Search results for: structural induction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4540

Search results for: structural induction

4540 Variants of Mathematical Induction as Strong Proof Techniques in Theory of Computing

Authors: Ahmed Tarek, Ahmed Alveed

Abstract:

In the theory of computing, there are a wide variety of direct and indirect proof techniques. However, mathematical induction (MI) stands out to be one of the most powerful proof techniques for proving hypotheses, theorems, and new results. There are variations of mathematical induction-based proof techniques, which are broadly classified into three categories, such as structural induction (SI), weak induction (WI), and strong induction (SI). In this expository paper, several different variants of the mathematical induction techniques are explored, and the specific scenarios are discussed where a specific induction technique stands out to be more advantageous as compared to other induction strategies. Also, the essential difference among the variants of mathematical induction are explored. The points of separation among mathematical induction, recursion, and logical deduction are precisely analyzed, and the relationship among variations of recurrence relations, and mathematical induction are being explored. In this context, the application of recurrence relations, and mathematical inductions are considered together in a single framework for codewords over a given alphabet.

Keywords: alphabet, codeword, deduction, mathematical, induction, recurrence relation, strong induction, structural induction, weak induction

Procedia PDF Downloads 141
4539 Issues on Optimizing the Structural Parameters of the Induction Converter

Authors: Marinka K. Baghdasaryan, Siranush M. Muradyan, Avgen A. Gasparyan

Abstract:

Analytical expressions of the current and angular errors, as well as the frequency characteristics of an induction converter describing the relation with its structural parameters, the core and winding characteristics are obtained. Based on estimation of the dependences obtained, a mathematical problem of parametric optimization is formulated which can successfully be used for investigation and diagnosing an induction converter.

Keywords: induction converters, magnetic circuit material, current and angular errors, frequency response, mathematical formulation, structural parameters

Procedia PDF Downloads 322
4538 A Study on Analysis of Magnetic Field in Induction Generator for Small Francis Turbine Generator

Authors: Young-Kwan Choi, Han-Sang Jeong, Yeon-Ho Ok, Jae-Ho Choi

Abstract:

The purpose of this study is to verify validity of design by testing output of induction generator through finite element analysis before manufacture of induction generator designed. Characteristics in the operating domain of induction generator can be understood through analysis of magnetic field according to load (rotational speed) of induction generator. Characteristics of induction generator such as induced voltage, current, torque, magnetic flux density (magnetic flux saturation), and loss can be predicted by analysis of magnetic field.

Keywords: electromagnetic analysis, induction generator, small hydro power generator, small francis turbine generator

Procedia PDF Downloads 1442
4537 Induction Heating Process Design Using Comsol® Multiphysics Software Version 4.2a

Authors: K. Djellabi, M. E. H. Latreche

Abstract:

Induction heating computer simulation is a powerful tool for process design and optimization, induction coil design, equipment selection, as well as education and business presentations. The authors share their vast experience in the practical use of computer simulation for different induction heating and heat treating processes. In this paper deals with mathematical modeling and numerical simulation of induction heating furnaces with axisymmetric geometries. For the numerical solution, we propose finite element methods combined with boundary (FEM) for the electromagnetic model using COMSOL® Multiphysics Software. Some numerical results for an industrial furnace are shown with high frequency.

Keywords: numerical methods, induction furnaces, induction heating, finite element method, Comsol multiphysics software

Procedia PDF Downloads 413
4536 Variable Frequency Converter Fed Induction Motors

Authors: Abdulatif Abdulsalam Mohamed Shaban

Abstract:

A.C motors, in general, have superior performance characteristics to their d.c. counterparts. However, despite these advantage a.c. motors lack the controllability and simplicity and so d.c. motors retain a competitive edge where precise control is required. As part of an overall project to develop an improved cycloconverter control strategy for induction motors. Simulation and modelling techniques have been developed. This contribution describes a method used to simulate an induction motor drive using the SIMULINK toolbox within MATLAB software. The cycloconverter fed induction motor is principally modelled using the d-q axis equations. Results of the simulation for a given set of induction motor parameters are also presented.

Keywords: simulation, converter, motor, cycloconverter

Procedia PDF Downloads 580
4535 Design of 100 kW Induction Generator for Wind Power Plant at Tamanjaya Village-Sukabumi

Authors: Andri Setiyoso, Agus Purwadi, Nanda Avianto Wicaksono

Abstract:

This paper present about induction generator design for 100kW power output capacity. Induction machine had been chosen because of the capability for energy conversion from electric energy to mechanical energy and vise-versa with operation on variable speed condition. Stator Controlled Induction Generator (SCIG) was applied as wind power plant in Desa Taman Jaya, Sukabumi, Indonesia. Generator was designed to generate power 100 kW with wind speed at 12 m/s and survival condition at speed 21 m/s.

Keywords: wind energy, induction generator, Stator Controlled Induction Generator (SCIG), variable speed generator

Procedia PDF Downloads 478
4534 Comparison of Cervical Length Using Transvaginal Ultrasonography and Bishop Score to Predict Succesful Induction

Authors: Lubena Achmad, Herman Kristanto, Julian Dewantiningrum

Abstract:

Background: The Bishop score is a standard method used to predict the success of induction. This examination tends to be subjective with high inter and intraobserver variability, so it was presumed to have a low predictive value in terms of the outcome of labor induction. Cervical length measurement using transvaginal ultrasound is considered to be more objective to assess the cervical length. Meanwhile, this examination is not a complicated procedure and less invasive than vaginal touché. Objective: To compare transvaginal ultrasound and Bishop score in predicting successful induction. Methods: This study was a prospective cohort study. One hundred and twenty women with singleton pregnancies undergoing induction of labor at 37 – 42 weeks and met inclusion and exclusion criteria were enrolled in this study. Cervical assessment by both transvaginal ultrasound and Bishop score were conducted prior induction. The success of labor induction was defined as an ability to achieve active phase ≤ 12 hours after induction. To figure out the best cut-off point of cervical length and Bishop score, receiver operating characteristic (ROC) curves were plotted. Logistic regression analysis was used to determine which factors best-predicted induction success. Results: This study showed significant differences in terms of age, premature rupture of the membrane, the Bishop score, cervical length and funneling as significant predictors of successful induction. Using ROC curves found that the best cut-off point for prediction of successful induction was 25.45 mm for cervical length and 3 for Bishop score. Logistic regression was performed and showed only premature rupture of membranes and cervical length ≤ 25.45 that significantly predicted the success of labor induction. By excluding premature rupture of the membrane as the indication of induction, cervical length less than 25.3 mm was a better predictor of successful induction. Conclusion: Compared to Bishop score, cervical length using transvaginal ultrasound was a better predictor of successful induction.

Keywords: Bishop Score, cervical length, induction, successful induction, transvaginal sonography

Procedia PDF Downloads 302
4533 Diagnosis of Induction Machine Faults by DWT

Authors: Hamidreza Akbari

Abstract:

In this paper, for detection of inclined eccentricity in an induction motor, time–frequency analysis of the stator startup current is carried out. For this purpose, the discrete wavelet transform is used. Data are obtained from simulations, using winding function approach. The results show the validity of the approach for detecting the fault and discriminating with respect to other faults.

Keywords: induction machine, fault, DWT, electric

Procedia PDF Downloads 320
4532 Induction Motor Analysis Using LabVIEW

Authors: E. Ramprasath, P. Manojkumar, P. Veena

Abstract:

Proposed paper dealt with the modelling and analysis of induction motor based on the mathematical expression using the graphical programming environment of Laboratory Virtual Instrument Engineering Workbench (LabVIEW). Induction motor modelling with the mathematical expression enables the motor to be simulated with the various required parameters. Owing to the invention of variable speed drives study about the induction motor characteristics became complex.In this simulation motor internal parameter such as stator resistance and reactance, rotor resistance and reactance, phase voltage, frequency and losses will be given as input. By varying the speed of motor corresponding parameters can be obtained they are input power, output power, efficiency, torque induced, slip and current.

Keywords: induction motor, LabVIEW software, modelling and analysi, electrical and mechanical characteristics of motor

Procedia PDF Downloads 528
4531 Reliability Indices Evaluation of SEIG Rotor Core Magnetization with Minimum Capacitive Excitation for WECs

Authors: Lokesh Varshney, R. K. Saket

Abstract:

This paper presents reliability indices evaluation of the rotor core magnetization of the induction motor operated as a self-excited induction generator by using probability distribution approach and Monte Carlo simulation. Parallel capacitors with calculated minimum capacitive value across the terminals of the induction motor operating as a SEIG with unregulated shaft speed have been connected during the experimental study. A three phase, 4 poles, 50Hz, 5.5 hp, 12.3A, 230V induction motor coupled with DC Shunt Motor was tested in the electrical machine laboratory with variable reactive loads. Based on this experimental study, it is possible to choose a reliable induction machine operating as a SEIG for unregulated renewable energy application in remote area or where grid is not available. Failure density function, cumulative failure distribution function, survivor function, hazard model, probability of success and probability of failure for reliability evaluation of the three phase induction motor operating as a SEIG have been presented graphically in this paper.

Keywords: residual magnetism, magnetization curve, induction motor, self excited induction generator, probability distribution, Monte Carlo simulation

Procedia PDF Downloads 537
4530 Implementation of a Predictive DTC-SVM of an Induction Motor

Authors: Chebaani Mohamed, Gplea Amar, Benchouia Mohamed Toufik

Abstract:

Direct torque control is characterized by the merits of fast response, simple structure and strong robustness to the motor parameters variations. This paper proposes the implementation of DTC-SVM of an induction motor drive using Predictive controller. The principle of the method is explained and the system mathematical description is provided. The derived control algorithm is implemented both in the simulation software MatLab/Simulink and on the real induction motor drive with dSPACE control system. Simulated and measured results in steady states and transients are presented.

Keywords: induction motor, DTC-SVM, predictive controller, implementation, dSPACE, Matlab, Simulink

Procedia PDF Downloads 484
4529 Using of Particle Swarm Optimization for Loss Minimization of Vector-Controlled Induction Motors

Authors: V. Rashtchi, H. Bizhani, F. R. Tatari

Abstract:

This paper presents a new online loss minimization for an induction motor drive. Among the many loss minimization algorithms (LMAs) for an induction motor, a particle swarm optimization (PSO) has the advantages of fast response and high accuracy. However, the performance of the PSO and other optimization algorithms depend on the accuracy of the modeling of the motor drive and losses. In the development of the loss model, there is always a trade off between accuracy and complexity. This paper presents a new online optimization to determine an optimum flux level for the efficiency optimization of the vector-controlled induction motor drive. An induction motor (IM) model in d-q coordinates is referenced to the rotor magnetizing current. This transformation results in no leakage inductance on the rotor side, thus the decomposition into d-q components in the steady-state motor model can be utilized in deriving the motor loss model. The suggested algorithm is simple for implementation.

Keywords: induction machine, loss minimization, magnetizing current, particle swarm optimization

Procedia PDF Downloads 610
4528 Determination of Suitability Between Single Phase Induction Motor and Load

Authors: Nakarin Prempri

Abstract:

Single-phase induction motors are widely used in industry. Most manufacturing processes use capacitor-run single-phase induction motors to drive mechanical loads. The selection of a suitable motor for driving is important. The optimum operating range of the motor can help the motor operate efficiently. Thus, this paper presents an operating range analysis of capacitor-run single-phase induction motors and a determination of suitability between motor and mechanical loads. an observational study found that the optimum operating range of the motor can be used to determine the suitability between the motor and the mechanical load. Such considerations ensure that the motor uses no more current than necessary and operates efficiently.

Keywords: single phase induction motor, operating range, torque curve, efficiency curve

Procedia PDF Downloads 67
4527 Influence of the Induction Program on Novice Teacher Retention In One Specialized School in Nur-Sultan

Authors: Almagul Nurgaliyeva

Abstract:

The phenomenon of novice teacher attrition is an urgent issue. The effective mechanisms to increase the retention rate of novice teachers relate to the nature and level of support provided at an employing site. This study considered novice teacher retention as a motivation-based process, which is based on a variety of support activities employed to satisfy novice teachers’ needs at an early career stage. The purpose of the study was to examine novice teachers’ perceptions of the effectiveness of the induction program and other support structure(s) at a secondary school in Nur-Sultan. The study was guided by Abraham Maslow’s (1943) theory of motivation. Maslow’s hierarchy of needs was used as a theoretical framework to identify the novice teachers’ primary needs and the extent to which the induction programs and other support mechanisms provided by the school administrators fulfill those needs. One school supervisor and eight novice teachers (four current and four former novice teachers) with a maximum of four years of teaching experience took part in the study. To investigate the perspectives and experiences of the participants, an online semi-structured interview was utilized. The responses were collected and analyzed. The study revealed four major challenges: educational, personal-psychological, sociological, and structural which are seen as the main constraints during the adaptation period. Four induction activities, as emerged from the data, are being carried out by the school to address novice teachers’ challenges: socialization activities, mentoring programs, professional development, and administrative support. These activities meet novice teachers’ needs and confront the challenges they face. Sufficient and adequate support structures provided to novice teachers during their first years of working experience is essential, as they may influence their decision to remain in the teaching profession, thereby reducing the attrition rate. The study provides recommendations for policymakers and school administrators about the structure and the content of induction program activities.

Keywords: beginning teacher induction, induction programme, orientation programmes, adaptation challenges, novice teacher retention

Procedia PDF Downloads 52
4526 Estimating the Technological Deviation Impact on the Value of the Output Parameter of the Induction Converter

Authors: Marinka K. Baghdasaryan, Siranush M. Muradyan, Avgen A. Gasparyan

Abstract:

Based on the experimental data, the impact of resistance and reactance of the winding, as well as the magnetic permeability of the magnetic circuit steel material on the value of the electromotive force of the induction converter is investigated. The obtained results allow to estimate the main technological spreads and determine the maximum level of the electromotive force change. By the method of experiment planning, the expression of a polynomial for the electromotive force which can be used to estimate the adequacy of mathematical models to be used at the investigation and design of induction converters is obtained.

Keywords: induction converter, electromotive force, expectation, technological spread, deviation, planning an experiment, polynomial, confidence level

Procedia PDF Downloads 439
4525 Optimization of Three Phase Squirrel Cage Induction Motor

Authors: Tunahan Sapmaz, Harun Etçi, İbrahim Şenol, Yasemin Öner

Abstract:

Rotor bar dimensions have a great influence on the air-gap magnetic flux density. Therefore, poor selection of this parameter during the machine design phase causes the air-gap magnetic flux density to be distorted. Thus, it causes noise, torque fluctuation, and losses in the induction motor. On the other hand, the change in rotor bar dimensions will change the resistance of the conductor, so the current will be affected. Therefore, the increase and decrease of rotor bar current affect operation, starting torque, and efficiency. The aim of this study is to examine the effect of rotor bar dimensions on the electromagnetic performance criteria of the induction motor. Modeling of the induction motor is done by the finite element method (FEM), which is a very powerful tool. In FEM, the results generally focus on performance criteria such as torque, torque fluctuation, efficiency, and current.

Keywords: induction motor, finite element method, optimization, rotor bar

Procedia PDF Downloads 99
4524 Optimal Operation of a Photovoltaic Induction Motor Drive Water Pumping System

Authors: Nelson K. Lujara

Abstract:

The performance characteristics of a photovoltaic induction motor drive water pumping system with and without maximum power tracker is analyzed and presented. The analysis is done through determination and assessment of critical loss components in the system using computer aided design (CAD) tools for optimal operation of the system. The results can be used to formulate a well-calibrated computer aided design package of photovoltaic water pumping systems based on the induction motor drive. The results allow the design engineer to pre-determine the flow rate and efficiency of the system to suit particular application.

Keywords: photovoltaic, water pumping, losses, induction motor

Procedia PDF Downloads 275
4523 Non-Contact Human Movement Monitoring Technique for Security Control System Based 2n Electrostatic Induction

Authors: Koichi Kurita

Abstract:

In this study, an effective non-contact technique for the detection of human physical activity is proposed. The technique is based on detecting the electrostatic induction current generated by the walking motion under non-contact and non-attached conditions. A theoretical model for the electrostatic induction current generated because of a change in the electric potential of the human body is proposed. By comparing the obtained electrostatic induction current with the theoretical model, it becomes obvious that this model effectively explains the behavior of the waveform of the electrostatic induction current. The normal walking motions are recorded using a portable sensor measurement located in a passageway of office building. The obtained results show that detailed information regarding physical activity such as a walking cycle can be estimated using our proposed technique. This suggests that the proposed technique which is based on the detection of the walking signal, can be successfully applied to the detection of human walking motion in a secured building.

Keywords: human walking motion, access control, electrostatic induction, alarm monitoring

Procedia PDF Downloads 335
4522 Assessment of Mechanical Properties of Induction Furnace Slag as Partial Replacement of Fine Aggregate in Concrete

Authors: Muhammad Javed Bhatti, Tariq Ali, Muazz Ali

Abstract:

Due to growing environmental awareness in Pakistan, the researchers are increasingly turning to assess and analyze properties of industrial waste and finding solutions on using industrial waste as secondary material. Due to industrialization, enormous by-products are produced and to utilize these by-products is the main challenge faced in Pakistan. Induction furnace slag is one of the industrial by-products from the iron and steel making industries. This paper highlights the true utilization of induction furnace slag as partial replacement of fine aggregate. For the experimental investigation, mixes were prepared with fine aggregate replacement using 0 percent, 5 percent, 10 percent, 15 percent, 20 percent, 25 percent, 30 percent, 35 percent and 40 percent induction furnace slag to evaluate the workability, compaction factor, compressive strength, flexural strength, modulus of elasticity.

Keywords: compressive strength, deflection, induction furnace slag, workability

Procedia PDF Downloads 272
4521 Conceptional Design of a Hyperloop Capsule with Linear Induction Propulsion System

Authors: Ahmed E. Hodaib, Samar F. Abdel Fattah

Abstract:

High-speed transportation is a growing concern. To develop high-speed rails and to increase high-speed efficiencies, the idea of Hyperloop was introduced. The challenge is to overcome the difficulties of managing friction and air-resistance which become substantial when vehicles approach high speeds. In this paper, we are presenting the methodologies of the capsule design which got a design concept innovation award at SpaceX competition in January, 2016. MATLAB scripts are written for the levitation and propulsion calculations and iterations. Computational Fluid Dynamics (CFD) is used to simulate the air flow around the capsule considering the effect of the axial-flow air compressor and the levitation cushion on the air flow. The design procedures of a single-sided linear induction motor are analyzed in detail and its geometric and magnetic parameters are determined. A structural design is introduced and Finite Element Method (FEM) is used to analyze the stresses in different parts. The configuration and the arrangement of the components are illustrated. Moreover, comments on manufacturing are made.

Keywords: high-speed transportation, hyperloop, railways transportation, single-sided linear induction Motor (SLIM)

Procedia PDF Downloads 249
4520 An Approach to Wind Turbine Modeling for Increasing Its Efficiency

Authors: Rishikesh Dingari, Sai Kiran Dornala

Abstract:

In this paper, a simple method of achieving maximum power by mechanical energy transmission device (METD) with integration to induction generator is proposed. METD functioning is explained and dynamic response of system to step input is plotted. Induction generator is being operated at self-excited mode with excitation capacitor at stator. Voltage and current are observed when linked to METD.

Keywords: mechanical energy transmitting device(METD), self-excited induction generator, wind turbine, hydraulic actuators

Procedia PDF Downloads 315
4519 Comparative Study Performance of the Induction Motor between SMC and NLC Modes Control

Authors: A. Oukaci, R. Toufouti, D. Dib, l. Atarsia

Abstract:

This article presents a multitude of alternative techniques to control the vector control, namely the nonlinear control and sliding mode control. Moreover, the implementation of their control law applied to the high-performance to the induction motor with the objective to improve the tracking control, ensure stability robustness to parameter variations and disturbance rejection. Tests are performed numerical simulations in the Matlab/Simulink interface, the results demonstrate the efficiency and dynamic performance of the proposed strategy.

Keywords: Induction Motor (IM), Non-linear Control (NLC), Sliding Mode Control (SMC), nonlinear sliding surface

Procedia PDF Downloads 545
4518 Rotor Side Speed Control Methods Using MATLAB/Simulink for Wound Induction Motor

Authors: Rajesh Kumar, Roopali Dogra, Puneet Aggarwal

Abstract:

In recent advancements in electric machine and drives, wound rotor motor is extensively used. The merit of using wound rotor induction motor is to control speed/torque characteristics by inserting external resistance. Wound rotor induction motor can be used in the cases such as (a) low inrush current, (b) load requiring high starting torque, (c) lower starting current is required, (d) loads having high inertia, and (e) gradual built up of torque. Examples include conveyers, cranes, pumps, elevators, and compressors. This paper includes speed control of wound induction motor using MATLAB/Simulink for rotor resistance and slip power recovery method. The characteristics of these speed control methods are hence analyzed.

Keywords: MATLAB/Simulink, rotor resistance method, slip power recovery method, wound rotor induction motor

Procedia PDF Downloads 339
4517 Impact of Iron Doping on Induction Heating during Spark Plasma Sintering

Authors: Hua Tan, David Salamon

Abstract:

In this study, γ-Al2O3 powders doped with various amounts of iron were sintered via SPS process. Two heating modes – auto and manual mode were applied to observe the role of electrical induction on heating. Temperature, electric current, and pulse pattern were experimented with grade iron γ-Al2O3 powders. Phase transformation of γ to α -Al2O3 serves as a direct indicator of internal temperature, independently on measured outside temperature. That pulsing in SPS is also able to induce internal heating due to its strong electromagnetic field when dopants are conductive metals (e.g., iron) is proofed during SPS. Density and microstructure were investigated to explain the mechanism of induction heating. In addition, the role of electric pulsing and strong electromagnetic field on internal heating (induction heating) were compared and discussed. Internal heating by iron doping within electrically nonconductive samples is able to decrease sintering temperature and save energy, furthermore it is one explanation for unique features of this material fabrication technology.

Keywords: spark plasma sintering, induction heating, alumina, microstructure

Procedia PDF Downloads 307
4516 Off-Line Parameter Estimation for the Induction Motor Drive System

Authors: Han-Woong Ahn, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee

Abstract:

It is important to accurately identify machine parameters for direct vector control. To obtain the parameter values, traditional methods can be used such as no-load and rotor locked tests. However, there are many differences between values obtained from the traditional tests and actual values. In addition, there are drawbacks that additional equipment and cost are required for the experiment. Therefore, it is hard to temporary operation to estimate induction motor parameters. Therefore, this paper deals with the estimation algorithm of induction motor parameters without a motor operation and the measurement from additional equipment such as sensors and dynamometer. The validity and usefulness of the estimation algorithm considering inverter nonlinearity is verified by comparing the conventional method with the proposed method.

Keywords: induction motor, parameter, off-line estimation, inverter nonlinearity

Procedia PDF Downloads 503
4515 Analysis of Flux-Linkage Performance of DFIG by Using Simulink under Different Types of Faults and Locations

Authors: Mohamed Moustafa Mahmoud Sedky

Abstract:

The double-fed induction generator wind turbine has recently received a great attention. The steady state performance and response of double fed induction generator (DFIG) based wind turbine are now well understood. This paper presents the analysis of stator and rotor flux linkage dq models operation of DFIG under different faults and at different locations.

Keywords: double fed induction motor, wind energy, flux linkage, short circuit

Procedia PDF Downloads 568
4514 Evaluation of Non-Pharmacological Method-Transcervical Foley Catheter and Misoprostol to Intravaginal Misoprostol for Preinduction Cervical Ripening

Authors: Krishna Dahiya, Esha Charaya

Abstract:

Induction of labour is a common obstetrical intervention. Around 1 in every 4 patient undergo induction of labour for different indications Purpose: To study the efficacy of the combination of Foley bulb and vaginal misoprostol in comparison to vaginal misoprostol alone for cervical ripening and induction of labour. Methods: A prospective randomised study was conducted on 150 patients with term singleton pregnancy admitted for induction of labour. Seventy-five patients were induced with both Foley bulb, and vaginal misoprostol and another 75 were given vaginal misoprostol alone for induction of labour. Both groups were then compared with respect to change in Bishop score, induction to the active phase of labour interval, induction delivery interval, duration of labour, maternal complications and neonatal outcomes. Data was analysed using statistical software SPSS version 11.5. Tests with P,.05 were considered significant. Results: The two groups were comparable with respect to maternal age, parity, gestational age, indication for induction, and initial Bishop scores. Both groups had a significant change in Bishop score (2.99 ± 1.72 and 2.17 ± 1.48 respectively with statistically significant difference (p=0.001 S, 95% C.I. -0.1978 to 0.8378). Mean induction to delivery interval was significantly lower in the combination group (11.76 ± 5.89 hours) than misoprostol group (14.54 ± 7.32 hours). Difference was of 2.78 hours (p=0.018,S, 95% CI -5.1042 to -0.4558). Induction to delivery interval was significantly lower in nulliparous women of combination group (13.64 ± 5.75 hours) than misoprostol group (18.4±7.09 hours), and the difference was of 4.76 hours (p=0.002, S, 95% CI 1.0465 to 14.7335). There was no difference between the groups in the mode of delivery, infant weight, Apgar score and intrapartum complications. Conclusion: From the present study it was concluded that addition of Foley catheter to vaginal misoprostol have the synergistic effect and results in early cervical ripening and delivery. These results suggest that the combination may be used to achieve timely and safe delivery in the presence of an unfavorable cervix. A combination of the Foley bulb and vaginal misoprostol resulted in a shorter induction-to-delivery time when compared with vaginal misoprostol alone without increasing labor complications.

Keywords: Bishop score, Foley catheter, induction of labor, misoprostol

Procedia PDF Downloads 287
4513 Investigate the Effects of Anionic Surfactant on THF Hydrate

Authors: Salah A. Al-Garyani, Yousef Swesi

Abstract:

Gas hydrates can be hazardous to upstream operations. On the other hand, the high gas storage capacity of hydrate may be utilized for natural gas storage and transport. Research on the promotion of hydrate formation, as related to natural gas storage and transport, has received relatively little attention. The primary objective of this study is to gain a better understanding of the effects of ionic surfactants, particularly their molecular structures and concentration, on the formation of tetrahydrofuran (THF) hydrate, which is often used as a model hydrate former for screening hydrate promoters or inhibitors. The surfactants studied were sodium n-dodecyl sulfate (SDS), sodium n-hexadecyl sulfate (SHS). Our results show that, at concentrations below the solubility limit, the induction time decreases with increasing surfactant concentration. At concentrations near or above the solubility, however, the surfactant concentration no longer has any effect on the induction time. These observations suggest that the effect of surfactant on THF hydrate formation is associated with surfactant monomers, not the formation of micelle as previously reported. The lowest induction time (141.25 ± 21 s, n = 4) was observed in a solution containing 7.5 mM SDS. The induction time decreases by a factor of three at concentrations near or above the solubility, compared to that without surfactant.

Keywords: tetrahydrofuran, hydrate, surfactant, induction time, monomers, micelle

Procedia PDF Downloads 387
4512 Designing of Induction Motor Efficiency Monitoring System

Authors: Ali Mamizadeh, Ires Iskender, Saeid Aghaei

Abstract:

Energy is one of the important issues with high priority property in the world. Energy demand is rapidly increasing depending on the growing population and industry. The useable energy sources in the world will be insufficient to meet the need for energy. Therefore, the efficient and economical usage of energy sources is getting more importance. In a survey conducted among electric consuming machines, the electrical machines are consuming about 40% of the total electrical energy consumed by electrical devices and 96% of this consumption belongs to induction motors. Induction motors are the workhorses of industry and have very large application areas in industry and urban systems like water pumping and distribution systems, steel and paper industries and etc. Monitoring and the control of the motors have an important effect on the operating performance of the motor, driver selection and replacement strategy management of electrical machines. The sensorless monitoring system for monitoring and calculating efficiency of induction motors are studied in this study. The equivalent circuit of IEEE is used in the design of this study. The terminal current and voltage of induction motor are used in this motor to measure the efficiency of induction motor. The motor nameplate information and the measured current and voltage are used in this system to calculate accurately the losses of induction motor to calculate its input and output power. The efficiency of the induction motor is monitored online in the proposed method without disconnecting the motor from the driver and without adding any additional connection at the motor terminal box. The proposed monitoring system measure accurately the efficiency by including all losses without using torque meter and speed sensor. The monitoring system uses embedded architecture and does not need to connect to a computer to measure and log measured data. The conclusion regarding the efficiency, the accuracy and technical and economical benefits of the proposed method are presented. The experimental verification has been obtained on a 3 phase 1.1 kW, 2-pole induction motor. The proposed method can be used for optimal control of induction motors, efficiency monitoring and motor replacement strategy.

Keywords: induction motor, efficiency, power losses, monitoring, embedded design

Procedia PDF Downloads 323
4511 Outcome of Induction of Labour by Cervical Ripening with an Osmotic Dilator in a District General Hospital

Authors: A. Wahid Uddin

Abstract:

Osmotic dilator for cervical ripening bypasses the initial hormonal exposure necessary for a routine method of induction. The study was a clinical intervention with an osmotic dilator followed by prospective observation. The aim was to calculate the percentage of women who had successful cervical ripening using modified BISHOP score as evidenced by artificial rupture of membrane. The study also estimated the delivery interval following a single administration of osmotic dilators. Randomly selected patients booked for induction of labour accepting the intervention were included in the study. The study population comprised singleton term pregnancy, cephalic presentation, intact membranes with a modified BISHOP score of less than 6. Initial sample recruited was 30, but 6 patients left the study and the study was concluded on 24 patients. The data were collected in a pre-designed questionnaire and analysis were expressed in percentages along with using mean value for continuous variables. In 70 % of cases, artificial rupture of the membrane was possible and the mean time from insertion of the osmotic dilator to the delivery interval was 30 hours. The study concluded that an osmotic dilator could be a suitable alternative for hormone-based induction of labour.

Keywords: dilator, induction, labour, osmotic

Procedia PDF Downloads 115