Search results for: C-MAPSS dataset
889 Evaluation of Video Quality Metrics and Performance Comparison on Contents Taken from Most Commonly Used Devices
Authors: Pratik Dhabal Deo, Manoj P.
Abstract:
With the increasing number of social media users, the amount of video content available has also significantly increased. Currently, the number of smartphone users is at its peak, and many are increasingly using their smartphones as their main photography and recording devices. There have been a lot of developments in the field of Video Quality Assessment (VQA) and metrics like VMAF, SSIM etc. are said to be some of the best performing metrics, but the evaluation of these metrics is dominantly done on professionally taken video contents using professional tools, lighting conditions etc. No study particularly pinpointing the performance of the metrics on the contents taken by users on very commonly available devices has been done. Datasets that contain a huge number of videos from different high-end devices make it difficult to analyze the performance of the metrics on the content from most used devices even if they contain contents taken in poor lighting conditions using lower-end devices. These devices face a lot of distortions due to various factors since the spectrum of contents recorded on these devices is huge. In this paper, we have presented an analysis of the objective VQA metrics on contents taken only from most used devices and their performance on them, focusing on full-reference metrics. To carry out this research, we created a custom dataset containing a total of 90 videos that have been taken from three most commonly used devices, and android smartphone, an IOS smartphone and a DSLR. On the videos taken on each of these devices, the six most common types of distortions that users face have been applied on addition to already existing H.264 compression based on four reference videos. These six applied distortions have three levels of degradation each. A total of the five most popular VQA metrics have been evaluated on this dataset and the highest values and the lowest values of each of the metrics on the distortions have been recorded. Finally, it is found that blur is the artifact on which most of the metrics didn’t perform well. Thus, in order to understand the results better the amount of blur in the data set has been calculated and an additional evaluation of the metrics was done using HEVC codec, which is the next version of H.264 compression, on the camera that proved to be the sharpest among the devices. The results have shown that as the resolution increases, the performance of the metrics tends to become more accurate and the best performing metric among them is VQM with very few inconsistencies and inaccurate results when the compression applied is H.264, but when the compression is applied is HEVC, SSIM and VMAF have performed significantly better.Keywords: distortion, metrics, performance, resolution, video quality assessment
Procedia PDF Downloads 201888 Emotion Recognition in Video and Images in the Wild
Authors: Faizan Tariq, Moayid Ali Zaidi
Abstract:
Facial emotion recognition algorithms are expanding rapidly now a day. People are using different algorithms with different combinations to generate best results. There are six basic emotions which are being studied in this area. Author tried to recognize the facial expressions using object detector algorithms instead of traditional algorithms. Two object detection algorithms were chosen which are Faster R-CNN and YOLO. For pre-processing we used image rotation and batch normalization. The dataset I have chosen for the experiments is Static Facial Expression in Wild (SFEW). Our approach worked well but there is still a lot of room to improve it, which will be a future direction.Keywords: face recognition, emotion recognition, deep learning, CNN
Procedia PDF Downloads 185887 Study and Analysis of the Factors Affecting Road Safety Using Decision Tree Algorithms
Authors: Naina Mahajan, Bikram Pal Kaur
Abstract:
The purpose of traffic accident analysis is to find the possible causes of an accident. Road accidents cannot be totally prevented but by suitable traffic engineering and management the accident rate can be reduced to a certain extent. This paper discusses the classification techniques C4.5 and ID3 using the WEKA Data mining tool. These techniques use on the NH (National highway) dataset. With the C4.5 and ID3 technique it gives best results and high accuracy with less computation time and error rate.Keywords: C4.5, ID3, NH(National highway), WEKA data mining tool
Procedia PDF Downloads 336886 Analysis of Citation Rate and Data Reuse for Openly Accessible Biodiversity Datasets on Global Biodiversity Information Facility
Authors: Nushrat Khan, Mike Thelwall, Kayvan Kousha
Abstract:
Making research data openly accessible has been mandated by most funders over the last 5 years as it promotes reproducibility in science and reduces duplication of effort to collect the same data. There are evidence that articles that publicly share research data have higher citation rates in biological and social sciences. However, how and whether shared data is being reused is not always intuitive as such information is not easily accessible from the majority of research data repositories. This study aims to understand the practice of data citation and how data is being reused over the years focusing on biodiversity since research data is frequently reused in this field. Metadata of 38,878 datasets including citation counts were collected through the Global Biodiversity Information Facility (GBIF) API for this purpose. GBIF was used as a data source since it provides citation count for datasets, not a commonly available feature for most repositories. Analysis of dataset types, citation counts, creation and update time of datasets suggests that citation rate varies for different types of datasets, where occurrence datasets that have more granular information have higher citation rates than checklist and metadata-only datasets. Another finding is that biodiversity datasets on GBIF are frequently updated, which is unique to this field. Majority of the datasets from the earliest year of 2007 were updated after 11 years, with no dataset that was not updated since creation. For each year between 2007 and 2017, we compared the correlations between update time and citation rate of four different types of datasets. While recent datasets do not show any correlations, 3 to 4 years old datasets show weak correlation where datasets that were updated more recently received high citations. The results are suggestive that it takes several years to cumulate citations for research datasets. However, this investigation found that when searched on Google Scholar or Scopus databases for the same datasets, the number of citations is often not the same as GBIF. Hence future aim is to further explore the citation count system adopted by GBIF to evaluate its reliability and whether it can be applicable to other fields of studies as well.Keywords: data citation, data reuse, research data sharing, webometrics
Procedia PDF Downloads 177885 Statistical Models and Time Series Forecasting on Crime Data in Nepal
Authors: Dila Ram Bhandari
Abstract:
Throughout the 20th century, new governments were created where identities such as ethnic, religious, linguistic, caste, communal, tribal, and others played a part in the development of constitutions and the legal system of victim and criminal justice. Acute issues with extremism, poverty, environmental degradation, cybercrimes, human rights violations, crime against, and victimization of both individuals and groups have recently plagued South Asian nations. Everyday massive number of crimes are steadfast, these frequent crimes have made the lives of common citizens restless. Crimes are one of the major threats to society and also for civilization. Crime is a bone of contention that can create a societal disturbance. The old-style crime solving practices are unable to live up to the requirement of existing crime situations. Crime analysis is one of the most important activities of the majority of intelligent and law enforcement organizations all over the world. The South Asia region lacks such a regional coordination mechanism, unlike central Asia of Asia Pacific regions, to facilitate criminal intelligence sharing and operational coordination related to organized crime, including illicit drug trafficking and money laundering. There have been numerous conversations in recent years about using data mining technology to combat crime and terrorism. The Data Detective program from Sentient as a software company, uses data mining techniques to support the police (Sentient, 2017). The goals of this internship are to test out several predictive model solutions and choose the most effective and promising one. First, extensive literature reviews on data mining, crime analysis, and crime data mining were conducted. Sentient offered a 7-year archive of crime statistics that were daily aggregated to produce a univariate dataset. Moreover, a daily incidence type aggregation was performed to produce a multivariate dataset. Each solution's forecast period lasted seven days. Statistical models and neural network models were the two main groups into which the experiments were split. For the crime data, neural networks fared better than statistical models. This study gives a general review of the applied statistics and neural network models. A detailed image of each model's performance on the available data and generalizability is provided by a comparative analysis of all the models on a comparable dataset. Obviously, the studies demonstrated that, in comparison to other models, Gated Recurrent Units (GRU) produced greater prediction. The crime records of 2005-2019 which was collected from Nepal Police headquarter and analysed by R programming. In conclusion, gated recurrent unit implementation could give benefit to police in predicting crime. Hence, time series analysis using GRU could be a prospective additional feature in Data Detective.Keywords: time series analysis, forecasting, ARIMA, machine learning
Procedia PDF Downloads 164884 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction
Abstract:
Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.
Procedia PDF Downloads 88883 Constructing a Semi-Supervised Model for Network Intrusion Detection
Authors: Tigabu Dagne Akal
Abstract:
While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.Keywords: intrusion detection, data mining, computer science, data mining
Procedia PDF Downloads 294882 Saudi Twitter Corpus for Sentiment Analysis
Authors: Adel Assiri, Ahmed Emam, Hmood Al-Dossari
Abstract:
Sentiment analysis (SA) has received growing attention in Arabic language research. However, few studies have yet to directly apply SA to Arabic due to lack of a publicly available dataset for this language. This paper partially bridges this gap due to its focus on one of the Arabic dialects which is the Saudi dialect. This paper presents annotated data set of 4700 for Saudi dialect sentiment analysis with (K= 0.807). Our next work is to extend this corpus and creation a large-scale lexicon for Saudi dialect from the corpus.Keywords: Arabic, sentiment analysis, Twitter, annotation
Procedia PDF Downloads 628881 Shedding Light on the Black Box: Explaining Deep Neural Network Prediction of Clinical Outcome
Authors: Yijun Shao, Yan Cheng, Rashmee U. Shah, Charlene R. Weir, Bruce E. Bray, Qing Zeng-Treitler
Abstract:
Deep neural network (DNN) models are being explored in the clinical domain, following the recent success in other domains such as image recognition. For clinical adoption, outcome prediction models require explanation, but due to the multiple non-linear inner transformations, DNN models are viewed by many as a black box. In this study, we developed a deep neural network model for predicting 1-year mortality of patients who underwent major cardio vascular procedures (MCVPs), using temporal image representation of past medical history as input. The dataset was obtained from the electronic medical data warehouse administered by Veteran Affairs Information and Computing Infrastructure (VINCI). We identified 21,355 veterans who had their first MCVP in 2014. Features for prediction included demographics, diagnoses, procedures, medication orders, hospitalizations, and frailty measures extracted from clinical notes. Temporal variables were created based on the patient history data in the 2-year window prior to the index MCVP. A temporal image was created based on these variables for each individual patient. To generate the explanation for the DNN model, we defined a new concept called impact score, based on the presence/value of clinical conditions’ impact on the predicted outcome. Like (log) odds ratio reported by the logistic regression (LR) model, impact scores are continuous variables intended to shed light on the black box model. For comparison, a logistic regression model was fitted on the same dataset. In our cohort, about 6.8% of patients died within one year. The prediction of the DNN model achieved an area under the curve (AUC) of 78.5% while the LR model achieved an AUC of 74.6%. A strong but not perfect correlation was found between the aggregated impact scores and the log odds ratios (Spearman’s rho = 0.74), which helped validate our explanation.Keywords: deep neural network, temporal data, prediction, frailty, logistic regression model
Procedia PDF Downloads 152880 Standard Essential Patents for Artificial Intelligence Hardware and the Implications For Intellectual Property Rights
Authors: Wendy de Gomez
Abstract:
Standardization is a critical element in the ability of a society to reduce uncertainty, subjectivity, misrepresentation, and interpretation while simultaneously contributing to innovation. Technological standardization is critical to codify specific operationalization through legal instruments that provide rules of development, expectation, and use. In the current emerging technology landscape Artificial Intelligence (AI) hardware as a general use technology has seen incredible growth as evidenced from AI technology patents between 2012 and 2018 in the United States Patent Trademark Office (USPTO) AI dataset. However, as outlined in the 2023 United States Government National Standards Strategy for Critical and Emerging Technology the codification through standardization of emerging technologies such as AI has not kept pace with its actual technological proliferation. This gap has the potential to cause significant divergent possibilities for the downstream outcomes of AI in both the short and long term. This original empirical research provides an overview of the standardization efforts around AI in different geographies and provides a background to standardization law. It quantifies the longitudinal trend of Artificial Intelligence hardware patents through the USPTO AI dataset. It seeks evidence of existing Standard Essential Patents from these AI hardware patents through a text analysis of the Statement of patent history and the Field of the invention of these patents in Patent Vector and examines their determination as a Standard Essential Patent and their inclusion in existing AI technology standards across the four main AI standards bodies- European Telecommunications Standards Institute (ETSI); International Telecommunication Union (ITU)/ Telecommunication Standardization Sector (-T); Institute of Electrical and Electronics Engineers (IEEE); and the International Organization for Standardization (ISO). Once the analysis is complete the paper will discuss both the theoretical and operational implications of F/Rand Licensing Agreements for the owners of these Standard Essential Patents in the United States Court and Administrative system. It will conclude with an evaluation of how Standard Setting Organizations (SSOs) can work with SEP owners more effectively through various forms of Intellectual Property mechanisms such as patent pools.Keywords: patents, artifical intelligence, standards, F/Rand agreements
Procedia PDF Downloads 85879 Comparative Analysis of Reinforcement Learning Algorithms for Autonomous Driving
Authors: Migena Mana, Ahmed Khalid Syed, Abdul Malik, Nikhil Cherian
Abstract:
In recent years, advancements in deep learning enabled researchers to tackle the problem of self-driving cars. Car companies use huge datasets to train their deep learning models to make autonomous cars a reality. However, this approach has certain drawbacks in that the state space of possible actions for a car is so huge that there cannot be a dataset for every possible road scenario. To overcome this problem, the concept of reinforcement learning (RL) is being investigated in this research. Since the problem of autonomous driving can be modeled in a simulation, it lends itself naturally to the domain of reinforcement learning. The advantage of this approach is that we can model different and complex road scenarios in a simulation without having to deploy in the real world. The autonomous agent can learn to drive by finding the optimal policy. This learned model can then be easily deployed in a real-world setting. In this project, we focus on three RL algorithms: Q-learning, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO). To model the environment, we have used TORCS (The Open Racing Car Simulator), which provides us with a strong foundation to test our model. The inputs to the algorithms are the sensor data provided by the simulator such as velocity, distance from side pavement, etc. The outcome of this research project is a comparative analysis of these algorithms. Based on the comparison, the PPO algorithm gives the best results. When using PPO algorithm, the reward is greater, and the acceleration, steering angle and braking are more stable compared to the other algorithms, which means that the agent learns to drive in a better and more efficient way in this case. Additionally, we have come up with a dataset taken from the training of the agent with DDPG and PPO algorithms. It contains all the steps of the agent during one full training in the form: (all input values, acceleration, steering angle, break, loss, reward). This study can serve as a base for further complex road scenarios. Furthermore, it can be enlarged in the field of computer vision, using the images to find the best policy.Keywords: autonomous driving, DDPG (deep deterministic policy gradient), PPO (proximal policy optimization), reinforcement learning
Procedia PDF Downloads 144878 Business Intelligence Dashboard Solutions for Improving Decision Making Process: A Focus on Prostate Cancer
Authors: Mona Isazad Mashinchi, Davood Roshan Sangachin, Francis J. Sullivan, Dietrich Rebholz-Schuhmann
Abstract:
Background: Decision-making processes are nowadays driven by data, data analytics and Business Intelligence (BI). BI as a software platform can provide a wide variety of capabilities such as organization memory, information integration, insight creation and presentation capabilities. Visualizing data through dashboards is one of the BI solutions (for a variety of areas) which helps managers in the decision making processes to expose the most informative information at a glance. In the healthcare domain to date, dashboard presentations are more frequently used to track performance related metrics and less frequently used to monitor those quality parameters which relate directly to patient outcomes. Providing effective and timely care for patients and improving the health outcome are highly dependent on presenting and visualizing data and information. Objective: In this research, the focus is on the presentation capabilities of BI to design a dashboard for prostate cancer (PC) data that allows better decision making for the patients, the hospital and the healthcare system related to a cancer dataset. The aim of this research is to customize a retrospective PC dataset in a dashboard interface to give a better understanding of data in the categories (risk factors, treatment approaches, disease control and side effects) which matter most to patients as well as other stakeholders. By presenting the outcome in the dashboard we address one of the major targets of a value-based health care (VBHC) delivery model which is measuring the value and presenting the outcome to different actors in HC industry (such as patients and doctors) for a better decision making. Method: For visualizing the stored data to users, three interactive dashboards based on the PC dataset have been developed (using the Tableau Software) to provide better views to the risk factors, treatment approaches, and side effects. Results: Many benefits derived from interactive graphs and tables in dashboards which helped to easily visualize and see the patients at risk, better understanding the relationship between patient's status after treatment and their initial status before treatment, or to choose better decision about treatments with fewer side effects regarding patient status and etc. Conclusions: Building a well-designed and informative dashboard is related to three important factors including; the users, goals and the data types. Dashboard's hierarchies, drilling, and graphical features can guide doctors to better navigate through information. The features of the interactive PC dashboard not only let doctors ask specific questions and filter the results based on the key performance indicators (KPI) such as: Gleason Grade, Patient's Age and Status, but may also help patients to better understand different treatment outcomes, such as side effects during the time, and have an active role in their treatment decisions. Currently, we are extending the results to the real-time interactive dashboard that users (either patients and doctors) can easily explore the data by choosing preferred attribute and data to make better near real-time decisions.Keywords: business intelligence, dashboard, decision making, healthcare, prostate cancer, value-based healthcare
Procedia PDF Downloads 139877 Role of Gender in Apparel Stores' Consumer Review: A Sentiment Analysis
Authors: Sarif Ullah Patwary, Matthew Heinrich, Brandon Payne
Abstract:
The ubiquity of web 2.0 platforms, in the form of wikis, social media (e.g., Facebook, Twitter, etc.) and online review portals (e.g., Yelp), helps shape today’s apparel consumers’ purchasing decision. Online reviews play important role towards consumers’ apparel purchase decision. Each of the consumer reviews carries a sentiment (positive, negative or neutral) towards products. Commercially, apparel brands and retailers analyze sentiment of this massive amount of consumer review data to update their inventory and bring new products in the market. The purpose of this study is to analyze consumer reviews of selected apparel stores with a view to understand, 1) the difference of sentiment expressed through men’s and woman’s text reviews, 2) the difference of sentiment expressed through men’s and woman’s star-based reviews, and 3) the difference of sentiment between star-based reviews and text-based reviews. A total of 9,363 reviews (1,713 men and 7,650 women) were collected using Yelp Dataset Challenge. Sentiment analysis of collected reviews was carried out in two dimensions: star-based reviews and text-based reviews. Sentiment towards apparel stores expressed through star-based reviews was deemed: 1) positive for 3 or 4 stars 2) negative for 1 or 2 stars and 3) neutral for 3 stars. Sentiment analysis of text-based reviews was carried out using Bing Liu dictionary. The analysis was conducted in IPyhton 5.0. Space. The sentiment analysis results revealed the percentage of positive text reviews by men (80%) and women (80%) were identical. Women reviewers (12%) provided more neutral (e.g., 3 out of 5 stars) star reviews than men (6%). Star-based reviews were more negative than the text-based reviews. In other words, while 80% men and women wrote positive reviews for the stores, less than 70% ended up giving 4 or 5 stars in those reviews. One of the key takeaways of the study is that star reviews provide slightly negative sentiment of the consumer reviews. Therefore, in order to understand sentiment towards apparel products, one might need to combine both star and text aspects of consumer reviews. This study used a specific dataset consisting of selected apparel stores from particular geographical locations (the information was not given for privacy concern). Future studies need to include more data from more stores and locations to generalize the findings of the study.Keywords: apparel, consumer review, sentiment analysis, gender
Procedia PDF Downloads 162876 Suitability of Satellite-Based Data for Groundwater Modelling in Southwest Nigeria
Authors: O. O. Aiyelokun, O. A. Agbede
Abstract:
Numerical modelling of groundwater flow can be susceptible to calibration errors due to lack of adequate ground-based hydro-metrological stations in river basins. Groundwater resources management in Southwest Nigeria is currently challenged by overexploitation, lack of planning and monitoring, urbanization and climate change; hence to adopt models as decision support tools for sustainable management of groundwater; they must be adequately calibrated. Since river basins in Southwest Nigeria are characterized by missing data, and lack of adequate ground-based hydro-meteorological stations; the need for adopting satellite-based data for constructing distributed models is crucial. This study seeks to evaluate the suitability of satellite-based data as substitute for ground-based, for computing boundary conditions; by determining if ground and satellite based meteorological data fit well in Ogun and Oshun River basins. The Climate Forecast System Reanalysis (CFSR) global meteorological dataset was firstly obtained in daily form and converted to monthly form for the period of 432 months (January 1979 to June, 2014). Afterwards, ground-based meteorological data for Ikeja (1981-2010), Abeokuta (1983-2010), and Oshogbo (1981-2010) were compared with CFSR data using Goodness of Fit (GOF) statistics. The study revealed that based on mean absolute error (MEA), coefficient of correlation, (r) and coefficient of determination (R²); all meteorological variables except wind speed fit well. It was further revealed that maximum and minimum temperature, relative humidity and rainfall had high range of index of agreement (d) and ratio of standard deviation (rSD), implying that CFSR dataset could be used to compute boundary conditions such as groundwater recharge and potential evapotranspiration. The study concluded that satellite-based data such as the CFSR should be used as input when constructing groundwater flow models in river basins in Southwest Nigeria, where majority of the river basins are partially gaged and characterized with long missing hydro-metrological data.Keywords: boundary condition, goodness of fit, groundwater, satellite-based data
Procedia PDF Downloads 128875 MEIOSIS: Museum Specimens Shed Light In Biodiversity Shrinkage
Authors: Zografou Konstantina, Anagnostellis Konstantinos, Brokaki Marina, Kaltsouni Eleftheria, Dimaki Maria, Kati Vassiliki
Abstract:
Body size is crucial to ecology, influencing everything from individual reproductive success to the dynamics of communities and ecosystems. Understanding how temperature affects variations in body size is vital for both theoretical and practical purposes, as changes in size can modify trophic interactions by altering predator-prey size ratios and changing the distribution and transfer of biomass, which ultimately impacts food web stability and ecosystem functioning. Notably, a decrease in body size is frequently mentioned as the third ‘universal’ response to climate warming, alongside shifts in distribution and changes in phenology. This trend is backed by ecological theories like the temperature-size rule (TSR) and Bergmann's rule, which have been observed in numerous species, indicating that many species are likely to shrink in size as temperatures rise. However, the thermal responses related to body size are still contradictory and further exploration is needed. To tackle this challenge, we developed the MEIOSIS project, aimed at providing valuable insights into the relationship between the body size of species, species’ traits, environmental factors and their response to climate change. We combined a digitized collection of butterflies from the Swiss Federal Institute of Technology in Zürich with our newly digitized butterfly collection from Goulandris Natural History Museum in Greece to analyze trends in time. For a total of 23868 images, the length of the right forewing was measured using ImageJ software. Each forewing was measured from the point at which the wing meets the thorax to the apex of the wing. The forewing length of museum specimens has been shown to have a strong correlation with wing surface area and has been utilized in prior studies as a proxy for overall body size. Temperature data corresponding to the years of collection were also incorporated into the datasets. A second dataset was generated when a custom computer vision tool was implemented for the automated morphological measuring of samples for the digitized collection in Zürich. Using the second dataset, we corrected manual measurements with ImageJ and a final dataset containing 31922 samples was used in analysis. Setting time as a smoother variable, species identity as a random factor and the length of right-wing size (as a proxy for body size) as the response variable, we ran a global model for a maximum period of 170 years (1840 – 2010). We also constructed individual models for each family (Pieridae, Lycaenidae, Hesperiidae, Nymphalidae, Papilionidae). All models confirmed our initial hypothesis and resulted in a decreasing trend of the wing length over the years. We expect that this first output can be provided as basic data for the next challenge, i.e., to identify the ecological traits that influence species' temperature-size responses, enabling us to predict the direction and intensity of a species' reaction to rising temperatures more accurately.Keywords: butterflies, shrinking body size, museum specimens, climate change
Procedia PDF Downloads 7874 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration
Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger
Abstract:
Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration
Procedia PDF Downloads 44873 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana
Authors: Ayesha Sanjana Kawser Parsha
Abstract:
S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score
Procedia PDF Downloads 72872 Developing Primary Care Datasets for a National Asthma Audit
Authors: Rachael Andrews, Viktoria McMillan, Shuaib Nasser, Christopher M. Roberts
Abstract:
Background and objective: The National Review of Asthma Deaths (NRAD) found that asthma management and care was inadequate in 26% of cases reviewed. Major shortfalls identified were adherence to national guidelines and standards and, particularly, the organisation of care, including supervision and monitoring in primary care, with 70% of cases reviewed having at least one avoidable factor in this area. 5.4 million people in the UK are diagnosed with and actively treated for asthma, and approximately 60,000 are admitted to hospital with acute exacerbations each year. The majority of people with asthma receive management and treatment solely in primary care. This has therefore created concern that many people within the UK are receiving sub-optimal asthma care resulting in unnecessary morbidity and risk of adverse outcome. NRAD concluded that a national asthma audit programme should be established to measure and improve processes, organisation, and outcomes of asthma care. Objective: To develop a primary care dataset enabling extraction of information from GP practices in Wales and providing robust data by which results and lessons could be drawn and drive service development and improvement. Methods: A multidisciplinary group of experts, including general practitioners, primary care organisation representatives, and asthma patients was formed and used as a source of governance and guidance. A review of asthma literature, guidance, and standards took place and was used to identify areas of asthma care which, if improved, would lead to better patient outcomes. Modified Delphi methodology was used to gain consensus from the expert group on which of the areas identified were to be prioritised, and an asthma patient and carer focus group held to seek views and feedback on areas of asthma care that were important to them. Areas of asthma care identified by both groups were mapped to asthma guidelines and standards to inform and develop primary and secondary care datasets covering both adult and pediatric care. Dataset development consisted of expert review and a targeted consultation process in order to seek broad stakeholder views and feedback. Results: Areas of asthma care identified as requiring prioritisation by the National Asthma Audit were: (i) Prescribing, (ii) Asthma diagnosis (iii) Asthma Reviews (iv) Personalised Asthma Action Plans (PAAPs) (v) Primary care follow-up after discharge from hospital (vi) Methodologies and primary care queries were developed to cover each of the areas of poor and variable asthma care identified and the queries designed to extract information directly from electronic patients’ records. Conclusion: This paper describes the methodological approach followed to develop primary care datasets for a National Asthma Audit. It sets out the principles behind the establishment of a National Asthma Audit programme in response to a national asthma mortality review and describes the development activities undertaken. Key process elements included: (i) mapping identified areas of poor and variable asthma care to national guidelines and standards, (ii) early engagement of experts, including clinicians and patients in the process, and (iii) targeted consultation of the queries to provide further insight into measures that were collectable, reproducible and relevant.Keywords: asthma, primary care, general practice, dataset development
Procedia PDF Downloads 174871 DEEPMOTILE: Motility Analysis of Human Spermatozoa Using Deep Learning in Sri Lankan Population
Authors: Chamika Chiran Perera, Dananjaya Perera, Chirath Dasanayake, Banuka Athuraliya
Abstract:
Male infertility is a major problem in the world, and it is a neglected and sensitive health issue in Sri Lanka. It can be determined by analyzing human semen samples. Sperm motility is one of many factors that can evaluate male’s fertility potential. In Sri Lanka, this analysis is performed manually. Manual methods are time consuming and depend on the person, but they are reliable and it can depend on the expert. Machine learning and deep learning technologies are currently being investigated to automate the spermatozoa motility analysis, and these methods are unreliable. These automatic methods tend to produce false positive results and false detection. Current automatic methods support different techniques, and some of them are very expensive. Due to the geographical variance in spermatozoa characteristics, current automatic methods are not reliable for motility analysis in Sri Lanka. The suggested system, DeepMotile, is to explore a method to analyze motility of human spermatozoa automatically and present it to the andrology laboratories to overcome current issues. DeepMotile is a novel deep learning method for analyzing spermatozoa motility parameters in the Sri Lankan population. To implement the current approach, Sri Lanka patient data were collected anonymously as a dataset, and glass slides were used as a low-cost technique to analyze semen samples. Current problem was identified as microscopic object detection and tackling the problem. YOLOv5 was customized and used as the object detector, and it achieved 94 % mAP (mean average precision), 86% Precision, and 90% Recall with the gathered dataset. StrongSORT was used as the object tracker, and it was validated with andrology experts due to the unavailability of annotated ground truth data. Furthermore, this research has identified many potential ways for further investigation, and andrology experts can use this system to analyze motility parameters with realistic accuracy.Keywords: computer vision, deep learning, convolutional neural networks, multi-target tracking, microscopic object detection and tracking, male infertility detection, motility analysis of human spermatozoa
Procedia PDF Downloads 105870 Comparative Analysis of Feature Extraction and Classification Techniques
Authors: R. L. Ujjwal, Abhishek Jain
Abstract:
In the field of computer vision, most facial variations such as identity, expression, emotions and gender have been extensively studied. Automatic age estimation has been rarely explored. With age progression of a human, the features of the face changes. This paper is providing a new comparable study of different type of algorithm to feature extraction [Hybrid features using HAAR cascade & HOG features] & classification [KNN & SVM] training dataset. By using these algorithms we are trying to find out one of the best classification algorithms. Same thing we have done on the feature selection part, we extract the feature by using HAAR cascade and HOG. This work will be done in context of age group classification model.Keywords: computer vision, age group, face detection
Procedia PDF Downloads 367869 Predicting Success and Failure in Drug Development Using Text Analysis
Authors: Zhi Hao Chow, Cian Mulligan, Jack Walsh, Antonio Garzon Vico, Dimitar Krastev
Abstract:
Drug development is resource-intensive, time-consuming, and increasingly expensive with each developmental stage. The success rates of drug development are also relatively low, and the resources committed are wasted with each failed candidate. As such, a reliable method of predicting the success of drug development is in demand. The hypothesis was that some examples of failed drug candidates are pushed through developmental pipelines based on false confidence and may possess common linguistic features identifiable through sentiment analysis. Here, the concept of using text analysis to discover such features in research publications and investor reports as predictors of success was explored. R studios were used to perform text mining and lexicon-based sentiment analysis to identify affective phrases and determine their frequency in each document, then using SPSS to determine the relationship between our defined variables and the accuracy of predicting outcomes. A total of 161 publications were collected and categorised into 4 groups: (i) Cancer treatment, (ii) Neurodegenerative disease treatment, (iii) Vaccines, and (iv) Others (containing all other drugs that do not fit into the 3 categories). Text analysis was then performed on each document using 2 separate datasets (BING and AFINN) in R within the category of drugs to determine the frequency of positive or negative phrases in each document. A relative positivity and negativity value were then calculated by dividing the frequency of phrases with the word count of each document. Regression analysis was then performed with SPSS statistical software on each dataset (values from using BING or AFINN dataset during text analysis) using a random selection of 61 documents to construct a model. The remaining documents were then used to determine the predictive power of the models. Model constructed from BING predicts the outcome of drug performance in clinical trials with an overall percentage of 65.3%. AFINN model had a lower accuracy at predicting outcomes compared to the BING model at 62.5% but was not effective at predicting the failure of drugs in clinical trials. Overall, the study did not show significant efficacy of the model at predicting outcomes of drugs in development. Many improvements may need to be made to later iterations of the model to sufficiently increase the accuracy.Keywords: data analysis, drug development, sentiment analysis, text-mining
Procedia PDF Downloads 156868 Data Model to Predict Customize Skin Care Product Using Biosensor
Authors: Ashi Gautam, Isha Shukla, Akhil Seghal
Abstract:
Biosensors are analytical devices that use a biological sensing element to detect and measure a specific chemical substance or biomolecule in a sample. These devices are widely used in various fields, including medical diagnostics, environmental monitoring, and food analysis, due to their high specificity, sensitivity, and selectivity. In this research paper, a machine learning model is proposed for predicting the suitability of skin care products based on biosensor readings. The proposed model takes in features extracted from biosensor readings, such as biomarker concentration, skin hydration level, inflammation presence, sensitivity, and free radicals, and outputs the most appropriate skin care product for an individual. This model is trained on a dataset of biosensor readings and corresponding skin care product information. The model's performance is evaluated using several metrics, including accuracy, precision, recall, and F1 score. The aim of this research is to develop a personalised skin care product recommendation system using biosensor data. By leveraging the power of machine learning, the proposed model can accurately predict the most suitable skin care product for an individual based on their biosensor readings. This is particularly useful in the skin care industry, where personalised recommendations can lead to better outcomes for consumers. The developed model is based on supervised learning, which means that it is trained on a labeled dataset of biosensor readings and corresponding skin care product information. The model uses these labeled data to learn patterns and relationships between the biosensor readings and skin care products. Once trained, the model can predict the most suitable skin care product for an individual based on their biosensor readings. The results of this study show that the proposed machine learning model can accurately predict the most appropriate skin care product for an individual based on their biosensor readings. The evaluation metrics used in this study demonstrate the effectiveness of the model in predicting skin care products. This model has significant potential for practical use in the skin care industry for personalised skin care product recommendations. The proposed machine learning model for predicting the suitability of skin care products based on biosensor readings is a promising development in the skin care industry. The model's ability to accurately predict the most appropriate skin care product for an individual based on their biosensor readings can lead to better outcomes for consumers. Further research can be done to improve the model's accuracy and effectiveness.Keywords: biosensors, data model, machine learning, skin care
Procedia PDF Downloads 95867 Conversational Assistive Technology of Visually Impaired Person for Social Interaction
Authors: Komal Ghafoor, Tauqir Ahmad, Murtaza Hanif, Hira Zaheer
Abstract:
Assistive technology has been developed to support visually impaired people in their social interactions. Conversation assistive technology is designed to enhance communication skills, facilitate social interaction, and improve the quality of life of visually impaired individuals. This technology includes speech recognition, text-to-speech features, and other communication devices that enable users to communicate with others in real time. The technology uses natural language processing and machine learning algorithms to analyze spoken language and provide appropriate responses. It also includes features such as voice commands and audio feedback to provide users with a more immersive experience. These technologies have been shown to increase the confidence and independence of visually impaired individuals in social situations and have the potential to improve their social skills and relationships with others. Overall, conversation-assistive technology is a promising tool for empowering visually impaired people and improving their social interactions. One of the key benefits of conversation-assistive technology is that it allows visually impaired individuals to overcome communication barriers that they may face in social situations. It can help them to communicate more effectively with friends, family, and colleagues, as well as strangers in public spaces. By providing a more seamless and natural way to communicate, this technology can help to reduce feelings of isolation and improve overall quality of life. The main objective of this research is to give blind users the capability to move around in unfamiliar environments through a user-friendly device by face, object, and activity recognition system. This model evaluates the accuracy of activity recognition. This device captures the front view of the blind, detects the objects, recognizes the activities, and answers the blind query. It is implemented using the front view of the camera. The local dataset is collected that includes different 1st-person human activities. The results obtained are the identification of the activities that the VGG-16 model was trained on, where Hugging, Shaking Hands, Talking, Walking, Waving video, etc.Keywords: dataset, visually impaired person, natural language process, human activity recognition
Procedia PDF Downloads 58866 Analysis of Different Classification Techniques Using WEKA for Diabetic Disease
Authors: Usama Ahmed
Abstract:
Data mining is the process of analyze data which are used to predict helpful information. It is the field of research which solve various type of problem. In data mining, classification is an important technique to classify different kind of data. Diabetes is most common disease. This paper implements different classification technique using Waikato Environment for Knowledge Analysis (WEKA) on diabetes dataset and find which algorithm is suitable for working. The best classification algorithm based on diabetic data is Naïve Bayes. The accuracy of Naïve Bayes is 76.31% and take 0.06 seconds to build the model.Keywords: data mining, classification, diabetes, WEKA
Procedia PDF Downloads 145865 Performance Comparison of Cooperative Banks in the EU, USA and Canada
Authors: Matěj Kuc
Abstract:
This paper compares different types of profitability measures of cooperative banks from two developed regions: the European Union and the United States of America together with Canada. We created balanced dataset of more than 200 cooperative banks covering 2011-2016 period. We made series of tests and run Random Effects estimation on panel data. We found that American and Canadian cooperatives are more profitable in terms of return on assets (ROA) and return on equity (ROE). There is no significant difference in net interest margin (NIM). Our results show that the North American cooperative banks accommodated better to the current market environment.Keywords: cooperative banking, panel data, profitability measures, random effects
Procedia PDF Downloads 112864 Automated Localization of Palpebral Conjunctiva and Hemoglobin Determination Using Smart Phone Camera
Authors: Faraz Tahir, M. Usman Akram, Albab Ahmad Khan, Mujahid Abbass, Ahmad Tariq, Nuzhat Qaiser
Abstract:
The objective of this study was to evaluate the Degree of anemia by taking the picture of the palpebral conjunctiva using Smartphone Camera. We have first localized the region of interest from the image and then extracted certain features from that Region of interest and trained SVM classifier on those features and then, as a result, our system classifies the image in real-time on their level of hemoglobin. The proposed system has given an accuracy of 70%. We have trained our classifier on a locally gathered dataset of 30 patients.Keywords: anemia, palpebral conjunctiva, SVM, smartphone
Procedia PDF Downloads 503863 A Mean–Variance–Skewness Portfolio Optimization Model
Authors: Kostas Metaxiotis
Abstract:
Portfolio optimization is one of the most important topics in finance. This paper proposes a mean–variance–skewness (MVS) portfolio optimization model. Traditionally, the portfolio optimization problem is solved by using the mean–variance (MV) framework. In this study, we formulate the proposed model as a three-objective optimization problem, where the portfolio's expected return and skewness are maximized whereas the portfolio risk is minimized. For solving the proposed three-objective portfolio optimization model we apply an adapted version of the non-dominated sorting genetic algorithm (NSGAII). Finally, we use a real dataset from FTSE-100 for validating the proposed model.Keywords: evolutionary algorithms, portfolio optimization, skewness, stock selection
Procedia PDF Downloads 196862 Prediction of Mental Health: Heuristic Subjective Well-Being Model on Perceived Stress Scale
Authors: Ahmet Karakuş, Akif Can Kilic, Emre Alptekin
Abstract:
A growing number of studies have been conducted to determine how well-being may be predicted using well-designed models. It is necessary to investigate the backgrounds of features in order to construct a viable Subjective Well-Being (SWB) model. We have picked the suitable variables from the literature on SWB that are acceptable for real-world data instructions. The goal of this work is to evaluate the model by feeding it with SWB characteristics and then categorizing the stress levels using machine learning methods to see how well it performs on a real dataset. Despite the fact that it is a multiclass classification issue, we have achieved significant metric scores, which may be taken into account for a specific task.Keywords: machine learning, multiclassification problem, subjective well-being, perceived stress scale
Procedia PDF Downloads 129861 Analysis of Brownfield Soil Contamination Using Local Government Planning Data
Authors: Emma E. Hellawell, Susan J. Hughes
Abstract:
BBrownfield sites are currently being redeveloped for residential use. Information on soil contamination on these former industrial sites is collected as part of the planning process by the local government. This research project analyses this untapped resource of environmental data, using site investigation data submitted to a local Borough Council, in Surrey, UK. Over 150 site investigation reports were collected and interrogated to extract relevant information. This study involved three phases. Phase 1 was the development of a database for soil contamination information from local government reports. This database contained information on the source, history, and quality of the data together with the chemical information on the soil that was sampled. Phase 2 involved obtaining site investigation reports for development within the study area and extracting the required information for the database. Phase 3 was the data analysis and interpretation of key contaminants to evaluate typical levels of contaminants, their distribution within the study area, and relating these results to current guideline levels of risk for future site users. Preliminary results for a pilot study using a sample of the dataset have been obtained. This pilot study showed there is some inconsistency in the quality of the reports and measured data, and careful interpretation of the data is required. Analysis of the information has found high levels of lead in shallow soil samples, with mean and median levels exceeding the current guidance for residential use. The data also showed elevated (but below guidance) levels of potentially carcinogenic polyaromatic hydrocarbons. Of particular concern from the data was the high detection rate for asbestos fibers. These were found at low concentrations in 25% of the soil samples tested (however, the sample set was small). Contamination levels of the remaining chemicals tested were all below the guidance level for residential site use. These preliminary pilot study results will be expanded, and results for the whole local government area will be presented at the conference. The pilot study has demonstrated the potential for this extensive dataset to provide greater information on local contamination levels. This can help inform regulators and developers and lead to more targeted site investigations, improving risk assessments, and brownfield development.Keywords: Brownfield development, contaminated land, local government planning data, site investigation
Procedia PDF Downloads 136860 An Improvement of ComiR Algorithm for MicroRNA Target Prediction by Exploiting Coding Region Sequences of mRNAs
Authors: Giorgio Bertolazzi, Panayiotis Benos, Michele Tumminello, Claudia Coronnello
Abstract:
MicroRNAs are small non-coding RNAs that post-transcriptionally regulate the expression levels of messenger RNAs. MicroRNA regulation activity depends on the recognition of binding sites located on mRNA molecules. ComiR (Combinatorial miRNA targeting) is a user friendly web tool realized to predict the targets of a set of microRNAs, starting from their expression profile. ComiR incorporates miRNA expression in a thermodynamic binding model, and it associates each gene with the probability of being a target of a set of miRNAs. ComiR algorithms were trained with the information regarding binding sites in the 3’UTR region, by using a reliable dataset containing the targets of endogenously expressed microRNA in D. melanogaster S2 cells. This dataset was obtained by comparing the results from two different experimental approaches, i.e., inhibition, and immunoprecipitation of the AGO1 protein; this protein is a component of the microRNA induced silencing complex. In this work, we tested whether including coding region binding sites in the ComiR algorithm improves the performance of the tool in predicting microRNA targets. We focused the analysis on the D. melanogaster species and updated the ComiR underlying database with the currently available releases of mRNA and microRNA sequences. As a result, we find that the ComiR algorithm trained with the information related to the coding regions is more efficient in predicting the microRNA targets, with respect to the algorithm trained with 3’utr information. On the other hand, we show that 3’utr based predictions can be seen as complementary to the coding region based predictions, which suggests that both predictions, from 3'UTR and coding regions, should be considered in a comprehensive analysis. Furthermore, we observed that the lists of targets obtained by analyzing data from one experimental approach only, that is, inhibition or immunoprecipitation of AGO1, are not reliable enough to test the performance of our microRNA target prediction algorithm. Further analysis will be conducted to investigate the effectiveness of the tool with data from other species, provided that validated datasets, as obtained from the comparison of RISC proteins inhibition and immunoprecipitation experiments, will be available for the same samples. Finally, we propose to upgrade the existing ComiR web-tool by including the coding region based trained model, available together with the 3’UTR based one.Keywords: AGO1, coding region, Drosophila melanogaster, microRNA target prediction
Procedia PDF Downloads 449