Search results for: non-adiabatic fiber sensor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2562

Search results for: non-adiabatic fiber sensor

2292 Hydrothermally Fabricated 3-D Nanostructure Metal Oxide Sensors

Authors: Mohammad Alenezi

Abstract:

Hierarchical nanostructures with higher dimensionality, consisting of nanostructure building blocks such as nanowires, nanotubes, or nanosheets are very attractive. They hold great properties like the high surface-to-volume ratio and well-ordered porous structures, which can be very challenging to attain for other mono-morphological nanostructures. Well-ordered hierarchical nanostructures with high surface-to-volume ratios facilitate gas diffusion into their surfaces as well as scattering of light. Therefore, hierarchical nanostructures are expected to perform highly as gas sensors. A multistage controlled hydrothermal synthesis method to fabricate high-performance single ZnO brushlike hierarchical nanostructure gas sensor from initial nanowires is reported. The performance of the sensor based on brush-like hierarchical nanostructure is analyzed and compared to that of a nanowire gas sensor. The hierarchical gas sensor demonstrated high sensitivity toward low concentration of acetone at high speed of response. The enhancement in the hierarchical sensor performance is attributed to the increased surface to volume ratio, reduction in dimensionality of the nanowire building blocks, formation of junctions between the initial nanowire and the secondary nanowires, and enhanced gas diffusion into the surfaces of the hierarchical nanostructures.

Keywords: metal oxide, nanostructure, hydrothermal, sensor

Procedia PDF Downloads 245
2291 Thermal Analysis of a Composite of Coco Fiber and Látex

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

Given the unquestionable need of environmental preservation, the natural fibers have been seen as a salutary alternative for production of composites in substitution to the synthetic fibers, vitreous and metallic. In this work, the behavior of a composite was analyzed done with fiber of the peel of the coconut as reinforcement and latex as head office, when submitted the source of heat. The temperature profiles were verified in the internal surfaces and it expresses of the composite as well as the temperature gradient in the same. It was also analyzed the behavior of this composite when submitted to a cold source. As consequence, in function of the answers of the system, conclusions were reached.

Keywords: natural fiber, composite, temperature, latex, gradient

Procedia PDF Downloads 779
2290 Mutual Authentication for Sensor-to-Sensor Communications in IoT Infrastructure

Authors: Shadi Janbabaei, Hossein Gharaee Garakani, Naser Mohammadzadeh

Abstract:

Internet of things is a new concept that its emergence has caused ubiquity of sensors in human life, so that at any time, all data are collected, processed and transmitted by these sensors. In order to establish a secure connection, the first challenge is authentication between sensors. However, this challenge also requires some features so that the authentication is done properly. Anonymity, untraceability, and being lightweight are among the issues that need to be considered. In this paper, we have evaluated the authentication protocols and have analyzed the security vulnerabilities found in them. Then an improved light weight authentication protocol for sensor-to-sensor communications is presented which uses the hash function and logical operators. The analysis of protocol shows that security requirements have been met and the protocol is resistant against various attacks. In the end, by decreasing the number of computational cost functions, it is argued that the protocol is lighter than before.

Keywords: anonymity, authentication, Internet of Things, lightweight, un-traceability

Procedia PDF Downloads 265
2289 Effect of Mercerization on Coconut Fiber Surface Condition

Authors: Sphiwe Simelane, Daniel Madyira

Abstract:

The use of natural fibers requires that they should be treated in preparation for their use in Natural Fiber-reinforced polymer composites. This paper reports on the effects of sodium hydroxide (NaOH) treatment on the surface of coconut fibers. The fibers were subjected to 5%, 10%, 15% and 20% NaOH concentrations and soaked for 4 hours and thoroughly rinsed and allowed to dry in the open air for seven days, after which time they were dried in an oven for 30 minutes. Untreated and treated coconut fibers were observed under the Scanning Electron Microscope and it was noted that the surface structure of the fibers was modified differently by the different NaOH concentrations, and the resultant colour of the treated fibers got darker as the solution concentration increased, and the texture felt rougher to the touch as a result of the erosion of the fiber surface. Further, the increase in alkali concentration striped the surface of more constituents, thus exposing “pits” and other surface components rendering the surface rough.

Keywords: coconut fiber, scanning electron microscope, sodium hydroxide, surface treatment

Procedia PDF Downloads 176
2288 Tunnel Convergence Monitoring by Distributed Fiber Optics Embedded into Concrete

Authors: R. Farhoud, G. Hermand, S. Delepine-lesoille

Abstract:

Future underground facility of French radioactive waste disposal, named Cigeo, is designed to store intermediate and high level - long-lived French radioactive waste. Intermediate level waste cells are tunnel-like, about 400m length and 65 m² section, equipped with several concrete layers, which can be grouted in situ or composed of tunnel elements pre-grouted. The operating space into cells, to allow putting or removing waste containers, should be monitored for several decades without any maintenance. To provide the required information, design was performed and tested in situ in Andra’s underground laboratory (URL) at 500m under the surface. Based on distributed optic fiber sensors (OFS) and backscattered Brillouin for strain and Raman for temperature interrogation technics, the design consists of 2 loops of OFS, at 2 different radiuses, around the monitored section (Orthoradiale strains) and longitudinally. Strains measured by distributed OFS cables were compared to classical vibrating wire extensometers (VWE) and platinum probes (Pt). The OFS cables were composed of 2 cables sensitive to strains and temperatures and one only for temperatures. All cables were connected, between sensitive part and instruments, to hybrid cables to reduce cost. The connection has been made according to 2 technics: splicing fibers in situ after installation or preparing each fiber with a connector and only plugging them together in situ. Another challenge was installing OFS cables along a tunnel mad in several parts, without interruption along several parts. First success consists of the survival rate of sensors after installation and quality of measurements. Indeed, 100% of OFS cables, intended for long-term monitoring, survived installation. Few new configurations were tested with relative success. Measurements obtained were very promising. Indeed, after 3 years of data, no difference was observed between cables and connection methods of OFS and strains fit well with VWE and Pt placed at the same location. Data, from Brillouin instrument sensitive to strains and temperatures, were compensated with data provided by Raman instrument only sensitive to temperature and into a separated fiber. These results provide confidence in the next steps of the qualification processes which consists of testing several data treatment approach for direct analyses.

Keywords: monitoring, fiber optic, sensor, data treatment

Procedia PDF Downloads 107
2287 Damage Micromechanisms of Coconut Fibers and Chopped Strand Mats of Coconut Fibers

Authors: Rios A. S., Hild F., Deus E. P., Aimedieu P., Benallal A.

Abstract:

The damage micromechanisms of chopped strand mats manufactured by compression of Brazilian coconut fiber and coconut fibers in different external conditions (chemical treatment) were used in this study. Mechanical analysis testing uniaxial traction were used with Digital Image Correlation (DIC). The images captured during the tensile test in the coconut fibers and coconut fiber mats showed an uncertainty of measurement in order centipixels. The initial modulus (modulus of elasticity) and tensile strength decreased with increasing diameter for the four conditions of coconut fibers. The DIC showed heterogeneous deformation fields for coconut fibers and mats and the displacement fields showed the rupture process of coconut fiber. The determination of poisson’s ratio of the mat was performed through of transverse and longitudinal deformations found in the elastic region.

Keywords: coconut fiber, mechanical behavior, digital image correlation, micromechanism

Procedia PDF Downloads 436
2286 Behavior Analysis Based on Nine Degrees of Freedom Sensor for Emergency Rescue Evacuation Support System

Authors: Maeng-Hwan Hyun, Dae-Man Do, Young-Bok Choi

Abstract:

Around the world, there are frequent incidents of natural disasters, such as earthquakes, tsunamis, floods, and snowstorms, as well as man made disasters such as fires, arsons, and acts of terror. These diverse and unpredictable adversities have resulted in a number of fatalities and injuries. If disaster occurrence can be assessed quickly and information such as the exact location of the disaster and evacuation routes can be provided, victims can promptly move to safe locations, minimizing losses. This paper proposes a behavior analysis method based on a nine degrees-of-freedom (9-DOF) sensor that is effective for the emergency rescue evacuation support system (ERESS), which is being researched with an objective of providing evacuation support during disasters. Based on experiments performed using the acceleration sensor and the gyroscope sensor in the 9-DOF sensor, data are analyzed for human behavior regarding stationary position, walking, running, and during emergency situation to suggest guidelines for system judgment. Using the results of the experiments performed to determine disaster occurrence, it was confirmed that the proposed method quickly determines whether a disaster has occurred.

Keywords: behavior analysis, nine degrees of freedom sensor, emergency rescue, disaster

Procedia PDF Downloads 276
2285 Simulation and Experimental Study on Tensile Force Measurement of PS Tendons Using an Embedded EM Sensor

Authors: ByoungJoon Yu, Junkyeong Kim, Seunghee Park

Abstract:

The tensile force estimation PS tendons is in great demand on monitoring the structural health condition of PSC girder bridges. Measuring the tensile force of the PS tendons inside the PSC girder using conventional methods is hard due to its location. In this paper, an embedded EM sensor based tensile force estimation of PS tendon was carried out by measuring the permeability of the PS tendons in PSC girder. The permeability is changed due to the induced tensile force by the magneto-elastic effect and the effect then lead to the gradient change of the B-H curve. An experiment was performed to obtain the signals from the EM sensor using three down-scaled PSC girder models. The permeability of PS tendons was proportionally decreased according to the increase of the tensile forces. To verify the experiment results, a simulation of tensile force estimation will be conducted in further study. Consequently, it is expected that both the experiment results and the simulation results increase the accuracy of the tensile force estimation, and then it could be one of the solutions for evaluating the performance of PSC girder.

Keywords: tensile force estimation, embedded EM sensor, PSC girder, EM sensor simulation, cross section loss

Procedia PDF Downloads 446
2284 A Modularized Sensing Platform for Sensor Design Demonstration

Authors: Chun-Ming Huang, Yi-Jun Liu, Yi-Jie Hsieh, Jin-Ju Chue, Wei-Lin Lai, Chun-Yu Chen, Chih-Chyau Yang, Chien-Ming Wu

Abstract:

The market of wearable devices has been growing rapidly in two years. The integration of sensors and wearable devices has become the trend of the next technology products. Thus, the academics and industries are eager to cultivate talented persons in sensing technology. Currently, academic and industries have more and more demands on the integrations of versatile sensors and applications, especially for the teams who focus on the development of sensor circuit architectures. These teams tape-out many MEMs sensors chips through the chip fabrication service from National Chip Implementation Center (CIC). However, most of these teams are only able to focus on the circuit design of MEMs sensors; they lack the key support of further system demonstration. This paper follows the CIC’s main mission of promoting the chip/system advanced design technology and aims to establish the environments of the modularized sensing system platform and the system design flow with the measurement and calibration technology. These developed environments are used to support these research teams and help academically advanced sensor designs to perform the system demonstration. Thus, the research groups can promote and transfer their advanced sensor designs to industrial and further derive the industrial economic values. In this paper, the modularized sensing platform is proposed to enable the system demonstration for advanced sensor chip design. The environment of sensor measurement and calibration is established for academic to achieve an accurate sensor result. Two reference sensor designs cooperated with the modularized sensing platform are given to show the sensing system integration and demonstration. These developed environments and platforms are currently provided to academics in Taiwan, and so that the academics can obtain a better environment to perform the system demonstration and improve the research and teaching quality.

Keywords: modularized sensing platform, sensor design and calibration, sensor system, sensor system design flow

Procedia PDF Downloads 211
2283 Multiple Query Optimization in Wireless Sensor Networks Using Data Correlation

Authors: Elaheh Vaezpour

Abstract:

Data sensing in wireless sensor networks is done by query deceleration the network by the users. In many applications of the wireless sensor networks, many users send queries to the network simultaneously. If the queries are processed separately, the network’s energy consumption will increase significantly. Therefore, it is very important to aggregate the queries before sending them to the network. In this paper, we propose a multiple query optimization framework based on sensors physical and temporal correlation. In the proposed method, queries are merged and sent to network by considering correlation among the sensors in order to reduce the communication cost between the sensors and the base station.

Keywords: wireless sensor networks, multiple query optimization, data correlation, reducing energy consumption

Procedia PDF Downloads 311
2282 Energy Efficient Firefly Algorithm in Wireless Sensor Network

Authors: Wafa’ Alsharafat, Khalid Batiha, Alaa Kassab

Abstract:

Wireless sensor network (WSN) is comprised of a huge number of small and cheap devices known as sensor nodes. Usually, these sensor nodes are massively and deployed randomly as in Ad-hoc over hostile and harsh environment to sense, collect and transmit data to the needed locations (i.e., base station). One of the main advantages of WSN is that the ability to work in unattended and scattered environments regardless the presence of humans such as remote active volcanoes environments or earthquakes. In WSN expanding network, lifetime is a major concern. Clustering technique is more important to maximize network lifetime. Nature-inspired algorithms are developed and optimized to find optimized solutions for various optimization problems. We proposed Energy Efficient Firefly Algorithm to improve network lifetime as long as possible.

Keywords: wireless network, SN, Firefly, energy efficiency

Procedia PDF Downloads 364
2281 An Experimental Investigation on Mechanical Behaviour of Fiber Reinforced Polymer (FRP) Composite Laminates Used for Pipe Applications

Authors: Tasnim Kallel, Rim Taktak

Abstract:

In this experimental work, fiber reinforced polymer (FRP) composite laminates were manufactured using hand lay-up technique. The unsaturated polyester (UP) and vinylester (VE) were considered as resins reinforced with different woven fabrics (bidirectional and quadriaxial rovings). The mechanical behaviour of the resulting composites was studied and then compared. A focus was essentially done on the evaluation of the effect of E-Glass fiber and ply orientation on the mechanical properties such as tensile strength, flexural strength, and hardness of the studied composite laminates. Also, crack paths and fracture surfaces were examined, and failure mechanisms were analyzed. From the main results, it was found that the quadriaxial composite laminates (QA/VE and QA/UP) with stacking sequences of [0°, +45°, 90°, -45°] present a very ductile tensile behaviour. The other laminate samples (R500/VE, RM/VE, R500/UP and RM/UP) show a very brittle behaviour whatever the used resin. The intrinsic toughness KIC of QA/VE laminate, obtained in fracture tests, are found more important than that of RM/VE composite. Thus, the QA/VE samples, as multidirectional laminate, presents the highest interlaminar fracture resistance.

Keywords: crack growth, fiber orientation, fracture behavior, e-glass fiber fabric, laminate composite, mechanical behavior

Procedia PDF Downloads 213
2280 A Numerical Study on Micromechanical Aspects in Short Fiber Composites

Authors: I. Ioannou, I. M. Gitman

Abstract:

This study focused on the contribution of micro-mechanical parameters on the macro-mechanical response of short fiber composites, namely polypropylene matrix reinforced by glass fibers. In the framework of this paper, an attention has been given to the glass fibers length, as micromechanical parameter influences the overall macroscopic material’s behavior. Three dimensional numerical models were developed and analyzed through the concept of a Representative Volume Element (RVE). Results of the RVE-based approach were compared with analytical Halpin-Tsai’s model.

Keywords: effective properties, homogenization, representative volume element, short fiber reinforced composites

Procedia PDF Downloads 243
2279 Study of Energy Efficient and Quality of Service Based Routing Protocols in Wireless Sensor Networking

Authors: Sachin Sharma

Abstract:

A wireless sensor network (WSN) consists of a large number of sensor nodes which are deployed over an area to perform local computations based on information gathered from the surroundings. With the increasing demand for real-time applications in WSN, real-time critical events anticipate an efficient quality-of-service (QoS) based routing for data delivery from the network infrastructure. Hence, maximizing the lifetime of the network through minimizing the energy is an important challenge in WSN; sensors cannot be easily replaced or recharged due to their ad-hoc deployment in a hazardous environment. Considerable research has been focused on developing robust energy efficient QoS based routing protocols. The main focus of this article is primarily on periodical cycling schemes which represent the most compatible technique for energy saving and we also focus on the data-driven approaches that can be used to improve the energy efficiency. Finally, we will make a review on some communication protocols proposed for sensor networks.

Keywords: energy efficient, quality of service, wireless sensor networks, MAC

Procedia PDF Downloads 318
2278 Open Reading Frame Marker-Based Capacitive DNA Sensor for Ultrasensitive Detection of Escherichia coli O157:H7 in Potable Water

Authors: Rehan Deshmukh, Sunil Bhand, Utpal Roy

Abstract:

We report the label-free electrochemical detection of Escherichia coli O157:H7 (ATCC 43895) in potable water using a DNA probe as a sensing molecule targeting the open reading frame marker. Indium tin oxide (ITO) surface was modified with organosilane and, glutaraldehyde was applied as a linker to fabricate the DNA sensor chip. Non-Faradic electrochemical impedance spectroscopy (EIS) behavior was investigated at each step of sensor fabrication using cyclic voltammetry, impedance, phase, relative permittivity, capacitance, and admittance. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) revealed significant changes in surface topographies of DNA sensor chip fabrication. The decrease in the percentage of pinholes from 2.05 (Bare ITO) to 1.46 (after DNA hybridization) suggested the capacitive behavior of the DNA sensor chip. The results of non-Faradic EIS studies of DNA sensor chip showed a systematic declining trend of the capacitance as well as the relative permittivity upon DNA hybridization. DNA sensor chip exhibited linearity in 0.5 to 25 pg/10mL for E. coli O157:H7 (ATCC 43895). The limit of detection (LOD) at 95% confidence estimated by logistic regression was 0.1 pg DNA/10mL of E. coli O157:H7 (equivalent to 13.67 CFU/10mL) with a p-value of 0.0237. Moreover, the fabricated DNA sensor chip used for detection of E. coli O157:H7 showed no significant cross-reactivity with closely and distantly related bacteria such as Escherichia coli MTCC 3221, Escherichia coli O78:H11 MTCC 723 and Bacillus subtilis MTCC 736. Consequently, the results obtained in our study demonstrated the possible application of developed DNA sensor chips for E. coli O157:H7 ATCC 43895 in real water samples as well.

Keywords: capacitance, DNA sensor, Escherichia coli O157:H7, open reading frame marker

Procedia PDF Downloads 121
2277 Study on High Performance Fiber Reinforced Concrete (HPFRC) Beams on Subjected to Cyclic Loading

Authors: A. Siva, K. Bala Subramanian, Kinson Prabu

Abstract:

Concrete is widely used construction materials all over the world. Now a day’s fibers are used in this construction due to its advantages like increase in stiffness, energy absorption, ductility and load carrying capacity. The fiber used in the concrete to increases the structural integrity of the member. It is one of the emerging techniques used in the construction industry. In this paper, the effective utilization of high-performance fiber reinforced concrete (HPFRC) beams has been experimental investigated. The experimental investigation has been conducted on different steel fibers (Hooked, Crimpled, and Hybrid) under cyclic loading. The behaviour of HPFRC beams is compared with the conventional beams. Totally four numbers of specimens were cast with different content of fiber concrete and compared conventional concrete. The fibers are added to the concrete by base volume replacement of concrete. The silica fume and superplasticizers were used to modify the properties of concrete. Single point loading was carried out for all the specimens, and the beam specimens were subjected to cyclic loading. The load-deflection behaviour of fibers is compared with the conventional concrete. The ultimate load carrying capacity, energy absorption and ductility of hybrid fiber reinforced concrete is higher than the conventional concrete by 5% to 10%.

Keywords: cyclic loading, ductility, high performance fiber reinforced concrete, structural integrity

Procedia PDF Downloads 246
2276 Tensile Behavior of Oil Palm Fiber Concrete (OPFC) with Different Fiber Volume

Authors: Khairul Zahreen Mohd Arof, Rahimah Muhamad

Abstract:

Oil palm fiber (OPF) is a fibrous material produced from the waste of palm oil industry which is suitable to be used in construction industry. The applications of OPF in concrete can reduce the material costs and enhance concrete behavior. Dog-bone test provides significant results for investigating the behavior of fiber reinforced concrete under tensile loading. It is able to provide stress-strain profile, modulus of elasticity, stress at cracking point and total crack width. In this research, dog-bone tests have been conducted to analyze total crack width, stress-strain profile, and modulus of elasticity of OPFC. Specimens are in a dog-bone shape with a long notch in the middle as compared to the end, to ensure cracks occur only within the notch. Tests were instrumented using a universal testing machine Shimadzu 300kN, a linear variable differential transformer and two strain gauges. A total of nine specimens with different fibers at fiber volume fractions of 0.75%, 1.00%, and 1.25% have been tested to analyze the behavior under tensile loading. Also, three specimens of plain concrete fiber have been tested as control specimens. The tensile test of all specimens have been carried out for concrete age exceed 28 days. It shows that OPFC able to reduce total crack width. In addition, OPFC has higher cracking stress than plain concrete. The study shows plain concrete can be improved with the addition of OPF.

Keywords: cracks, crack width, dog-bone test, oil palm fiber concrete

Procedia PDF Downloads 309
2275 Orthophthalic Polyester Composite Reinforced with Sodium Alginate-Treated Anahaw (Saribus rotundifolius) Fibers

Authors: Terence Tumolva, Johannes Kristoff Vito, Joanna Crystelle Ragasa, Renz Marion Dela Cruz

Abstract:

Natural fiber reinforced polymer (NFRP) composites have been the focus of various research projects due to their advantages over synthetic fiber-reinforced composites. For this study, ana haw is used as the fiber source due to its abundance throughout the Philippines. A problem addressed in this study is the need for an environment-friendly method of fiber treatment. The use of sodium alginate to treat fibers was thus investigated. The fibers were immersed in a sodium alginate solution and then in a calcium chloride solution afterwards. The treated fibers were used to reinforce orthophthalic unsaturated polyester (ortho-UP) resin. The mechanical properties were tested using a universal testing machine (UTM), and the fracture surfaces were characterized using scanning electron microscope (SEM). Results showed that the sodium alginate treatment had increased the tensile and flexural strength of the composite. The increase in fiber load had also been found to increase the stiffness of the composite. However, sodium alginate treatment did not provide any significant improvement in the wet mechanical properties of the NFRP. The composite is comparable to some commercially available polymeric materials.

Keywords: NFRP, composite, alginate, anahaw, polymer

Procedia PDF Downloads 309
2274 An Energy-Balanced Clustering Method on Wireless Sensor Networks

Authors: Yu-Ting Tsai, Chiun-Chieh Hsu, Yu-Chun Chu

Abstract:

In recent years, due to the development of wireless network technology, many researchers have devoted to the study of wireless sensor networks. The applications of wireless sensor network mainly use the sensor nodes to collect the required information, and send the information back to the users. Since the sensed area is difficult to reach, there are many restrictions on the design of the sensor nodes, where the most important restriction is the limited energy of sensor nodes. Because of the limited energy, researchers proposed a number of ways to reduce energy consumption and balance the load of sensor nodes in order to increase the network lifetime. In this paper, we proposed the Energy-Balanced Clustering method with Auxiliary Members on Wireless Sensor Networks(EBCAM)based on the cluster routing. The main purpose is to balance the energy consumption on the sensed area and average the distribution of dead nodes in order to avoid excessive energy consumption because of the increasing in transmission distance. In addition, we use the residual energy and average energy consumption of the nodes within the cluster to choose the cluster heads, use the multi hop transmission method to deliver the data, and dynamically adjust the transmission radius according to the load conditions. Finally, we use the auxiliary cluster members to change the delivering path according to the residual energy of the cluster head in order to its load. Finally, we compare the proposed method with the related algorithms via simulated experiments and then analyze the results. It reveals that the proposed method outperforms other algorithms in the numbers of used rounds and the average energy consumption.

Keywords: auxiliary nodes, cluster, load balance, routing algorithm, wireless sensor network

Procedia PDF Downloads 255
2273 A Web Service Based Sensor Data Management System

Authors: Rose A. Yemson, Ping Jiang, Oyedeji L. Inumoh

Abstract:

The deployment of wireless sensor network has rapidly increased, however with the increased capacity and diversity of sensors, and applications ranging from biological, environmental, military etc. generates tremendous volume of data’s where more attention is placed on the distributed sensing and little on how to manage, analyze, retrieve and understand the data generated. This makes it more quite difficult to process live sensor data, run concurrent control and update because sensor data are either heavyweight, complex, and slow. This work will focus on developing a web service platform for automatic detection of sensors, acquisition of sensor data, storage of sensor data into a database, processing of sensor data using reconfigurable software components. This work will also create a web service based sensor data management system to monitor physical movement of an individual wearing wireless network sensor technology (SunSPOT). The sensor will detect movement of that individual by sensing the acceleration in the direction of X, Y and Z axes accordingly and then send the sensed reading to a database that will be interfaced with an internet platform. The collected sensed data will determine the posture of the person such as standing, sitting and lying down. The system is designed using the Unified Modeling Language (UML) and implemented using Java, JavaScript, html and MySQL. This system allows real time monitoring an individual closely and obtain their physical activity details without been physically presence for in-situ measurement which enables you to work remotely instead of the time consuming check of an individual. These details can help in evaluating an individual’s physical activity and generate feedback on medication. It can also help in keeping track of any mandatory physical activities required to be done by the individuals. These evaluations and feedback can help in maintaining a better health status of the individual and providing improved health care.

Keywords: HTML, java, javascript, MySQL, sunspot, UML, web-based, wireless network sensor

Procedia PDF Downloads 190
2272 Implementation of an IoT Sensor Data Collection and Analysis Library

Authors: Jihyun Song, Kyeongjoo Kim, Minsoo Lee

Abstract:

Due to the development of information technology and wireless Internet technology, various data are being generated in various fields. These data are advantageous in that they provide real-time information to the users themselves. However, when the data are accumulated and analyzed, more various information can be extracted. In addition, development and dissemination of boards such as Arduino and Raspberry Pie have made it possible to easily test various sensors, and it is possible to collect sensor data directly by using database application tools such as MySQL. These directly collected data can be used for various research and can be useful as data for data mining. However, there are many difficulties in using the board to collect data, and there are many difficulties in using it when the user is not a computer programmer, or when using it for the first time. Even if data are collected, lack of expert knowledge or experience may cause difficulties in data analysis and visualization. In this paper, we aim to construct a library for sensor data collection and analysis to overcome these problems.

Keywords: clustering, data mining, DBSCAN, k-means, k-medoids, sensor data

Procedia PDF Downloads 349
2271 Improving the Quality of Casava Peel-Leaf Mixture through Fermentation with Rhizopus oligosporusas Poultry Ration

Authors: Mirnawati, G. Ciptaan, Ferawati

Abstract:

This study aims to improve the quality of the cassava peel-leaf mixture (CPLM) through fermentation with Rhizopus oligosporusas poultry ration. This research is an experimental study using a completely randomized design (CRD) with four treatments and five replications. The treatments were cassava peel-leaf mixture (CPLM) fermented with Rhizopus oligosporus. The treatments were a combination of cassava peel and leaves with the ratio of; A (9:1), B (8:2), C (7:3), and D (6:4). The observed variables were protease enzyme activity, crude protein, crude fiber, nitrogen retention, digestibility of crude fiber, and metabolic energy. The results of the diversity analysis showed that there was a very significant (p < 0.01) effect on protease activity, crude protein, crude fiber, nitrogen retention, digestibility of crude fiber, and energy metabolism of fermented CPLM. Based on the results of the study, it can be concluded that CPLM (6:4) fermented with Rhizopus oligosporus gave the best results seen from protease activity 7,25 U/ml, 21.23% crude protein, 19.80% crude fiber, 59.65% nitrogen retention, 62.99% crude fiber digestibility and metabolic energy 2671 Kcal/kg.

Keywords: quality, Casava peel-leaf mixture, fermentation, Rhizopus oligosporus

Procedia PDF Downloads 152
2270 Extraction and Characterization of Ethiopian Hibiscus macranthus Bast Fiber

Authors: Solomon Tilahun Desisa, Muktar Seid Hussen

Abstract:

Hibiscus macranthus is one of family Malvaceae and genus Hibiscus plant which grows mainly in western part of Ethiopia. Hibiscus macranthus is the most adaptable and abundant plant in the nation, which are used as an ornamental plant often a hedge or fence plant, and used as a firewood after harvesting the stem together with the bark, and used also as a fiber for trying different kinds of things by forming the rope. However, Hibiscus macranthus plant fibre has not been commercially exploited and extracted properly. This study of work describes the possibility of mechanical and retting methods of Hibiscus macranthus fibre extraction and characterization. Hibiscus macranthus fibre is a bast fibre which obtained naturally from the stem or stalks of the dicotyledonous plant since it is a natural cellulose plant fiber. And the fibre characterized by studying its physical and chemical properties. The physical characteristics were investigated as follows, including the length of 100-190mm, fineness of 1.0-1.2Tex, diameter under X100 microscopic view 16-21 microns, the moisture content of 12.46% and dry tenacity of 48-57cN/Tex along with breaking extension of 0.9-1.6%. Hibiscus macranthus fiber productivity was observed that 12-18% of the stem out of which more than 65% is primary long fibers. The fiber separation methods prove to decrease of non-cellulose ingredients in the order of mechanical, water and chemical methods. The color measurement also shows the raw Hibiscus macranthus fiber has a natural golden color according to YID1925 and paler look under both retting methods than mechanical separation. Finally, it is suggested that Hibiscus macranthus fibre can be used for manufacturing of natural and organic crop and coffee packages as well as super absorbent, fine and high tenacity textile products.

Keywords: Hibiscus macranthus, bast fiber, extraction, characterization

Procedia PDF Downloads 183
2269 Detecting Black Hole Attacks in Body Sensor Networks

Authors: Sara Alshehri, Bayan Alenzi, Atheer Alshehri, Samia Chelloug, Zainab Almry, Hussah Albugmai

Abstract:

This paper concerns body area networks sensor that collect signals around a human body. The black hole attacks are the main security challenging problem because the data traffic can be dropped at any node. The focus of our proposed solution is to efficiently route data packets while detecting black hole nodes.

Keywords: body sensor networks, security, black hole, routing, broadcasting, OMNeT++

Procedia PDF Downloads 614
2268 The Influence of Basalt and Steel Fibers on the Flexural Behavior of RC Beams

Authors: Yasmin Z. Murad, Haneen M. Abdl-Jabbar

Abstract:

An experimental program is conducted in this research to investigate the influence of basalt fibers and steel fibers on the flexural behavior of RC beams. Reinforced concrete beams are constructed using steel fiber concrete and basalt fiber concrete. Steel and basalt fibers are included in a percentage of 15% and 2.5% of the total cement weight, respectively. Test results have shown that basalt fibers have increased the load carrying capacity of the beams up to 30% and the maximum deflection to almost 2.4 times that measured in the control specimen. It has also shown that steel fibers have increased the load carrying capacity of the beams up to 47% and the ultimate deflection is almost duplicated compared to the control beam. Steel and basalt fibers have increased the ductility of the reinforced concrete beams.

Keywords: basalt fiber, steel fiber, reinforced concrete beams, flexural behavior

Procedia PDF Downloads 122
2267 Effect of Volume Fraction of Fibre on the Mechanical Properties of Nanoclay Reinforced E-Glass-Epoxy Composites

Authors: K. Krushnamurty, D. Rasmitha, I. Srikanth, K. Ramji, Ch. Subrahmanyam

Abstract:

E-glass-epoxy laminated composites having different fiber volume fractions (40, 50, 60 and 70) were fabricated with and without the addition of nanoclay. Flexural strength and tensile strength of the composite laminates were determined. It was observed that, with increasing the fiber volume fraction (Vf) of fiber from 40 to 60, the ability of nanoclay to enhance the tensile and flexural strength of E-glass-epoxy composites decreases significantly. At 70Vf, the tensile and flexural strength of the nanoclay reinforced E-glass-epoxy were found to be lowest when compared to the E-glass-epoxy composite made without the addition of nanoclay. Based on the obtained data and microstructure of the tested samples, plausible mechanism for the observed trends has been proposed. The enhanced mechanical properties for nanoclay reinforced E-glass-epoxy composites for 40-60 Vf, due to higher interface toughness coupled with strong interfilament bonding may have ensured the homogeneous load distribution across all the glass fibers. Results in the decrease in mechanical properties at 70Vf, may be due to the inability of the matrix to bind the nanoclay and glass-fibers.

Keywords: e-glass-epoxy composite laminates, fiber volume fraction, e-glass fiber, mechanical properties, delamination

Procedia PDF Downloads 318
2266 Inverse Saturable Absorption in Non-linear Amplifying Loop Mirror Mode-Locked Fiber Laser

Authors: Haobin Zheng, Xiang Zhang, Yong Shen, Hongxin Zou

Abstract:

The research focuses on mode-locked fiber lasers with a non-linear amplifying loop mirror (NALM). Although these lasers have shown potential, they still have limitations in terms of low repetition rate. The self-starting of mode-locking in NALM is influenced by the cross-phase modulation (XPM) effect, which has not been thoroughly studied. The aim of this study is two-fold. First, to overcome the difficulties associated with increasing the repetition rate in mode-locked fiber lasers with NALM. Second, to analyze the influence of XPM on self-starting of mode-locking. The power distributions of two counterpropagating beams in the NALM and the differential non-linear phase shift (NPS) accumulations are calculated. The analysis is conducted from the perspective of NPS accumulation. The differential NPSs for continuous wave (CW) light and pulses in the fiber loop are compared to understand the inverse saturable absorption (ISA) mechanism during pulse formation in NALM. The study reveals a difference in differential NPSs between CW light and pulses in the fiber loop in NALM. This difference leads to an ISA mechanism, which has not been extensively studied in artificial saturable absorbers. The ISA in NALM provides an explanation for experimentally observed phenomena, such as active mode-locking initiation through tapping the fiber or fine-tuning light polarization. These findings have important implications for optimizing the design of NALM and reducing the self-starting threshold of high-repetition-rate mode-locked fiber lasers. This study contributes to the theoretical understanding of NALM mode-locked fiber lasers by exploring the ISA mechanism and its impact on self-starting of mode-locking. The research fills a gap in the existing knowledge regarding the XPM effect in NALM and its role in pulse formation. This study provides insights into the ISA mechanism in NALM mode-locked fiber lasers and its role in selfstarting of mode-locking. The findings contribute to the optimization of NALM design and the reduction of self-starting threshold, which are essential for achieving high-repetition-rate operation in fiber lasers. Further research in this area can lead to advancements in the field of mode-locked fiber lasers with NALM.

Keywords: inverse saturable absorption, NALM, mode-locking, non-linear phase shift

Procedia PDF Downloads 83
2265 Detecting and Secluding Route Modifiers by Neural Network Approach in Wireless Sensor Networks

Authors: C. N. Vanitha, M. Usha

Abstract:

In a real world scenario, the viability of the sensor networks has been proved by standardizing the technologies. Wireless sensor networks are vulnerable to both electronic and physical security breaches because of their deployment in remote, distributed, and inaccessible locations. The compromised sensor nodes send malicious data to the base station, and thus, the total network effectiveness will possibly be compromised. To detect and seclude the Route modifiers, a neural network based Pattern Learning predictor (PLP) is presented. This algorithm senses data at any node on present and previous patterns obtained from the en-route nodes. The eminence of any node is upgraded by their predicted and reported patterns. This paper propounds a solution not only to detect the route modifiers, but also to seclude the malevolent nodes from the network. The simulation result proves the effective performance of the network by the presented methodology in terms of energy level, routing and various network conditions.

Keywords: neural networks, pattern learning, security, wireless sensor networks

Procedia PDF Downloads 381
2264 Development and Analysis of Waste Human Hair Fiber Reinforced Composite

Authors: Tesfaye Worku

Abstract:

Human hair, chicken feathers, and hairs of other birds and animals are commonly described as waste products, and the currently available disposal methods, such as burying and burning these waste products, are contributing to environmental pollution. However, those waste products are used to develop fiber-reinforced textile composite material. In this research work, the composite was developed using human hair fiber and analysis of the mechanical and physical properties of the developed composite sample. A composite sample was made with different ratios of human hair and unsaturated polyester resin, and an analysis of the mechanical and physical properties of the developed composite sample was tested according to standards. The fabricated human hair fibers reinforced polymer matrix composite sample has given encouraging results in terms of high strength and rigidity for lightweight house ceiling board material.

Keywords: composite, human hair fiber, matrix, unsaturated polyester

Procedia PDF Downloads 28
2263 Reliable and Error-Free Transmission through Multimode Polymer Optical Fibers in House Networks

Authors: Tariq Ahamad, Mohammed S. Al-Kahtani, Taisir Eldos

Abstract:

Optical communications technology has made enormous and steady progress for several decades, providing the key resource in our increasingly information-driven society and economy. Much of this progress has been in finding innovative ways to increase the data carrying capacity of a single optical fiber. In this research article we have explored basic issues in terms of security and reliability for secure and reliable information transfer through the fiber infrastructure. Conspicuously, one potentially enormous source of improvement has however been left untapped in these systems: fibers can easily support hundreds of spatial modes, but today’s commercial systems (single-mode or multi-mode) make no attempt to use these as parallel channels for independent signals. Bandwidth, performance, reliability, cost efficiency, resiliency, redundancy, and security are some of the demands placed on telecommunications today. Since its initial development, fiber optic systems have had the advantage of most of these requirements over copper-based and wireless telecommunications solutions. The largest obstacle preventing most businesses from implementing fiber optic systems was cost. With the recent advancements in fiber optic technology and the ever-growing demand for more bandwidth, the cost of installing and maintaining fiber optic systems has been reduced dramatically. With so many advantages, including cost efficiency, there will continue to be an increase of fiber optic systems replacing copper-based communications. This will also lead to an increase in the expertise and the technology needed to tap into fiber optic networks by intruders. As ever before, all technologies have been subject to hacking and criminal manipulation, fiber optics is no exception. Researching fiber optic security vulnerabilities suggests that not everyone who is responsible for their networks security is aware of the different methods that intruders use to hack virtually undetected into fiber optic cables. With millions of miles of fiber optic cables stretching across the globe and carrying information including but certainly not limited to government, military, and personal information, such as, medical records, banking information, driving records, and credit card information; being aware of fiber optic security vulnerabilities is essential and critical. Many articles and research still suggest that fiber optics is expensive, impractical and hard to tap. Others argue that it is not only easily done, but also inexpensive. This paper will briefly discuss the history of fiber optics, explain the basics of fiber optic technologies and then discuss the vulnerabilities in fiber optic systems and how they can be better protected. Knowing the security risks and knowing the options available may save a company a lot embarrassment, time, and most importantly money.

Keywords: in-house networks, fiber optics, security risk, money

Procedia PDF Downloads 391