution simultaneously with random demand and stochastic route selection constraint that aims to optimize network performance via road capacity expansion. The Bureau of Public Roads (BPR) link impedance function is used to determine the travel time function in each link. We consider a city with origin and destination nodes which can be residential or employment or both. There are set of existing paths between origin-destination (O-D) pairs. Case of increasing employed population is analyzed to determine amount of roads and origin zones simultaneously. Minimizing travel and expansion cost of routes and origin zones in one side and minimizing CO emission in the other side is considered in this analysis at the same time. In this work demand between O-D pairs is random and also the network flow pattern is subject to stochastic user equilibrium, specifically logit route choice model. Considering both demand and route choice, random is more applicable to design urban network programs. Epsilon-constraint is one of the methods to solve both linear and nonlinear multi-objective problems. In this work epsilon-constraint method is used to solve the problem. The problem was solved by keeping first objective (cost function) as the objective function of the problem and second objective as a constraint that should be less than an epsilon, where epsilon is an upper bound of the emission function. The value of epsilon should change from the worst to the best value of the emission function to generate the family of solutions representing Pareto set. A numerical example with 2 origin zones and 2 destination zones and 7 links is solved by GAMS and the set of Pareto points is obtained. There are 15 efficient solutions. According to these solutions as cost function value increases, emission function value decreases and vice versa.

Keywords: epsilon-constraint, multi-objective, network design, stochastic

Procedia PDF Downloads 647
1088 Flood Predicting in Karkheh River Basin Using Stochastic ARIMA Model

Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh

Abstract:

Floods have huge environmental and economic impact. Therefore, flood prediction is given a lot of attention due to its importance. This study analysed the annual maximum streamflow (discharge) (AMS or AMD) of Karkheh River in Karkheh River Basin for flood predicting using ARIMA model. For this purpose, we use the Box-Jenkins approach, which contains four-stage method model identification, parameter estimation, diagnostic checking and forecasting (predicting). The main tool used in ARIMA modelling was the SAS and SPSS software. Model identification was done by visual inspection on the ACF and PACF. SAS software computed the model parameters using the ML, CLS and ULS methods. The diagnostic checking tests, AIC criterion, RACF graph and RPACF graphs, were used for selected model verification. In this study, the best ARIMA models for Annual Maximum Discharge (AMD) time series was (4,1,1) with their AIC value of 88.87. The RACF and RPACF showed residuals’ independence. To forecast AMD for 10 future years, this model showed the ability of the model to predict floods of the river under study in the Karkheh River Basin. Model accuracy was checked by comparing the predicted and observation series by using coefficient of determination (R2).

Keywords: time series modelling, stochastic processes, ARIMA model, Karkheh river

Procedia PDF Downloads 286