Search results for: Generalized Weak Interactions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3741

Search results for: Generalized Weak Interactions

3471 Preschool Teachers' Teaching Performance in Relation to Their Technology and 21st Century Skills

Authors: Vida Dones-Jimenez

Abstract:

The main purpose of this study is to determine the preschool teachers’ technology and 21st-century skills and its relation to teachers’ performance. The participants were 94 preschool teachers and 59 school administrators from the CDAPS member schools. The data were collected by using 21st Century Skill, developed by ISSA (2009), Technology Skills of Teachers Survey (2013) and Teacher Performance Evaluation Criteria and Descriptors (200) was modified by the current researcher to suit the needs of her study and was administered personally by her. The surveys were designed to measure the participants’ 21st-century skills, technology skills and teaching performance. The result of the study indicates that the majority of the preschool teachers are the college graduate. Most of them are in the teaching profession for 0 to 10 years. It also indicated that the majority of the school administrators are masters’ degree holder. The preschool teachers are outstanding in their teaching performance as rated by the school administrators. The preschool teachers are skillful in using technology, and they are very skillful in executing the 21st-century skills in teaching. It was further determined that no significant difference between preschool teachers 21st-century skill in regards to educational attainment same as with the number of years in teaching, likewise with their technology skills. Furthermore, the study has shown that there is a very weak relationship between technology and 21st-century skills of preschool teachers, a weak relationship between technology skills and teaching performance and a very weak relationship between 21st-century skills and teaching performance were also established. The study recommends that the preschool teachers should be encouraged to enroll in master degree programs. School administrators should support the implementation of newly adopted technologies and support faculty members at various levels of use and experience. It is also recommended that regular review of the professional development plan be undertaken to upgrade 21st-century teaching and learning skills of preschool teachers.

Keywords: preschool teacher, teaching performance, technology, 21st century skills

Procedia PDF Downloads 399
3470 Mining Coupled to Agriculture: Systems Thinking in Scalable Food Production

Authors: Jason West

Abstract:

Low profitability in agriculture production along with increasing scrutiny over environmental effects is limiting food production at scale. In contrast, the mining sector offers access to resources including energy, water, transport and chemicals for food production at low marginal cost. Scalable agricultural production can benefit from the nexus of resources (water, energy, transport) offered by mining activity in remote locations. A decision support bioeconomic model for controlled environment vertical farms was used. Four submodels were used: crop structure, nutrient requirements, resource-crop integration, and economic. They escalate to a macro mathematical model. A demonstrable dynamic systems framework is needed to prove productive outcomes are feasible. We demonstrate a generalized bioeconomic macro model for controlled environment production systems in minesites using systems dynamics modeling methodology. Despite the complexity of bioeconomic modelling of resource-agricultural dynamic processes and interactions, the economic potential greater than general economic models would assume. Scalability of production as an input becomes a key success feature.

Keywords: crop production systems, mathematical model, mining, agriculture, dynamic systems

Procedia PDF Downloads 77
3469 Interaction of Glycolipid S-TGA-1 with Bacteriorhodopsin and Its Functional Role

Authors: Masataka Inada, Masanao Kinoshita, Nobuaki Matsumori

Abstract:

It has been demonstrated that lipid molecules in biological membranes are responsible for the functionalization and structuration of membrane proteins. However, it is still unclear how the interaction of lipid molecules with membrane proteins is correlated with the function of the membrane proteins. Here we first developed an evaluation method for the interaction between membrane proteins and lipid molecules via surface plasmon resonance (SPR) analysis. Bacteriorhodopsin (bR), which was obtained by the culture of halobacteria, was used as a membrane protein. We prepared SPR sensor chips covered with self-assembled monolayer containing mercaptocarboxylic acids, and immobilized bR onto them. Then, we evaluated the interactions with various lipids that have different structures. As a result, the halobacterium-specific glycolipid S-TGA-1 was found to have much higher affinity with bRs than other lipids. This is probably due to not only hydrophobic and electrostatic interactions but also hydrogen bonds with sugar moieties in the glycolipid. Next, we analyzed the roles of the lipid in the structuration and functionalization of bR. CD analysis showed that S-TGA-1 could promote trimerization of bR monomers more efficiently than any other lipids. Flash photolysis further indicated that bR trimers formed by S-TGA-1 reproduced the photocyclic activity of bR in purple membrane, halobacterium-membrane. These results suggest that S-TGA-1 promotes trimerization of bR through strong interactions and consequently fulfills the bR’s function efficiently.

Keywords: membrane protein, lipid, interaction, bacteriorhodopsin, glycolipid

Procedia PDF Downloads 253
3468 Order Picking Problem: An Exact and Heuristic Algorithms for the Generalized Travelling Salesman Problem With Geographical Overlap Between Clusters

Authors: Farzaneh Rajabighamchi, Stan van Hoesel, Christof Defryn

Abstract:

The generalized traveling salesman problem (GTSP) is an extension of the traveling salesman problem (TSP) where the set of nodes is partitioned into clusters, and the salesman must visit exactly one node per cluster. In this research, we apply the definition of the GTSP to an order picker routing problem with multiple locations per product. As such, each product represents a cluster and its corresponding nodes are the locations at which the product can be retrieved. To pick a certain product item from the warehouse, the picker needs to visit one of these locations during its pick tour. As all products are scattered throughout the warehouse, the product clusters not separated geographically. We propose an exact LP model as well as heuristic and meta-heuristic solution algorithms for the order picking problem with multiple product locations.

Keywords: warehouse optimization, order picking problem, generalised travelling salesman problem, heuristic algorithm

Procedia PDF Downloads 113
3467 Technology, Ethics and Experience: Understanding Interactions as Ethical Practice

Authors: Joan Casas-Roma

Abstract:

Technology has become one of the main channels through which people engage in most of their everyday activities; from working to learning, or even when socializing, technology often acts as both an enabler and a mediator of such activities. Moreover, the affordances and interactions created by those technological tools determine the way in which the users interact with one another, as well as how they relate to the relevant environment, thus favoring certain kinds of actions and behaviors while discouraging others. In this regard, virtue ethics theories place a strong focus on a person's daily practice (understood as their decisions, actions, and behaviors) as the means to develop and enhance their habits and ethical competences --such as their awareness and sensitivity towards certain ethically-desirable principles. Under this understanding of ethics, this set of technologically-enabled affordances and interactions can be seen as the possibility space where the daily practice of their users takes place in a wide plethora of contexts and situations. At this point, the following question pops into mind: could these affordances and interactions be shaped in a way that would promote behaviors and habits basedonethically-desirable principles into their users? In the field of game design, the MDA framework (which stands for Mechanics, Dynamics, Aesthetics) explores how the interactions enabled within the possibility space of a game can lead to creating certain experiences and provoking specific reactions to the players. In this sense, these interactions can be shaped in ways thatcreate experiences to raise the players' awareness and sensitivity towards certain topics or principles. This research brings together the notions of technological affordances, the notions of practice and practical wisdom from virtue ethics, and the MDA framework from game design in order to explore how the possibility space created by technological interactions can be shaped in ways that enable and promote actions and behaviors supporting certain ethically-desirable principles. When shaped accordingly, interactions supporting certain ethically-desirable principlescould allow their users to carry out the kind of practice that, according to virtue ethics theories, provides the grounds to develop and enhance their awareness, sensitivity, and ethical reasoning capabilities. Moreover, and because ethical practice can happen collaterally in almost every context, decision, and action, this additional layer could potentially be applied in a wide variety of technological tools, contexts, and functionalities. This work explores the theoretical background, as well as the initial considerations and steps that would be needed in order to harness the potential ethically-desirable benefits that technology can bring, once it is understood as the space where most of their users' daily practice takes place.

Keywords: ethics, design methodology, human-computer interaction, philosophy of technology

Procedia PDF Downloads 159
3466 Social Assistive Robots, Reframing the Human Robotics Interaction Benchmark of Social Success

Authors: Antonio Espingardeiro

Abstract:

It is likely that robots will cross the boundaries of industry into households over the next decades. With demographic challenges worldwide, the future ageing populations will require the introduction of assistive technologies capable of providing, care, human dignity and quality of life through the aging process. Robotics technology has a high potential for being used in the areas of social and healthcare by promoting a wide range of activities such as entertainment, companionship, supervision or cognitive and physical assistance. However, such close Human Robotics Interactions (HRIs) encompass a rich set of ethical scenarios that need to be addressed before Socially Assistive Robots (SARs) reach the global markets. Such interactions with robots may seem a worthy goal for many technical/financial reasons but inevitably require close attention to the ethical dimensions of such interactions. This article investigates the current HRI benchmark of social success. It revises it according to the ethical principles of beneficence, non-maleficence and justice aligned with social care ethos. An extension of such benchmark is proposed based on an empirical study of HRIs with elderly groups.

Keywords: HRI, SARs, social success, benchmark, elderly care

Procedia PDF Downloads 523
3465 Additional Method for the Purification of Lanthanide-Labeled Peptide Compounds Pre-Purified by Weak Cation Exchange Cartridge

Authors: K. Eryilmaz, G. Mercanoglu

Abstract:

Aim: Purification of the final product, which is the last step in the synthesis of lanthanide-labeled peptide compounds, can be accomplished by different methods. Among these methods, the two most commonly used methods are C18 solid phase extraction (SPE) and weak cation exchanger cartridge elution. SPE C18 solid phase extraction method yields high purity final product, while elution from the weak cation exchanger cartridge is pH dependent and ineffective in removing colloidal impurities. The aim of this work is to develop an additional purification method for the lanthanide-labeled peptide compound in cases where the desired radionuclidic and radiochemical purity of the final product can not be achieved because of pH problem or colloidal impurity. Material and Methods: For colloidal impurity formation, 3 mL of water for injection (WFI) was added to 30 mCi of 177LuCl3 solution and allowed to stand for 1 day. 177Lu-DOTATATE was synthesized using EZAG ML-EAZY module (10 mCi/mL). After synthesis, the final product was mixed with the colloidal impurity solution (total volume:13 mL, total activity: 40 mCi). The resulting mixture was trapped in SPE-C18 cartridge. The cartridge was washed with 10 ml saline to remove impurities to the waste vial. The product trapped in the cartridge was eluted with 2 ml of 50% ethanol and collected to the final product vial via passing through a 0.22μm filter. The final product was diluted with 10 mL of saline. Radiochemical purity before and after purification was analysed by HPLC method. (column: ACE C18-100A. 3µm. 150 x 3.0mm, mobile phase: Water-Acetonitrile-Trifluoro acetic acid (75:25:1), flow rate: 0.6 mL/min). Results: UV and radioactivity detector results in HPLC analysis showed that colloidal impurities were completely removed from the 177Lu-DOTATATE/ colloidal impurity mixture by purification method. Conclusion: The improved purification method can be used as an additional method to remove impurities that may result from the lanthanide-peptide synthesis in which the weak cation exchange purification technique is used as the last step. The purification of the final product and the GMP compliance (the final aseptic filtration and the sterile disposable system components) are two major advantages.

Keywords: lanthanide, peptide, labeling, purification, radionuclide, radiopharmaceutical, synthesis

Procedia PDF Downloads 164
3464 Fuzzy Sentiment Analysis of Customer Product Reviews

Authors: Samaneh Nadali, Masrah Azrifah Azmi Murad

Abstract:

As a result of the growth of the web, people are able to express their views and opinions. They can now post reviews of products at merchant sites and express their views on almost anything in internet forums, discussion groups, and blogs. Therefore, the number of product reviews has grown rapidly. The large numbers of reviews make it difficult for manufacturers or businesses to automatically classify them into different semantic orientations (positive, negative, and neutral). For sentiment classification, most existing methods utilize a list of opinion words whereas this paper proposes a fuzzy approach for evaluating sentiments expressed in customer product reviews, to predict the strength levels (e.g. very weak, weak, moderate, strong and very strong) of customer product reviews by combinations of adjective, adverb and verb. The proposed fuzzy approach has been tested on eight benchmark datasets and obtained 74% accuracy, which leads to help the organization with a more clear understanding of customer's behavior in support of business planning process.

Keywords: fuzzy logic, customer product review, sentiment analysis

Procedia PDF Downloads 365
3463 Analysis of Factors Affecting the Number of Infant and Maternal Mortality in East Java with Geographically Weighted Bivariate Generalized Poisson Regression Method

Authors: Luh Eka Suryani, Purhadi

Abstract:

Poisson regression is a non-linear regression model with response variable in the form of count data that follows Poisson distribution. Modeling for a pair of count data that show high correlation can be analyzed by Poisson Bivariate Regression. Data, the number of infant mortality and maternal mortality, are count data that can be analyzed by Poisson Bivariate Regression. The Poisson regression assumption is an equidispersion where the mean and variance values are equal. However, the actual count data has a variance value which can be greater or less than the mean value (overdispersion and underdispersion). Violations of this assumption can be overcome by applying Generalized Poisson Regression. Characteristics of each regency can affect the number of cases occurred. This issue can be overcome by spatial analysis called geographically weighted regression. This study analyzes the number of infant mortality and maternal mortality based on conditions in East Java in 2016 using Geographically Weighted Bivariate Generalized Poisson Regression (GWBGPR) method. Modeling is done with adaptive bisquare Kernel weighting which produces 3 regency groups based on infant mortality rate and 5 regency groups based on maternal mortality rate. Variables that significantly influence the number of infant and maternal mortality are the percentages of pregnant women visit health workers at least 4 times during pregnancy, pregnant women get Fe3 tablets, obstetric complication handled, clean household and healthy behavior, and married women with the first marriage age under 18 years.

Keywords: adaptive bisquare kernel, GWBGPR, infant mortality, maternal mortality, overdispersion

Procedia PDF Downloads 162
3462 Application of Generalized Autoregressive Score Model to Stock Returns

Authors: Katleho Daniel Makatjane, Diteboho Lawrence Xaba, Ntebogang Dinah Moroke

Abstract:

The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns.

Keywords: generalized autoregressive score model, South Africa, stock returns, time-varying

Procedia PDF Downloads 502
3461 A Clustering-Sequencing Approach to the Facility Layout Problem

Authors: Saeideh Salimpour, Sophie-Charlotte Viaux, Ahmed Azab, Mohammed Fazle Baki

Abstract:

The Facility Layout Problem (FLP) is key to the efficient and cost-effective operation of a system. This paper presents a hybrid heuristic- and mathematical-programming-based approach that divides the problem conceptually into those of clustering and sequencing. First, clusters of vertically aligned facilities are formed, which are later on sequenced horizontally. The developed methodology provides promising results in comparison to its counterparts in the literature by minimizing the inter-distances for facilities which have more interactions amongst each other and aims at placing the facilities with more interactions at the centroid of the shop.

Keywords: clustering-sequencing approach, mathematical modeling, optimization, unequal facility layout problem

Procedia PDF Downloads 333
3460 Emotions in Human-Machine Interaction

Authors: Joanna Maj

Abstract:

Awe inspiring is the idea that emotions could be present in human-machine interactions, both on the human side as well as the machine side. Human factors present intriguing components and are examined in detail while discussing this controversial topic. Mood, attention, memory, performance, assessment, causes of emotion, and neurological responses are analyzed as components of the interaction. Problems in computer-based technology, revenge of the system on its users and design, and applications comprise a major part of all descriptions and examples throughout this paper. It also allows for critical thinking while challenging intriguing questions regarding future directions in research, dealing with emotion in human-machine interactions.

Keywords: biocomputing, biomedical engineering, emotions, human-machine interaction, interfaces

Procedia PDF Downloads 133
3459 Short-Range and Long-Range Ferrimagnetic Order in Fe(Te₁.₅Se₀.₅)O₅Cl

Authors: E. S. Kozlyakova, A. A. Eliseev, A. V. Moskin, A. Y. Akhrorov, P. S. Berdonosov, V. A. Dolgikh, K. N. Denisova, P. Lemmens, B. Rahaman, S. Das, T. Saha-Dasgupta, A. N. Vasiliev, O. S. Volkova

Abstract:

Considerable attention has been paid recently to FeTe₂O₅Cl due to reduced dimensionality and frustration in the magnetic subsystem, succession of phase transitions, and multiferroicity. The efforts to grow its selenite sibling resulted in mixed halide compound, Fe(Te₁.₅Se₀.₅)O₅Cl, which was found crystallizing in a new structural type and possessing properties drastically different from those of a parent system. Hereby we report the studies of magnetization M and specific heat Cₚ, combined with Raman spectroscopy and density functional theory calculations in Fe(Te₁.₅Se₀.₅)O₅Cl. Its magnetic subsystem features weakly coupled Fe³⁺ - Fe³⁺ dimers showing the regime of short-range correlations at TM ~ 70 K and long-range order at TN = 22 K. In a magnetically ordered state, sizable spin-orbital interactions lead to a small canting of Fe³⁺ moments. The density functional theory calculations of leading exchange interactions were found in agreement with measurements of thermodynamic properties and Raman spectroscopy. Besides, because of the relatively large magnetic moment of the Fe³⁺ ion, we found that magnetic dipole-dipole interactions contribute significantly to experimentally observed orientation of magnetization easy axis in ac-plane. As a conclusion, we suggest a model of magnetic subsystem in magnetically ordered state of Fe(Te₁.₅Se₀.₅)O₅Cl based on a model of interacting dimers.

Keywords: dipole-dipole interactions, low dimensional magnetism, selenite, spin canting

Procedia PDF Downloads 167
3458 Chemometric Estimation of Phytochemicals Affecting the Antioxidant Potential of Lettuce

Authors: Milica Karadzic, Lidija Jevric, Sanja Podunavac-Kuzmanovic, Strahinja Kovacevic, Aleksandra Tepic-Horecki, Zdravko Sumic

Abstract:

In this paper, the influence of six different phytochemical content (phenols, carotenoids, chlorophyll a, chlorophyll b, chlorophyll a + b and vitamin C) on antioxidant potential of Murai and Levistro lettuce varieties was evaluated. Variable selection was made by generalized pair correlation method (GPCM) as a novel ranking method. This method is used for the discrimination between two variables that almost equal correlate to a dependent variable. Fisher’s conditional exact and McNemar’s test were carried out. Established multiple linear (MLR) models were statistically evaluated. As the best phytochemicals for the antioxidant potential prediction, chlorophyll a, chlorophyll a + b and total carotenoids content stand out. This was confirmed through both GPCM and MLR, predictive ability of obtained MLR can be used for antioxidant potential estimation for similar lettuce samples. This article is based upon work from the project of the Provincial Secretariat for Science and Technological Development of Vojvodina (No. 114-451-347/2015-02).

Keywords: antioxidant activity, generalized pair correlation method, lettuce, regression analysis

Procedia PDF Downloads 389
3457 Forecast of the Small Wind Turbines Sales with Replacement Purchases and with or without Account of Price Changes

Authors: V. Churkin, M. Lopatin

Abstract:

The purpose of the paper is to estimate the US small wind turbines market potential and forecast the small wind turbines sales in the US. The forecasting method is based on the application of the Bass model and the generalized Bass model of innovations diffusion under replacement purchases. In the work an exponential distribution is used for modeling of replacement purchases. Only one parameter of such distribution is determined by average lifetime of small wind turbines. The identification of the model parameters is based on nonlinear regression analysis on the basis of the annual sales statistics which has been published by the American Wind Energy Association (AWEA) since 2001 up to 2012. The estimation of the US average market potential of small wind turbines (for adoption purchases) without account of price changes is 57080 (confidence interval from 49294 to 64866 at P = 0.95) under average lifetime of wind turbines 15 years, and 62402 (confidence interval from 54154 to 70648 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 90,7%, while in the second - 91,8%. The effect of the wind turbines price changes on their sales was estimated using generalized Bass model. This required a price forecast. To do this, the polynomial regression function, which is based on the Berkeley Lab statistics, was used. The estimation of the US average market potential of small wind turbines (for adoption purchases) in that case is 42542 (confidence interval from 32863 to 52221 at P = 0.95) under average lifetime of wind turbines 15 years, and 47426 (confidence interval from 36092 to 58760 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 95,3%, while in the second –95,3%.

Keywords: bass model, generalized bass model, replacement purchases, sales forecasting of innovations, statistics of sales of small wind turbines in the United States

Procedia PDF Downloads 348
3456 A Generalized Sparse Bayesian Learning Algorithm for Near-Field Synthetic Aperture Radar Imaging: By Exploiting Impropriety and Noncircularity

Authors: Pan Long, Bi Dongjie, Li Xifeng, Xie Yongle

Abstract:

The near-field synthetic aperture radar (SAR) imaging is an advanced nondestructive testing and evaluation (NDT&E) technique. This paper investigates the complex-valued signal processing related to the near-field SAR imaging system, where the measurement data turns out to be noncircular and improper, meaning that the complex-valued data is correlated to its complex conjugate. Furthermore, we discover that the degree of impropriety of the measurement data and that of the target image can be highly correlated in near-field SAR imaging. Based on these observations, A modified generalized sparse Bayesian learning algorithm is proposed, taking impropriety and noncircularity into account. Numerical results show that the proposed algorithm provides performance gain, with the help of noncircular assumption on the signals.

Keywords: complex-valued signal processing, synthetic aperture radar, 2-D radar imaging, compressive sensing, sparse Bayesian learning

Procedia PDF Downloads 133
3455 Variants of Mathematical Induction as Strong Proof Techniques in Theory of Computing

Authors: Ahmed Tarek, Ahmed Alveed

Abstract:

In the theory of computing, there are a wide variety of direct and indirect proof techniques. However, mathematical induction (MI) stands out to be one of the most powerful proof techniques for proving hypotheses, theorems, and new results. There are variations of mathematical induction-based proof techniques, which are broadly classified into three categories, such as structural induction (SI), weak induction (WI), and strong induction (SI). In this expository paper, several different variants of the mathematical induction techniques are explored, and the specific scenarios are discussed where a specific induction technique stands out to be more advantageous as compared to other induction strategies. Also, the essential difference among the variants of mathematical induction are explored. The points of separation among mathematical induction, recursion, and logical deduction are precisely analyzed, and the relationship among variations of recurrence relations, and mathematical induction are being explored. In this context, the application of recurrence relations, and mathematical inductions are considered together in a single framework for codewords over a given alphabet.

Keywords: alphabet, codeword, deduction, mathematical, induction, recurrence relation, strong induction, structural induction, weak induction

Procedia PDF Downloads 164
3454 Sustainable Manufacturing Industries and Energy-Water Nexus Approach

Authors: Shahbaz Abbas, Lin Han Chiang Hsieh

Abstract:

The significant population growth and climate change issues have contributed to the natural resources depletion and their sustainability in the future. Manufacturing industries have a substantial impact on every country’s economy, but the sustainability of the industrial resources is challenging, and the policymakers have been developing the possible solutions to manage the sustainability of industrial resources such as raw material, energy, water, and industrial supply chain. In order to address these challenges, nexus approach is one of the optimization and modelling techniques in the recent sustainable environmental research. The interactions between the nexus components acknowledge that all components are dependent upon each other, and they are interrelated; therefore, their sustainability is also associated with each other. In addition, the nexus concept does not only provide the resources sustainability but also environmental sustainability can be achieved through nexus approach by utilizing the industrial waste as a resource for the industrial processes. Based on energy-water nexus, this study has developed a resource-energy-water for the sugar industry to understand the interactions between sugarcane, energy, and water towards the sustainable sugar industry. In particular, the focus of the research is the Taiwanese sugar industry; however, the same approach can be adapted worldwide to optimize the sustainability of sugar industries. It has been concluded that there are significant interactions between sugarcane, energy consumption, and water consumption in the sugar industry to manage the scarcity of resources in the future. The interactions between sugarcane and energy also deliver a mechanism to reuse the sugar industrial waste as a source of energy, consequently validating industrial and environmental sustainability. The desired outcomes from the nexus can be achieved with the modifications in the policy and regulations of Taiwanese industrial sector.

Keywords: energy-water nexus, environmental sustainability, industrial sustainability, natural resource management

Procedia PDF Downloads 125
3453 Generalized Additive Model for Estimating Propensity Score

Authors: Tahmidul Islam

Abstract:

Propensity Score Matching (PSM) technique has been widely used for estimating causal effect of treatment in observational studies. One major step of implementing PSM is estimating the propensity score (PS). Logistic regression model with additive linear terms of covariates is most used technique in many studies. Logistics regression model is also used with cubic splines for retaining flexibility in the model. However, choosing the functional form of the logistic regression model has been a question since the effectiveness of PSM depends on how accurately the PS been estimated. In many situations, the linearity assumption of linear logistic regression may not hold and non-linear relation between the logit and the covariates may be appropriate. One can estimate PS using machine learning techniques such as random forest, neural network etc for more accuracy in non-linear situation. In this study, an attempt has been made to compare the efficacy of Generalized Additive Model (GAM) in various linear and non-linear settings and compare its performance with usual logistic regression. GAM is a non-parametric technique where functional form of the covariates can be unspecified and a flexible regression model can be fitted. In this study various simple and complex models have been considered for treatment under several situations (small/large sample, low/high number of treatment units) and examined which method leads to more covariate balance in the matched dataset. It is found that logistic regression model is impressively robust against inclusion quadratic and interaction terms and reduces mean difference in treatment and control set equally efficiently as GAM does. GAM provided no significantly better covariate balance than logistic regression in both simple and complex models. The analysis also suggests that larger proportion of controls than treatment units leads to better balance for both of the methods.

Keywords: accuracy, covariate balances, generalized additive model, logistic regression, non-linearity, propensity score matching

Procedia PDF Downloads 368
3452 Performance Analysis of Encased Sand Columns in Different Clayey Soils Using 3D Numerical Method

Authors: Enayatallah Najari, Ali Noorzad, Mehdi Siavoshnia

Abstract:

One of the most decent and low-cost options in soft clayey soil improvement is using stone columns to reduce the settlement and increase the bearing capacity which is used for different ways to do this in various projects with diverse conditions. In the current study, it is tried to evaluate this improvement method in 4 different weak soils with diverse properties like specific gravity, permeability coefficient, over consolidation ratio (OCR), poison’s ratio, internal friction angle and bulk modulus by using ABAQUS 3D finite element software. Increment and decrement impacts of each mentioned factor on settlement and lateral displacement of weak soil beds are analyzed. In analyzed models, the properties related to sand columns and geosynthetic cover are assumed to be constant with their optimum values, and just soft clayey soil parameters are considered to be variable. It’s also demonstrated that OCR value can play a determinant role in soil resistance.

Keywords: stone columns, geosynthetic, finite element, 3D analysis, soft soils

Procedia PDF Downloads 361
3451 An Artificially Intelligent Teaching-Agent to Enhance Learning Interactions in Virtual Settings

Authors: Abdulwakeel B. Raji

Abstract:

This paper introduces a concept of an intelligent virtual learning environment that involves communication between learners and an artificially intelligent teaching agent in an attempt to replicate classroom learning interactions. The benefits of this technology over current e-learning practices is that it creates a virtual classroom where real time adaptive learning interactions are made possible. This is a move away from the static learning practices currently being adopted by e-learning systems. Over the years, artificial intelligence has been applied to various fields, including and not limited to medicine, military applications, psychology, marketing etc. The purpose of e-learning applications is to ensure users are able to learn outside of the classroom, but a major limitation has been the inability to fully replicate classroom interactions between teacher and students. This study used comparative surveys to gain information and understanding of the current learning practices in Nigerian universities and how they compare to these practices compare to the use of a developed e-learning system. The study was conducted by attending several lectures and noting the interactions between lecturers and tutors and as an aftermath, a software has been developed that deploys the use of an artificial intelligent teaching-agent alongside an e-learning system to enhance user learning experience and attempt to create the similar learning interactions to those found in classroom and lecture hall settings. Dialogflow has been used to implement a teaching-agent, which has been developed using JSON, which serves as a virtual teacher. Course content has been created using HTML, CSS, PHP and JAVASCRIPT as a web-based application. This technology can run on handheld devices and Google based home technologies to give learners an access to the teaching agent at any time. This technology also implements the use of definite clause grammars and natural language processing to match user inputs and requests with defined rules to replicate learning interactions. This technology developed covers familiar classroom scenarios such as answering users’ questions, asking ‘do you understand’ at regular intervals and answering subsequent requests, taking advanced user queries to give feedbacks at other periods. This software technology uses deep learning techniques to learn user interactions and patterns to subsequently enhance user learning experience. A system testing has been undergone by undergraduate students in the UK and Nigeria on the course ‘Introduction to Database Development’. Test results and feedback from users shows that this study and developed software is a significant improvement on existing e-learning systems. Further experiments are to be run using the software with different students and more course contents.

Keywords: virtual learning, natural language processing, definite clause grammars, deep learning, artificial intelligence

Procedia PDF Downloads 135
3450 Top-Down and Bottom-up Effects in Rhizosphere-Plant-Aphid Interactions

Authors: Anas Cherqui, Audrey Pecourt, Manuella Catterou, Candice Mazoyon, Hervé Demailly, Vivien Sarazin, Frédéric Dubois, Jérôme Duclercq

Abstract:

Aphids are pests that can cause severe yield losses in field crops. Chemical control is currently widely used to control aphids, but this method is increasingly controversial. The pea is able to recruit bacteria that are beneficial to its development, growth and health. However, the effects of this microbial recruitment on plant-insect interactions have generally been underestimated. This study investigated the interactions between Pisum sativum, key bacteria of pea rhizosphere (Rhizobium and Sphingomonas species) and the pea aphid, Acyrthosiphon pisum. We assessed the bottom-up effects of single and combined bacterial inoculations on pea plant health and subsequent aphid performance, as well as the top-down effects of aphid infestation on soil functionality. The presence of S. sediminicola or S. daechungensis limited the fecundity of the pea aphid without strongly affecting its feeding behaviour. Nevertheless, these bacteria limited the effect of A. pisum on the plant phenotype. In addition, the aphid infestation decreased the soil functionality, suggesting a potential strategy to hinder the recruitment of beneficial microorganisms.

Keywords: Acyrthosiphon pisum, Pisum sativum, Sphingomonas, rhizobium, EPG, productivity

Procedia PDF Downloads 22
3449 Learning Algorithms for Fuzzy Inference Systems Composed of Double- and Single-Input Rule Modules

Authors: Hirofumi Miyajima, Kazuya Kishida, Noritaka Shigei, Hiromi Miyajima

Abstract:

Most of self-tuning fuzzy systems, which are automatically constructed from learning data, are based on the steepest descent method (SDM). However, this approach often requires a large convergence time and gets stuck into a shallow local minimum. One of its solutions is to use fuzzy rule modules with a small number of inputs such as DIRMs (Double-Input Rule Modules) and SIRMs (Single-Input Rule Modules). In this paper, we consider a (generalized) DIRMs model composed of double and single-input rule modules. Further, in order to reduce the redundant modules for the (generalized) DIRMs model, pruning and generative learning algorithms for the model are suggested. In order to show the effectiveness of them, numerical simulations for function approximation, Box-Jenkins and obstacle avoidance problems are performed.

Keywords: Box-Jenkins's problem, double-input rule module, fuzzy inference model, obstacle avoidance, single-input rule module

Procedia PDF Downloads 353
3448 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements

Authors: Henok Hailemariam, Frank Wuttke

Abstract:

Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.

Keywords: collapsible soil, dielectric permittivity, moisture content, relative subsidence

Procedia PDF Downloads 363
3447 Beyond Classic Program Evaluation and Review Technique: A Generalized Model for Subjective Distributions with Flexible Variance

Authors: Byung Cheol Kim

Abstract:

The Program Evaluation and Review Technique (PERT) is widely used for project management, but it struggles with subjective distributions, particularly due to its assumptions of constant variance and light tails. To overcome these limitations, we propose the Generalized PERT (G-PERT) model, which enhances PERT by incorporating variability in three-point subjective estimates. Our methodology extends the original PERT model to cover the full range of unimodal beta distributions, enabling the model to handle thick-tailed distributions and offering formulas for computing mean and variance. This maintains the simplicity of PERT while providing a more accurate depiction of uncertainty. Our empirical analysis demonstrates that the G-PERT model significantly improves performance, particularly when dealing with heavy-tail subjective distributions. In comparative assessments with alternative models such as triangular and lognormal distributions, G-PERT shows superior accuracy and flexibility. These results suggest that G-PERT offers a more robust solution for project estimation while still retaining the user-friendliness of the classic PERT approach.

Keywords: PERT, subjective distribution, project management, flexible variance

Procedia PDF Downloads 21
3446 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe

Authors: Vipul M. Patel, Hemantkumar B. Mehta

Abstract:

Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.

Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant

Procedia PDF Downloads 293
3445 Relationship between Matrilin-3 (MATN-3) Gene Single Nucleotide Six Polymorphism, Transforming Growth Factor Beta 2 and Radiographic Grading in Primary Osteoarthritis

Authors: Heba Esaily, Rawhia Eledl, Daila Aboelela, Rasha Noreldin

Abstract:

Objective: Assess serum level of Transforming growth factor beta 2 (TGF-β2) and Matrilin-3 (MATN3) SNP6 polymorphism in osteoarthritic patients Background: Osteoarthritis (OA) is a musculoskeletal disease characterized by pain and joint stiffness. TGF-β 2 is involved in chondrogenesis and osteogenesis, It has found that MATN3 gene and protein expression was correlated with the extent of tissue damage in OA. Findings suggest that regulation of MATN3 expression is essential for maintenance of the cartilage extracellular matrix microenvironment Subjects and Methods: 72 cases of primary OA (56 with knee OA and 16 with generalized OA were compared with that of 18 healthy controls. Radiographs were scored with the Kellgren-Lawrence scale. Serum TGF-β2 was measured by using (ELISA), levels of marker were correlated to radiographic grading of disease and MATN3 SNP6 polymorphism was determined by (PCR-RFLP). Results: MATN3 SNP6 polymorphism and serum level of TGF-β2 were higher in OA compared with controls. Genotype, NN and N allele frequency were higher in patients with OA compared with controls. NN genotype and N allele frequency were higher in knee osteoarthritis than generalized OA. Significant positive correlation between level of TGFβ2 and radiographic grading in group with knee OA, but no correlation between serum level of TGFβ2 and radiographic grading in generalized OA. Conclusion: MATN3 SNP6 polymorphism and TGF-β2 implicated in the pathogenesis of osteoarthritis. Association of N/N genotype with primary osteoarthritis emphasizes on the need for prospective study include larger sample size to confirm the results of the present study.

Keywords: Matrilin-3, transforming growth factor beta 2, primary osteoarthritis, knee osteoarthritis

Procedia PDF Downloads 269
3444 A Safety Analysis Method for Multi-Agent Systems

Authors: Ching Louis Liu, Edmund Kazmierczak, Tim Miller

Abstract:

Safety analysis for multi-agent systems is complicated by the, potentially nonlinear, interactions between agents. This paper proposes a method for analyzing the safety of multi-agent systems by explicitly focusing on interactions and the accident data of systems that are similar in structure and function to the system being analyzed. The method creates a Bayesian network using the accident data from similar systems. A feature of our method is that the events in accident data are labeled with HAZOP guide words. Our method uses an Ontology to abstract away from the details of a multi-agent implementation. Using the ontology, our methods then constructs an “Interaction Map,” a graphical representation of the patterns of interactions between agents and other artifacts. Interaction maps combined with statistical data from accidents and the HAZOP classifications of events can be converted into a Bayesian Network. Bayesian networks allow designers to explore “what it” scenarios and make design trade-offs that maintain safety. We show how to use the Bayesian networks, and the interaction maps to improve multi-agent system designs.

Keywords: multi-agent system, safety analysis, safety model, integration map

Procedia PDF Downloads 418
3443 Effect of Natural Molecular Crowding on the Structure and Stability of DNA Duplex

Authors: Chaudhari S. G., Saxena, S.

Abstract:

We systematically and quantitatively investigated the effect of glucose as a model of natural molecular crowding agent on the structure and thermodynamics of Watson-Crick base paired three duplexes (named as D1, D2 and D3) of different base compositions and lengths. Structural analyses demonstrated that duplexes (D1 and D2) folded into B-form with different cations in the absence and presence of glucose while duplex (D3) folded into mixed A and B-form. Moreover, we demonstrated that the duplex was more stable in the absence of glucose, and marginally destabilized in its presence because glucose act as a weak structure breaker on the tetrahedral network of water. In the absence of glucose, the values of ΔG°25 for duplex (D1) were -13.56, -13.76, -12.46, and -12.36 kcal/mol, for duplex (D2) were -13.64, -12.93, -12.86, and -12.30 kcal/mol, for duplex (D3) were -10.05, -11.76, -9.91, -9.70 kcal/mol in the presence of Na+, K+, Na+ + Mg++ and K+ + Mg++ respectively. At high concentration of glucose (1:10000), there was increase in ΔG°25 for duplex (D1) -12.47, -12.37, -11.96, -11.55 kcal/mol, for duplex (D2) -12.37, -11.47, -11.98, -11.01 kcal/mol and for duplex (D3) -8.47, -9.17, -9.16, -8.66 kcal/mol. Our results provide the information that structure and stability of DNA duplex depends on the structure of molecular crowding agent present in its close vicinity. In this study, I have taken the hydration of simple sugar as an essential model for understanding interactions between hydrophilic groups and interfacial water molecules and its effect on hydrogen bonded DNA duplexes. On the basis of these relatively simple building blocks I hope to gain some insights for understanding more generally the properties of sugar–water–salt systems with DNA duplexes.

Keywords: natural molecular crowding, DNA Duplex, structure of DNA, bioengineering and life sciences

Procedia PDF Downloads 466
3442 Observational Study: The Impact of Neurotypical Peer Interactions on Social and Academic Success in Kindergarteners with down Syndrome in Public Schools

Authors: Brenda Rodriguez

Abstract:

In this observational study, we investigate a neurotypical peer's impact on both the social and academic success of a child with Down Syndrome in a kindergarten setting. The child with Down Syndrome experiences difficulty articulating words clearly and is paired with a classmate in various academic and social contexts over three weeks. Utilizing both qualitative and quantitative data, we aim to document any classroom interactions that may occur. The findings of this study will contribute to understanding how peer relationships facilitate academic achievement and will advance research on inclusive classroom practices.

Keywords: academic and social success, down syndrome, inclusive classrooms, peer interaction

Procedia PDF Downloads 22