Search results for: integrated network analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32831

Search results for: integrated network analysis

32561 Virtual Routing Function Allocation Method for Minimizing Total Network Power Consumption

Authors: Kenichiro Hida, Shin-Ichi Kuribayashi

Abstract:

In a conventional network, most network devices, such as routers, are dedicated devices that do not have much variation in capacity. In recent years, a new concept of network functions virtualisation (NFV) has come into use. The intention is to implement a variety of network functions with software on general-purpose servers and this allows the network operator to select their capacities and locations without any constraints. This paper focuses on the allocation of NFV-based routing functions which are one of critical network functions, and presents the virtual routing function allocation algorithm that minimizes the total power consumption. In addition, this study presents the useful allocation policy of virtual routing functions, based on an evaluation with a ladder-shaped network model. This policy takes the ratio of the power consumption of a routing function to that of a circuit and traffic distribution between areas into consideration. Furthermore, the present paper shows that there are cases where the use of NFV-based routing functions makes it possible to reduce the total power consumption dramatically, in comparison to a conventional network, in which it is not economically viable to distribute small-capacity routing functions.

Keywords: NFV, resource allocation, virtual routing function, minimum power consumption

Procedia PDF Downloads 341
32560 Building Green Infrastructure Networks Based on Cadastral Parcels Using Network Analysis

Authors: Gon Park

Abstract:

Seoul in South Korea established the 2030 Seoul City Master Plan that contains green-link projects to connect critical green areas within the city. However, the plan does not have detailed analyses for green infrastructure to incorporate land-cover information to many structural classes. This study maps green infrastructure networks of Seoul for complementing their green plans with identifying and raking green areas. Hubs and links of main elements of green infrastructure have been identified from incorporating cadastral data of 967,502 parcels to 135 of land use maps using geographic information system. Network analyses were used to rank hubs and links of a green infrastructure map with applying a force-directed algorithm, weighted values, and binary relationships that has metrics of density, distance, and centrality. The results indicate that network analyses using cadastral parcel data can be used as the framework to identify and rank hubs, links, and networks for the green infrastructure planning under a variable scenarios of green areas in cities.

Keywords: cadastral data, green Infrastructure, network analysis, parcel data

Procedia PDF Downloads 205
32559 An Exploratory Sequential Design: A Mixed Methods Model for the Statistics Learning Assessment with a Bayesian Network Representation

Authors: Zhidong Zhang

Abstract:

This study established a mixed method model in assessing statistics learning with Bayesian network models. There are three variants in exploratory sequential designs. There are three linked steps in one of the designs: qualitative data collection and analysis, quantitative measure, instrument, intervention, and quantitative data collection analysis. The study used a scoring model of analysis of variance (ANOVA) as a content domain. The research study is to examine students’ learning in both semantic and performance aspects at fine grain level. The ANOVA score model, y = α+ βx1 + γx1+ ε, as a cognitive task to collect data during the student learning process. When the learning processes were decomposed into multiple steps in both semantic and performance aspects, a hierarchical Bayesian network was established. This is a theory-driven process. The hierarchical structure was gained based on qualitative cognitive analysis. The data from students’ ANOVA score model learning was used to give evidence to the hierarchical Bayesian network model from the evidential variables. Finally, the assessment results of students’ ANOVA score model learning were reported. Briefly, this was a mixed method research design applied to statistics learning assessment. The mixed methods designs expanded more possibilities for researchers to establish advanced quantitative models initially with a theory-driven qualitative mode.

Keywords: exploratory sequential design, ANOVA score model, Bayesian network model, mixed methods research design, cognitive analysis

Procedia PDF Downloads 178
32558 Vulnerability Assessment of Healthcare Interdependent Critical Infrastructure Coloured Petri Net Model

Authors: N. Nivedita, S. Durbha

Abstract:

Critical Infrastructure (CI) consists of services and technological networks such as healthcare, transport, water supply, electricity supply, information technology etc. These systems are necessary for the well-being and to maintain effective functioning of society. Critical Infrastructures can be represented as nodes in a network where they are connected through a set of links depicting the logical relationship among them; these nodes are interdependent on each other and interact with each at other at various levels, such that the state of each infrastructure influences or is correlated to the state of another. Disruption in the service of one infrastructure nodes of the network during a disaster would lead to cascading and escalating disruptions across other infrastructures nodes in the network. The operation of Healthcare Infrastructure is one such Critical Infrastructure that depends upon a complex interdependent network of other Critical Infrastructure, and during disasters it is very vital for the Healthcare Infrastructure to be protected, accessible and prepared for a mass casualty. To reduce the consequences of a disaster on the Critical Infrastructure and to ensure a resilient Critical Health Infrastructure network, knowledge, understanding, modeling, and analyzing the inter-dependencies between the infrastructures is required. The paper would present inter-dependencies related to Healthcare Critical Infrastructure based on Hierarchical Coloured Petri Nets modeling approach, given a flood scenario as the disaster which would disrupt the infrastructure nodes. The model properties are being analyzed for the various state changes which occur when there is a disruption or damage to any of the Critical Infrastructure. The failure probabilities for the failure risk of interconnected systems are calculated by deriving a reachability graph, which is later mapped to a Markov chain. By analytically solving and analyzing the Markov chain, the overall vulnerability of the Healthcare CI HCPN model is demonstrated. The entire model would be integrated with Geographic information-based decision support system to visualize the dynamic behavior of the interdependency of the Healthcare and related CI network in a geographically based environment.

Keywords: critical infrastructure interdependency, hierarchical coloured petrinet, healthcare critical infrastructure, Petri Nets, Markov chain

Procedia PDF Downloads 529
32557 A Survey of Attacks and Security Requirements in Wireless Sensor Networks

Authors: Vishnu Pratap Singh Kirar

Abstract:

Wireless sensor network (WSN) is a network of many interconnected networked systems, they equipped with energy resources and they are used to detect other physical characteristics. On WSN, there are many researches are performed in past decades. WSN applicable in many security systems govern by military and in many civilian related applications. Thus, the security of WSN gets attention of researchers and gives an opportunity for many future aspects. Still, there are many other issues are related to deployment and overall coverage, scalability, size, energy efficiency, quality of service (QoS), computational power and many more. In this paper we discus about various applications and security related issue and requirements of WSN.

Keywords: wireless sensor network (WSN), wireless network attacks, wireless network security, security requirements

Procedia PDF Downloads 491
32556 Mathematical Modelling and AI-Based Degradation Analysis of the Second-Life Lithium-Ion Battery Packs for Stationary Applications

Authors: Farhad Salek, Shahaboddin Resalati

Abstract:

The production of electric vehicles (EVs) featuring lithium-ion battery technology has substantially escalated over the past decade, demonstrating a steady and persistent upward trajectory. The imminent retirement of electric vehicle (EV) batteries after approximately eight years underscores the critical need for their redirection towards recycling, a task complicated by the current inadequacy of recycling infrastructures globally. A potential solution for such concerns involves extending the operational lifespan of electric vehicle (EV) batteries through their utilization in stationary energy storage systems during secondary applications. Such adoptions, however, require addressing the safety concerns associated with batteries’ knee points and thermal runaways. This paper develops an accurate mathematical model representative of the second-life battery packs from a cell-to-pack scale using an equivalent circuit model (ECM) methodology. Neural network algorithms are employed to forecast the degradation parameters based on the EV batteries' aging history to develop a degradation model. The degradation model is integrated with the ECM to reflect the impacts of the cycle aging mechanism on battery parameters during operation. The developed model is tested under real-life load profiles to evaluate the life span of the batteries in various operating conditions. The methodology and the algorithms introduced in this paper can be considered the basis for Battery Management System (BMS) design and techno-economic analysis of such technologies.

Keywords: second life battery, electric vehicles, degradation, neural network

Procedia PDF Downloads 65
32555 Impact of Social Networks on Agricultural Technology Adoption: A Case Study of Ongoing Extension Programs for Paddy Cultivation in Matara District in Sri Lanka

Authors: Paulu Saramge Shalika Nirupani Seram

Abstract:

The study delves into the complex dynamics of social networks and how they affect paddy farmers’ adoption of agricultural technologies, which are included in Yaya Development program, Weedy rice program and Good Agricultural Practices (GAP) program in Matara district. Identify the social networks among the farmers of ongoing Extension Programs in Matara district, examine the farmers’ adoption level to the ongoing extension programs in Matara district, analyze the impacts of social networks for the adoption to the technologies of ongoing extension programs and give suggestions and recommendations to improve the social network of paddy farmers in Matara District for ongoing extension programs are the objectives of this research. A structured questionnaire survey was conducted with 25 farmers from Matara-North (Wilpita), 25 farmers from Matara-Central (Kamburupitiya), and 25 farmers from Matara-South (Malimbada). UCINET (Version -6.771) software was used for social network analysis, and other than that, descriptive statistics and inferential statistics were used to analyze the findings. Matara-North has the highest social network density, and Matara-South has the lowest social network density according to the social network analysis. Dissemination of intensive technologies requires the most prominent actors of the social network, and in Matara district, agricultural instructors have the highest ability to disseminate technologies. The influence of actors in the social network, the trustworthiness of AI officers, and the trust of indigenous knowledge about paddy cultivation have a significant effect on the technology adoption of farmers. The research endeavors to contribute a nuanced understanding of the social networks and agricultural technology adoption in Matara District, offering practical insights for stakeholders involved in agricultural extension services.

Keywords: agricultural extension, paddy cultivation, social network, technology adoption

Procedia PDF Downloads 63
32554 Multi Agent System Architecture Oriented Prometheus Methodology Design for Reverse Logistics

Authors: F. Lhafiane, A. Elbyed, M. Bouchoum

Abstract:

The design of Reverse logistics Network has attracted growing attention with the stringent pressures from both environmental awareness and business sustainability. Reverse logistical activities include return, remanufacture, disassemble and dispose of products can be quite complex to manage. In addition, demand can be difficult to predict, and decision making is one of the challenges tasks. This complexity has amplified the need to develop an integrated architecture for product return as an enterprise system. The main purpose of this paper is to design Multi agent system (MAS) architecture using the Prometheus methodology to efficiently manage reverse logistics processes. The proposed MAS architecture includes five types of agents: Gate keeping Agent, Collection Agent, Sorting Agent, Processing Agent and Disposal Agent which act respectively during the five steps of reverse logistics Network.

Keywords: reverse logistics, multi agent system, prometheus methodology

Procedia PDF Downloads 471
32553 Water Resources Green Efficiency in China: Evaluation, Spatial Association Network Structure Analysis, and Influencing Factors

Authors: Tingyu Zhang

Abstract:

This paper utilizes the Super-SBM model to assess water resources green efficiency (WRGE) among provinces in China and investigate its spatial and temporal features, based on the characteristic framework of “economy-environment-society.” The social network analysis is employed to examine the network pattern and spatial interaction of WRGE. Further, the quadratic assignment procedure method is utilized for examining the influencing factors of the spatial association of WRGE regarding “relationship.” The study reveals that: (1) the spatial distribution of WRGE demonstrates a distribution pattern of Eastern>Western>Central; (2) a remarkable spatial association exists among provinces; however, no strict hierarchical structure is observed. The internal structure of the WRGE network is characterized by the feature of "Eastern strong and Western weak". The block model analysis discovers that the members of the “net spillover” and “two-way spillover” blocks are mostly in the eastern and central provinces; “broker” block, which plays an intermediary role, is mostly in the central provinces; and members of the “net beneficiary” block are mostly in the western region. (3) Differences in economic development, degree of urbanization, water use environment, and water management have significant impacts on the spatial connection of WRGE. This study is dedicated to the realization of regional linkages and synergistic enhancement of WRGE, which provides a meaningful basis for building a harmonious society of human and water coexistence.

Keywords: water resources green efficiency, super-SBM model, social network analysis, quadratic assignment procedure

Procedia PDF Downloads 61
32552 Protection Plan of Medium Voltage Distribution Network in Tunisia

Authors: S. Chebbi, A. Meddeb

Abstract:

The distribution networks are often exposed to harmful incidents which can halt the electricity supply of the customer. In this context, we studied a real case of a critical zone of the Tunisian network which is currently characterized by the dysfunction of its plan of protection. In this paper, we were interested in the harmonization of the protection plan settings in order to ensure a perfect selectivity and a better continuity of service on the whole of the network.

Keywords: distribution network Gabes-Tunisia, continuity of service, protection plan settings, selectivity

Procedia PDF Downloads 510
32551 Simplified 3R2C Building Thermal Network Model: A Case Study

Authors: S. M. Mahbobur Rahman

Abstract:

Whole building energy simulation models are widely used for predicting future energy consumption, performance diagnosis and optimum control.  Black box building energy modeling approach has been heavily studied in the past decade. The thermal response of a building can also be modeled using a network of interconnected resistors (R) and capacitors (C) at each node called R-C network. In this study, a model building, Case 600, as described in the “Standard Method of Test for the Evaluation of Building Energy Analysis Computer Program”, ASHRAE standard 140, is studied along with a 3R2C thermal network model and the ASHRAE clear sky solar radiation model. Although building an energy model involves two important parts of building component i.e., the envelope and internal mass, the effect of building internal mass is not considered in this study. All the characteristic parameters of the building envelope are evaluated as on Case 600. Finally, monthly building energy consumption from the thermal network model is compared with a simple-box energy model within reasonable accuracy. From the results, 0.6-9.4% variation of monthly energy consumption is observed because of the south-facing windows.

Keywords: ASHRAE case study, clear sky solar radiation model, energy modeling, thermal network model

Procedia PDF Downloads 146
32550 Dissecting Big Trajectory Data to Analyse Road Network Travel Efficiency

Authors: Rania Alshikhe, Vinita Jindal

Abstract:

Digital innovation has played a crucial role in managing smart transportation. For this, big trajectory data collected from traveling vehicles, such as taxis through installed global positioning system (GPS)-enabled devices can be utilized. It offers an unprecedented opportunity to trace the movements of vehicles in fine spatiotemporal granularity. This paper aims to explore big trajectory data to measure the travel efficiency of road networks using the proposed statistical travel efficiency measure (STEM) across an entire city. Further, it identifies the cause of low travel efficiency by proposed least square approximation network-based causality exploration (LANCE). Finally, the resulting data analysis reveals the causes of low travel efficiency, along with the road segments that need to be optimized to improve the traffic conditions and thus minimize the average travel time from given point A to point B in the road network. Obtained results show that our proposed approach outperforms the baseline algorithms for measuring the travel efficiency of the road network.

Keywords: GPS trajectory, road network, taxi trips, digital map, big data, STEM, LANCE

Procedia PDF Downloads 157
32549 Quality and Quantity in the Strategic Network of Higher Education Institutions

Authors: Juha Kettunen

Abstract:

The study analyzes the quality and the size of the strategic network of higher education institutions and the concept of fitness for purpose in quality assurance. It also analyses the transaction costs of networking that have consequences on the number of members in the network. Empirical evidence is presented from the Consortium on Applied Research and Professional Education, which is a European strategic network of six higher education institutions. The results of the study support the argument that the number of members in the strategic network should be relatively small to provide high-quality results. The practical importance is that networking has been able to promote international research and development projects. The results of this study are important for those who want to design and improve international networks in higher education.

Keywords: higher education, network, research and development, strategic management

Procedia PDF Downloads 348
32548 Energy Efficient Firefly Algorithm in Wireless Sensor Network

Authors: Wafa’ Alsharafat, Khalid Batiha, Alaa Kassab

Abstract:

Wireless sensor network (WSN) is comprised of a huge number of small and cheap devices known as sensor nodes. Usually, these sensor nodes are massively and deployed randomly as in Ad-hoc over hostile and harsh environment to sense, collect and transmit data to the needed locations (i.e., base station). One of the main advantages of WSN is that the ability to work in unattended and scattered environments regardless the presence of humans such as remote active volcanoes environments or earthquakes. In WSN expanding network, lifetime is a major concern. Clustering technique is more important to maximize network lifetime. Nature-inspired algorithms are developed and optimized to find optimized solutions for various optimization problems. We proposed Energy Efficient Firefly Algorithm to improve network lifetime as long as possible.

Keywords: wireless network, SN, Firefly, energy efficiency

Procedia PDF Downloads 389
32547 Employing Bayesian Artificial Neural Network for Evaluation of Cold Rolling Force

Authors: P. Kooche Baghy, S. Eskandari, E.javanmard

Abstract:

Neural network has been used as a predictive means of cold rolling force in this dissertation. Thus, imposed average force on rollers as a mere input and five pertaining parameters to its as a outputs are regarded. According to our study, feed-forward multilayer perceptron network has been selected. Besides, Bayesian algorithm based on the feed-forward back propagation method has been selected due to noisy data. Further, 470 out of 585 all tests were used for network learning and others (115 tests) were considered as assessment criteria. Eventually, by 30 times running the MATLAB software, mean error was obtained 3.84 percent as a criteria of network learning. As a consequence, this the mentioned error on par with other approaches such as numerical and empirical methods is acceptable admittedly.

Keywords: artificial neural network, Bayesian, cold rolling, force evaluation

Procedia PDF Downloads 442
32546 How to Modernise the European Competition Network (ECN)

Authors: Dorota Galeza

Abstract:

This paper argues that networks, such as the ECN and the American network, are affected by certain small events which are inherent to path dependence and preclude the full evolution towards efficiency. It is advocated that the American network is superior to the ECN in many respects due to its greater flexibility and longer history. This stems in particular from the creation of the American network, which was based on a small number of cases. Such a structure encourages further changes and modifications which are not necessarily radical. The ECN, by contrast, was established by legislative action, which explains its rigid structure and resistance to change. This paper is an attempt to transpose the superiority of the American network on to the ECN. It looks at concepts such as judicial cooperation, harmonisation of procedure, peer review and regulatory impact assessments (RIAs), and dispute resolution procedures.

Keywords: antitrust, competition, networks, path dependence

Procedia PDF Downloads 315
32545 A Time Delay Neural Network for Prediction of Human Behavior

Authors: A. Hakimiyan, H. Namazi

Abstract:

Human behavior is defined as a range of behaviors exhibited by humans who are influenced by different internal or external sources. Human behavior is the subject of much research in different areas of psychology and neuroscience. Despite some advances in studies related to forecasting of human behavior, there are not many researches which consider the effect of the time delay between the presence of stimulus and the related human response. Analysis of EEG signal as a fractal time series is one of the major tools for studying the human behavior. In the other words, the human brain activity is reflected in his EEG signal. Artificial Neural Network has been proved useful in forecasting of different systems’ behavior especially in engineering areas. In this research, a time delay neural network is trained and tested in order to forecast the human EEG signal and subsequently human behavior. This neural network, by introducing a time delay, takes care of the lagging time between the occurrence of the stimulus and the rise of the subsequent action potential. The results of this study are useful not only for the fundamental understanding of human behavior forecasting, but shall be very useful in different areas of brain research such as seizure prediction.

Keywords: human behavior, EEG signal, time delay neural network, prediction, lagging time

Procedia PDF Downloads 663
32544 Enhancing Students’ Achievement, Interest and Retention in Chemistry through an Integrated Teaching/Learning Approach

Authors: K. V. F. Fatokun, P. A. Eniayeju

Abstract:

This study concerns the effects of concept mapping-guided discovery integrated teaching approach on the learning style and achievement of chemistry students. The sample comprised 162 senior secondary school (SS 2) students drawn from two science schools in Nasarawa State which have equivalent mean scores of 9.68 and 9.49 in their pre-test. Five instruments were developed and validated while the sixth was purely adopted by the investigator for the study, Four null hypotheses were tested at α = 0.05 level of significance. Chi square analysis showed that there is a significant shift in students’ learning style from accommodating and diverging to converging and assimilating when exposed to concept mapping- guided discovery approach. Also t-test and ANOVA that those in experimental group achieve and retain content learnt better. Results of the Scheffe’s test for multiple comparisons showed that boys in the experimental group performed better than girls. It is therefore concluded that the concept mapping-guided discovery integrated approach should be used in secondary schools to successfully teach electrochemistry. It is strongly recommended that chemistry teachers should be encouraged to adopt this method for teaching difficult concepts.

Keywords: integrated teaching approach, concept mapping-guided discovery, achievement, retention, learning styles and interest

Procedia PDF Downloads 328
32543 Estimation of Residual Stresses in Thick Walled Cylinder by Radial Basis Artificial Neural

Authors: Mohammad Heidari

Abstract:

In this paper a method for high strength steel is proposed of residual stresses in autofrettaged tubes by combination of artificial neural networks is presented. Many different thick walled cylinders that were subjected to different conditions were studied. At first, the residual stress is calculated by analytical solution. Then by changing of the parameters that influenced in residual stresses such as percentage of autofrettage, internal pressure, wall ratio of cylinder, material property of cylinder, bauschinger and hardening effect factor, a neural network is created. These parameters are the input of network. The output of network is residual stress. Numerical data, employed for training the network and capabilities of the model in predicting the residual stress has been verified. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 2.75% in predicting residual stress of thick wall cylinder. Further analysis of residual stress of thick wall cylinder under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach.

Keywords: thick walled cylinder, residual stress, radial basis, artificial neural network

Procedia PDF Downloads 416
32542 Application of Neural Network in Portfolio Product Companies: Integration of Boston Consulting Group Matrix and Ansoff Matrix

Authors: M. Khajezadeh, M. Saied Fallah Niasar, S. Ali Asli, D. Davani Davari, M. Godarzi, Y. Asgari

Abstract:

This study aims to explore the joint application of both Boston and Ansoff matrices in the operational development of the product. We conduct deep analysis, by utilizing the Artificial Neural Network, to predict the position of the product in the market while the company is interested in increasing its share. The data are gathered from two industries, called hygiene and detergent. In doing so, the effort is being made by investigating the behavior of top player companies and, recommend strategic orientations. In conclusion, this combination analysis is appropriate for operational development; as well, it plays an important role in providing the position of the product in the market for both hygiene and detergent industries. More importantly, it will elaborate on the company’s strategies to increase its market share related to a combination of the Boston Consulting Group (BCG) Matrix and Ansoff Matrix.

Keywords: artificial neural network, portfolio analysis, BCG matrix, Ansoff matrix

Procedia PDF Downloads 142
32541 Enhanced Constraint-Based Optical Network (ECON) for Enhancing OSNR

Authors: G. R. Kavitha, T. S. Indumathi

Abstract:

With the constantly rising demands of the multimedia services, the requirements of long haul transport network are constantly changing in the area of optical network. Maximum data transmission using optimization of the communication channel poses the biggest challenge. Although there has been a constant focus on this area from the past decade, there was no evidence of a significant result that has been accomplished. Hence, after reviewing some potential design of optical network from literatures, it was understood that optical signal to noise ratio was one of the elementary attributes that can define the performance of the optical network. In this paper, we propose a framework termed as ECON (Enhanced Constraint-based Optical Network) that primarily optimize the optical signal to noise ratio using ROADM. The simulation is performed in Matlab and optical signal to noise ratio is extracted considering the system matrix. The outcome of the proposed study shows that optimized OSNR as compared to the existing studies.

Keywords: component, optical network, reconfigurable optical add-drop multiplexer, optical signal-to-noise ratio

Procedia PDF Downloads 488
32540 Welding Process Selection for Storage Tank by Integrated Data Envelopment Analysis and Fuzzy Credibility Constrained Programming Approach

Authors: Rahmad Wisnu Wardana, Eakachai Warinsiriruk, Sutep Joy-A-Ka

Abstract:

Selecting the most suitable welding process usually depends on experiences or common application in similar companies. However, this approach generally ignores many criteria that can be affecting the suitable welding process selection. Therefore, knowledge automation through knowledge-based systems will significantly improve the decision-making process. The aims of this research propose integrated data envelopment analysis (DEA) and fuzzy credibility constrained programming approach for identifying the best welding process for stainless steel storage tank in the food and beverage industry. The proposed approach uses fuzzy concept and credibility measure to deal with uncertain data from experts' judgment. Furthermore, 12 parameters are used to determine the most appropriate welding processes among six competitive welding processes.

Keywords: welding process selection, data envelopment analysis, fuzzy credibility constrained programming, storage tank

Procedia PDF Downloads 166
32539 Optimization of Feeder Bus Routes at Urban Rail Transit Stations Based on Link Growth Probability

Authors: Yu Song, Yuefei Jin

Abstract:

Urban public transportation can be integrated when there is an efficient connection between urban rail lines, however, there are currently no effective or quick solutions being investigated for this connection. This paper analyzes the space-time distribution and travel demand of passenger connection travel based on taxi track data and data from the road network, excavates potential bus connection stations based on potential connection demand data, and introduces the link growth probability model in the complex network to solve the basic connection bus lines in order to ascertain the direction of the bus lines that are the most connected given the demand characteristics. Then, a tree view exhaustive approach based on constraints is suggested based on graph theory, which can hasten the convergence of findings while doing chain calculations. This study uses WEI QU NAN Station, the Xi'an Metro Line 2 terminal station in Shaanxi Province, as an illustration, to evaluate the model's and the solution method's efficacy. According to the findings, 153 prospective stations have been dug up in total, the feeder bus network for the entire line has been laid out, and the best route adjustment strategy has been found.

Keywords: feeder bus, route optimization, link growth probability, the graph theory

Procedia PDF Downloads 77
32538 Integrated Location-Allocation Planning in Multi Product Multi Echelon Single Period Closed Loop Supply Chain Network Design

Authors: Santhosh Srinivasan, Vipul Garhiya, Shahul Hamid Khan

Abstract:

Environmental performance along with social performance is becoming vital factors for industries to achieve global standards. With a good environmental policy global industries are differentiating them from their competitors. This paper concentrates on multi stage, multi product and multi period manufacturing network. Single objective mathematical models for a total cost for the entire forward supply chain and reverse chain are considered. Here five different problems are considered by varying the number of facilities for illustration. M-MOGA, Shuffle Frog Leaping algorithm (SFLA) and CPLEX are used for finding the optimal solution for the mathematical model.

Keywords: closed loop supply chain, genetic algorithm, random search, multi period, green supply chain

Procedia PDF Downloads 391
32537 Classification of Contexts for Mentioning Love in Interviews with Victims of the Holocaust

Authors: Marina Yurievna Aleksandrova

Abstract:

Research of the Holocaust retains value not only for history but also for sociology and psychology. One of the most important fields of study is how people were coping during and after this traumatic event. The aim of this paper is to identify the main contexts of the topic of love and to determine which contexts are more characteristic for different groups of victims of the Holocaust (gender, nationality, age). In this research, transcripts of interviews with Holocaust victims that were collected during 1946 for the "Voices of the Holocaust" project were used as data. Main contexts were analyzed with methods of network analysis and latent semantic analysis and classified by gender, age, and nationality with random forest. The results show that love is articulated and described significantly differently for male and female informants, nationality is shown results with lower values of quality metrics, as well as the age.

Keywords: Holocaust, latent semantic analysis, network analysis, text-mining, random forest

Procedia PDF Downloads 180
32536 Suggestion of Reasonable Analysis Model for T-Girder Modular Bridge

Authors: Soonwon Kang, Jinwoong Choi, Sungnam Hong, Seung-Kyung Kye, Sun-Kyu Park

Abstract:

The modular bridge is to be constructed by assembling standardized precast segments. This bridge is classified as a slab type and T-girder type. The T-girder bridge has transverse joint. However, it did not perform the verification on the transverse joint, but the slab type was done on the analytic study on the joint. Therefore, it is necessary for precast modular T-girder bridge that has a transverse joint to propose an appropriated model. In this study, specimens and analysis models compared integrated type with segmented type. Results of the integrated and segmented specimens, each of the deflection was 98.40mm and 74.66mm when the maximum load was 269.71kN and 248.29kN, in case of the modeling the specimens, each of the deflection was 84.04mm, 69.39mm when the maximum load was 269.71kN, 248.29kN, therefore, the precast T-girder modular bridges form the analytic model proposed appropriate.

Keywords: precast, T-girder modular bridge, finite element analysis, joint

Procedia PDF Downloads 416
32535 CERD: Cost Effective Route Discovery in Mobile Ad Hoc Networks

Authors: Anuradha Banerjee

Abstract:

A mobile ad hoc network is an infrastructure less network, where nodes are free to move independently in any direction. The nodes have limited battery power; hence, we require energy efficient route discovery technique to enhance their lifetime and network performance. In this paper, we propose an energy-efficient route discovery technique CERD that greatly reduces the number of route requests flooded into the network and also gives priority to the route request packets sent from the routers that has communicated with the destination very recently, in single or multi-hop paths. This does not only enhance the lifetime of nodes but also decreases the delay in tracking the destination.

Keywords: ad hoc network, energy efficiency, flooding, node lifetime, route discovery

Procedia PDF Downloads 347
32534 A Comparison of Neural Network and DOE-Regression Analysis for Predicting Resource Consumption of Manufacturing Processes

Authors: Frank Kuebler, Rolf Steinhilper

Abstract:

Artificial neural networks (ANN) as well as Design of Experiments (DOE) based regression analysis (RA) are mainly used for modeling of complex systems. Both methodologies are commonly applied in process and quality control of manufacturing processes. Due to the fact that resource efficiency has become a critical concern for manufacturing companies, these models needs to be extended to predict resource-consumption of manufacturing processes. This paper describes an approach to use neural networks as well as DOE based regression analysis for predicting resource consumption of manufacturing processes and gives a comparison of the achievable results based on an industrial case study of a turning process.

Keywords: artificial neural network, design of experiments, regression analysis, resource efficiency, manufacturing process

Procedia PDF Downloads 524
32533 Retrospective Reconstruction of Time Series Data for Integrated Waste Management

Authors: A. Buruzs, M. F. Hatwágner, A. Torma, L. T. Kóczy

Abstract:

The development, operation and maintenance of Integrated Waste Management Systems (IWMS) affects essentially the sustainable concern of every region. The features of such systems have great influence on all of the components of sustainability. In order to reach the optimal way of processes, a comprehensive mapping of the variables affecting the future efficiency of the system is needed such as analysis of the interconnections among the components and modelling of their interactions. The planning of a IWMS is based fundamentally on technical and economical opportunities and the legal framework. Modelling the sustainability and operation effectiveness of a certain IWMS is not in the scope of the present research. The complexity of the systems and the large number of the variables require the utilization of a complex approach to model the outcomes and future risks. This complex method should be able to evaluate the logical framework of the factors composing the system and the interconnections between them. The authors of this paper studied the usability of the Fuzzy Cognitive Map (FCM) approach modelling the future operation of IWMS’s. The approach requires two input data set. One is the connection matrix containing all the factors affecting the system in focus with all the interconnections. The other input data set is the time series, a retrospective reconstruction of the weights and roles of the factors. This paper introduces a novel method to develop time series by content analysis.

Keywords: content analysis, factors, integrated waste management system, time series

Procedia PDF Downloads 325
32532 Opinion Mining and Sentiment Analysis on DEFT

Authors: Najiba Ouled Omar, Azza Harbaoui, Henda Ben Ghezala

Abstract:

Current research practices sentiment analysis with a focus on social networks, DEfi Fouille de Texte (DEFT) (Text Mining Challenge) evaluation campaign focuses on opinion mining and sentiment analysis on social networks, especially social network Twitter. It aims to confront the systems produced by several teams from public and private research laboratories. DEFT offers participants the opportunity to work on regularly renewed themes and proposes to work on opinion mining in several editions. The purpose of this article is to scrutinize and analyze the works relating to opinions mining and sentiment analysis in the Twitter social network realized by DEFT. It examines the tasks proposed by the organizers of the challenge and the methods used by the participants.

Keywords: opinion mining, sentiment analysis, emotion, polarity, annotation, OSEE, figurative language, DEFT, Twitter, Tweet

Procedia PDF Downloads 138