Search results for: one-shot object detection
4479 Multichannel Object Detection with Event Camera
Authors: Rafael Iliasov, Alessandro Golkar
Abstract:
Object detection based on event vision has been a dynamically growing field in computer vision for the last 16 years. In this work, we create multiple channels from a single event camera and propose an event fusion method (EFM) to enhance object detection in event-based vision systems. Each channel uses a different accumulation buffer to collect events from the event camera. We implement YOLOv7 for object detection, followed by a fusion algorithm. Our multichannel approach outperforms single-channel-based object detection by 0.7% in mean Average Precision (mAP) for detection overlapping ground truth with IOU = 0.5.Keywords: event camera, object detection with multimodal inputs, multichannel fusion, computer vision
Procedia PDF Downloads 284478 Mosaic Augmentation: Insights and Limitations
Authors: Olivia A. Kjorlien, Maryam Asghari, Farshid Alizadeh-Shabdiz
Abstract:
The goal of this paper is to investigate the impact of mosaic augmentation on the performance of object detection solutions. To carry out the study, YOLOv4 and YOLOv4-Tiny models have been selected, which are popular, advanced object detection models. These models are also representatives of two classes of complex and simple models. The study also has been carried out on two categories of objects, simple and complex. For this study, YOLOv4 and YOLOv4 Tiny are trained with and without mosaic augmentation for two sets of objects. While mosaic augmentation improves the performance of simple object detection, it deteriorates the performance of complex object detection, specifically having the largest negative impact on the false positive rate in a complex object detection case.Keywords: accuracy, false positives, mosaic augmentation, object detection, YOLOV4, YOLOV4-Tiny
Procedia PDF Downloads 1274477 Facility Detection from Image Using Mathematical Morphology
Authors: In-Geun Lim, Sung-Woong Ra
Abstract:
As high resolution satellite images can be used, lots of studies are carried out for exploiting these images in various fields. This paper proposes the method based on mathematical morphology for extracting the ‘horse's hoof shaped object’. This proposed method can make an automatic object detection system to track the meaningful object in a large satellite image rapidly. Mathematical morphology process can apply in binary image, so this method is very simple. Therefore this method can easily extract the ‘horse's hoof shaped object’ from any images which have indistinct edges of the tracking object and have different image qualities depending on filming location, filming time, and filming environment. Using the proposed method by which ‘horse's hoof shaped object’ can be rapidly extracted, the performance of the automatic object detection system can be improved dramatically.Keywords: facility detection, satellite image, object, mathematical morphology
Procedia PDF Downloads 3824476 GPU Based Real-Time Floating Object Detection System
Authors: Jie Yang, Jian-Min Meng
Abstract:
A GPU-based floating object detection scheme is presented in this paper which is designed for floating mine detection tasks. This system uses contrast and motion information to eliminate as many false positives as possible while avoiding false negatives. The GPU computation platform is deployed to allow detecting objects in real-time. From the experimental results, it is shown that with certain configuration, the GPU-based scheme can speed up the computation up to one thousand times compared to the CPU-based scheme.Keywords: object detection, GPU, motion estimation, parallel processing
Procedia PDF Downloads 4744475 Object Detection in Digital Images under Non-Standardized Conditions Using Illumination and Shadow Filtering
Authors: Waqqas-ur-Rehman Butt, Martin Servin, Marion Pause
Abstract:
In recent years, object detection has gained much attention and very encouraging research area in the field of computer vision. The robust object boundaries detection in an image is demanded in numerous applications of human computer interaction and automated surveillance systems. Many methods and approaches have been developed for automatic object detection in various fields, such as automotive, quality control management and environmental services. Inappropriately, to the best of our knowledge, object detection under illumination with shadow consideration has not been well solved yet. Furthermore, this problem is also one of the major hurdles to keeping an object detection method from the practical applications. This paper presents an approach to automatic object detection in images under non-standardized environmental conditions. A key challenge is how to detect the object, particularly under uneven illumination conditions. Image capturing conditions the algorithms need to consider a variety of possible environmental factors as the colour information, lightening and shadows varies from image to image. Existing methods mostly failed to produce the appropriate result due to variation in colour information, lightening effects, threshold specifications, histogram dependencies and colour ranges. To overcome these limitations we propose an object detection algorithm, with pre-processing methods, to reduce the interference caused by shadow and illumination effects without fixed parameters. We use the Y CrCb colour model without any specific colour ranges and predefined threshold values. The segmented object regions are further classified using morphological operations (Erosion and Dilation) and contours. Proposed approach applied on a large image data set acquired under various environmental conditions for wood stack detection. Experiments show the promising result of the proposed approach in comparison with existing methods.Keywords: image processing, illumination equalization, shadow filtering, object detection
Procedia PDF Downloads 2164474 A Background Subtraction Based Moving Object Detection Around the Host Vehicle
Authors: Hyojin Lim, Cuong Nguyen Khac, Ho-Youl Jung
Abstract:
In this paper, we propose moving object detection method which is helpful for driver to safely take his/her car out of parking lot. When moving objects such as motorbikes, pedestrians, the other cars and some obstacles are detected at the rear-side of host vehicle, the proposed algorithm can provide to driver warning. We assume that the host vehicle is just before departure. Gaussian Mixture Model (GMM) based background subtraction is basically applied. Pre-processing such as smoothing and post-processing as morphological filtering are added.We examine “which color space has better performance for detection of moving objects?” Three color spaces including RGB, YCbCr, and Y are applied and compared, in terms of detection rate. Through simulation, we prove that RGB space is more suitable for moving object detection based on background subtraction.Keywords: gaussian mixture model, background subtraction, moving object detection, color space, morphological filtering
Procedia PDF Downloads 6174473 An Efficient Fundamental Matrix Estimation for Moving Object Detection
Authors: Yeongyu Choi, Ju H. Park, S. M. Lee, Ho-Youl Jung
Abstract:
In this paper, an improved method for estimating fundamental matrix is proposed. The method is applied effectively to monocular camera based moving object detection. The method consists of corner points detection, moving object’s motion estimation and fundamental matrix calculation. The corner points are obtained by using Harris corner detector, motions of moving objects is calculated from pyramidal Lucas-Kanade optical flow algorithm. Through epipolar geometry analysis using RANSAC, the fundamental matrix is calculated. In this method, we have improved the performances of moving object detection by using two threshold values that determine inlier or outlier. Through the simulations, we compare the performances with varying the two threshold values.Keywords: corner detection, optical flow, epipolar geometry, RANSAC
Procedia PDF Downloads 4094472 3D Object Detection for Autonomous Driving: A Comprehensive Review
Authors: Ahmed Soliman Nagiub, Mahmoud Fayez, Heba Khaled, Said Ghoniemy
Abstract:
Accurate perception is a critical component in enabling autonomous vehicles to understand their driving environment. The acquisition of 3D information about objects, including their location and pose, is essential for achieving this understanding. This survey paper presents a comprehensive review of 3D object detection techniques specifically tailored for autonomous vehicles. The survey begins with an introduction to 3D object detection, elucidating the significance of the third dimension in perceiving the driving environment. It explores the types of sensors utilized in this context and the corresponding data extracted from these sensors. Additionally, the survey investigates the different types of datasets employed, including their formats, sizes, and provides a comparative analysis. Furthermore, the paper categorizes and thoroughly examines the perception methods employed for 3D object detection based on the diverse range of sensors utilized. Each method is evaluated based on its effectiveness in accurately detecting objects in a three-dimensional space. Additionally, the evaluation metrics used to assess the performance of these methods are discussed. By offering a comprehensive overview of 3D object detection techniques for autonomous vehicles, this survey aims to advance the field of perception systems. It serves as a valuable resource for researchers and practitioners, providing insights into the techniques, sensors, and evaluation metrics employed in 3D object detection for autonomous vehicles.Keywords: computer vision, 3D object detection, autonomous vehicles, deep learning
Procedia PDF Downloads 624471 Vehicular Speed Detection Camera System Using Video Stream
Authors: C. A. Anser Pasha
Abstract:
In this paper, a new Vehicular Speed Detection Camera System that is applicable as an alternative to traditional radars with the same accuracy or even better is presented. The real-time measurement and analysis of various traffic parameters such as speed and number of vehicles are increasingly required in traffic control and management. Image processing techniques are now considered as an attractive and flexible method for automatic analysis and data collections in traffic engineering. Various algorithms based on image processing techniques have been applied to detect multiple vehicles and track them. The SDCS processes can be divided into three successive phases; the first phase is Objects detection phase, which uses a hybrid algorithm based on combining an adaptive background subtraction technique with a three-frame differencing algorithm which ratifies the major drawback of using only adaptive background subtraction. The second phase is Objects tracking, which consists of three successive operations - object segmentation, object labeling, and object center extraction. Objects tracking operation takes into consideration the different possible scenarios of the moving object like simple tracking, the object has left the scene, the object has entered the scene, object crossed by another object, and object leaves and another one enters the scene. The third phase is speed calculation phase, which is calculated from the number of frames consumed by the object to pass by the scene.Keywords: radar, image processing, detection, tracking, segmentation
Procedia PDF Downloads 4674470 Challenges in Video Based Object Detection in Maritime Scenario Using Computer Vision
Authors: Dilip K. Prasad, C. Krishna Prasath, Deepu Rajan, Lily Rachmawati, Eshan Rajabally, Chai Quek
Abstract:
This paper discusses the technical challenges in maritime image processing and machine vision problems for video streams generated by cameras. Even well documented problems of horizon detection and registration of frames in a video are very challenging in maritime scenarios. More advanced problems of background subtraction and object detection in video streams are very challenging. Challenges arising from the dynamic nature of the background, unavailability of static cues, presence of small objects at distant backgrounds, illumination effects, all contribute to the challenges as discussed here.Keywords: autonomous maritime vehicle, object detection, situation awareness, tracking
Procedia PDF Downloads 4584469 Roof Material Detection Based on Object-Based Approach Using WorldView-2 Satellite Imagery
Authors: Ebrahim Taherzadeh, Helmi Z. M. Shafri, Kaveh Shahi
Abstract:
One of the most important tasks in urban area remote sensing is detection of impervious surface (IS), such as building roof and roads. However, detection of IS in heterogeneous areas still remains as one of the most challenging works. In this study, detection of concrete roof using an object-oriented approach was proposed. A new rule-based classification was developed to detect concrete roof tile. The proposed rule-based classification was applied to WorldView-2 image. Results showed that the proposed rule has good potential to predict concrete roof material from WorldView-2 images with 85% accuracy.Keywords: object-based, roof material, concrete tile, WorldView-2
Procedia PDF Downloads 4244468 A Real-Time Moving Object Detection and Tracking Scheme and Its Implementation for Video Surveillance System
Authors: Mulugeta K. Tefera, Xiaolong Yang, Jian Liu
Abstract:
Detection and tracking of moving objects are very important in many application contexts such as detection and recognition of people, visual surveillance and automatic generation of video effect and so on. However, the task of detecting a real shape of an object in motion becomes tricky due to various challenges like dynamic scene changes, presence of shadow, and illumination variations due to light switch. For such systems, once the moving object is detected, tracking is also a crucial step for those applications that used in military defense, video surveillance, human computer interaction, and medical diagnostics as well as in commercial fields such as video games. In this paper, an object presents in dynamic background is detected using adaptive mixture of Gaussian based analysis of the video sequences. Then the detected moving object is tracked using the region based moving object tracking and inter-frame differential mechanisms to address the partial overlapping and occlusion problems. Firstly, the detection algorithm effectively detects and extracts the moving object target by enhancing and post processing morphological operations. Secondly, the extracted object uses region based moving object tracking and inter-frame difference to improve the tracking speed of real-time moving objects in different video frames. Finally, the plotting method was applied to detect the moving objects effectively and describes the object’s motion being tracked. The experiment has been performed on image sequences acquired both indoor and outdoor environments and one stationary and web camera has been used.Keywords: background modeling, Gaussian mixture model, inter-frame difference, object detection and tracking, video surveillance
Procedia PDF Downloads 4774467 The Study on How Social Cues in a Scene Modulate Basic Object Recognition Proces
Authors: Shih-Yu Lo
Abstract:
Stereotypes exist in almost every society, affecting how people interact with each other. However, to our knowledge, the influence of stereotypes was rarely explored in the context of basic perceptual processes. This study aims to explore how the gender stereotype affects object recognition. Participants were presented with a series of scene pictures, followed by a target display with a man or a woman, holding a weapon or a non-weapon object. The task was to identify whether the object in the target display was a weapon or not. Although the gender of the object holder could not predict whether he or she held a weapon, and was irrelevant to the task goal, the participant nevertheless tended to identify the object as a weapon when the object holder was a man than a woman. The analysis based on the signal detection theory showed that the stereotype effect on object recognition mainly resulted from the participant’s bias to make a 'weapon' response when a man was in the scene instead of a woman in the scene. In addition, there was a trend that the participant’s sensitivity to differentiate a weapon from a non-threating object was higher when a woman was in the scene than a man was in the scene. The results of this study suggest that the irrelevant social cues implied in the visual scene can be very powerful that they can modulate the basic object recognition process.Keywords: gender stereotype, object recognition, signal detection theory, weapon
Procedia PDF Downloads 2094466 On Enabling Miner Self-Rescue with In-Mine Robots using Real-Time Object Detection with Thermal Images
Authors: Cyrus Addy, Venkata Sriram Siddhardh Nadendla, Kwame Awuah-Offei
Abstract:
Surface robots in modern underground mine rescue operations suffer from several limitations in enabling a prompt self-rescue. Therefore, the possibility of designing and deploying in-mine robots to expedite miner self-rescue can have a transformative impact on miner safety. These in-mine robots for miner self-rescue can be envisioned to carry out diverse tasks such as object detection, autonomous navigation, and payload delivery. Specifically, this paper investigates the challenges in the design of object detection algorithms for in-mine robots using thermal images, especially to detect people in real-time. A total of 125 thermal images were collected in the Missouri S&T Experimental Mine with the help of student volunteers using the FLIR TG 297 infrared camera, which were pre-processed into training and validation datasets with 100 and 25 images, respectively. Three state-of-the-art, pre-trained real-time object detection models, namely YOLOv5, YOLO-FIRI, and YOLOv8, were considered and re-trained using transfer learning techniques on the training dataset. On the validation dataset, the re-trained YOLOv8 outperforms the re-trained versions of both YOLOv5, and YOLO-FIRI.Keywords: miner self-rescue, object detection, underground mine, YOLO
Procedia PDF Downloads 824465 A Comprehensive Study of Camouflaged Object Detection Using Deep Learning
Authors: Khalak Bin Khair, Saqib Jahir, Mohammed Ibrahim, Fahad Bin, Debajyoti Karmaker
Abstract:
Object detection is a computer technology that deals with searching through digital images and videos for occurrences of semantic elements of a particular class. It is associated with image processing and computer vision. On top of object detection, we detect camouflage objects within an image using Deep Learning techniques. Deep learning may be a subset of machine learning that's essentially a three-layer neural network Over 6500 images that possess camouflage properties are gathered from various internet sources and divided into 4 categories to compare the result. Those images are labeled and then trained and tested using vgg16 architecture on the jupyter notebook using the TensorFlow platform. The architecture is further customized using Transfer Learning. Methods for transferring information from one or more of these source tasks to increase learning in a related target task are created through transfer learning. The purpose of this transfer of learning methodologies is to aid in the evolution of machine learning to the point where it is as efficient as human learning.Keywords: deep learning, transfer learning, TensorFlow, camouflage, object detection, architecture, accuracy, model, VGG16
Procedia PDF Downloads 1494464 Object Detection Based on Plane Segmentation and Features Matching for a Service Robot
Authors: António J. R. Neves, Rui Garcia, Paulo Dias, Alina Trifan
Abstract:
With the aging of the world population and the continuous growth in technology, service robots are more and more explored nowadays as alternatives to healthcare givers or personal assistants for the elderly or disabled people. Any service robot should be capable of interacting with the human companion, receive commands, navigate through the environment, either known or unknown, and recognize objects. This paper proposes an approach for object recognition based on the use of depth information and color images for a service robot. We present a study on two of the most used methods for object detection, where 3D data is used to detect the position of objects to classify that are found on horizontal surfaces. Since most of the objects of interest accessible for service robots are on these surfaces, the proposed 3D segmentation reduces the processing time and simplifies the scene for object recognition. The first approach for object recognition is based on color histograms, while the second is based on the use of the SIFT and SURF feature descriptors. We present comparative experimental results obtained with a real service robot.Keywords: object detection, feature, descriptors, SIFT, SURF, depth images, service robots
Procedia PDF Downloads 5464463 Improvement of Brain Tumors Detection Using Markers and Boundaries Transform
Authors: Yousif Mohamed Y. Abdallah, Mommen A. Alkhir, Amel S. Algaddal
Abstract:
This was experimental study conducted to study segmentation of brain in MRI images using edge detection and morphology filters. For brain MRI images each film scanned using digitizer scanner then treated by using image processing program (MatLab), where the segmentation was studied. The scanned image was saved in a TIFF file format to preserve the quality of the image. Brain tissue can be easily detected in MRI image if the object has sufficient contrast from the background. We use edge detection and basic morphology tools to detect a brain. The segmentation of MRI images steps using detection and morphology filters were image reading, detection entire brain, dilation of the image, filling interior gaps inside the image, removal connected objects on borders and smoothen the object (brain). The results of this study were that it showed an alternate method for displaying the segmented object would be to place an outline around the segmented brain. Those filters approaches can help in removal of unwanted background information and increase diagnostic information of Brain MRI.Keywords: improvement, brain, matlab, markers, boundaries
Procedia PDF Downloads 5164462 Moving Object Detection Using Histogram of Uniformly Oriented Gradient
Authors: Wei-Jong Yang, Yu-Siang Su, Pau-Choo Chung, Jar-Ferr Yang
Abstract:
Moving object detection (MOD) is an important issue in advanced driver assistance systems (ADAS). There are two important moving objects, pedestrians and scooters in ADAS. In real-world systems, there exist two important challenges for MOD, including the computational complexity and the detection accuracy. The histogram of oriented gradient (HOG) features can easily detect the edge of object without invariance to changes in illumination and shadowing. However, to reduce the execution time for real-time systems, the image size should be down sampled which would lead the outlier influence to increase. For this reason, we propose the histogram of uniformly-oriented gradient (HUG) features to get better accurate description of the contour of human body. In the testing phase, the support vector machine (SVM) with linear kernel function is involved. Experimental results show the correctness and effectiveness of the proposed method. With SVM classifiers, the real testing results show the proposed HUG features achieve better than classification performance than the HOG ones.Keywords: moving object detection, histogram of oriented gradient, histogram of uniformly-oriented gradient, linear support vector machine
Procedia PDF Downloads 5944461 Dynamic Background Updating for Lightweight Moving Object Detection
Authors: Kelemewerk Destalem, Joongjae Cho, Jaeseong Lee, Ju H. Park, Joonhyuk Yoo
Abstract:
Background subtraction and temporal difference are often used for moving object detection in video. Both approaches are computationally simple and easy to be deployed in real-time image processing. However, while the background subtraction is highly sensitive to dynamic background and illumination changes, the temporal difference approach is poor at extracting relevant pixels of the moving object and at detecting the stopped or slowly moving objects in the scene. In this paper, we propose a moving object detection scheme based on adaptive background subtraction and temporal difference exploiting dynamic background updates. The proposed technique consists of a histogram equalization, a linear combination of background and temporal difference, followed by the novel frame-based and pixel-based background updating techniques. Finally, morphological operations are applied to the output images. Experimental results show that the proposed algorithm can solve the drawbacks of both background subtraction and temporal difference methods and can provide better performance than that of each method.Keywords: background subtraction, background updating, real time, light weight algorithm, temporal difference
Procedia PDF Downloads 3424460 RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX Through Fusion of Vision and 3+1D Millimeter Wave Radar
Authors: Zixian Zhang, Shanliang Yao, Zile Huang, Zhaodong Wu, Xiaohui Zhu, Yong Yue, Jieming Ma
Abstract:
Unmanned Surface Vehicles (USVs) are valuable due to their ability to perform dangerous and time-consuming tasks on the water. Object detection tasks are significant in these applications. However, inherent challenges, such as the complex distribution of obstacles, reflections from shore structures, water surface fog, etc., hinder the performance of object detection of USVs. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. MMW radar is complementary to vision sensors, providing robust environmental information. The radar 3D point cloud is transferred to 2D radar pseudo image to unify radar and vision information format by utilizing the point transformer. We propose a multi-source object detection network (RV-YOLOX )based on radar-vision fusion for inland waterways environment. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.Keywords: inland waterways, YOLO, sensor fusion, self-attention
Procedia PDF Downloads 1244459 Adaptive Online Object Tracking via Positive and Negative Models Matching
Authors: Shaomei Li, Yawen Wang, Chao Gao
Abstract:
To improve tracking drift which often occurs in adaptive tracking, an algorithm based on the fusion of tracking and detection is proposed in this paper. Firstly, object tracking is posed as a binary classification problem and is modeled by partial least squares (PLS) analysis. Secondly, tracking object frame by frame via particle filtering. Thirdly, validating the tracking reliability based on both positive and negative models matching. Finally, relocating the object based on SIFT features matching and voting when drift occurs. Object appearance model is updated at the same time. The algorithm cannot only sense tracking drift but also relocate the object whenever needed. Experimental results demonstrate that this algorithm outperforms state-of-the-art algorithms on many challenging sequences.Keywords: object tracking, tracking drift, partial least squares analysis, positive and negative models matching
Procedia PDF Downloads 5294458 Specified Human Motion Recognition and Unknown Hand-Held Object Tracking
Authors: Jinsiang Shaw, Pik-Hoe Chen
Abstract:
This paper aims to integrate human recognition, motion recognition, and object tracking technologies without requiring a pre-training database model for motion recognition or the unknown object itself. Furthermore, it can simultaneously track multiple users and multiple objects. Unlike other existing human motion recognition methods, our approach employs a rule-based condition method to determine if a user hand is approaching or departing an object. It uses a background subtraction method to separate the human and object from the background, and employs behavior features to effectively interpret human object-grabbing actions. With an object’s histogram characteristics, we are able to isolate and track it using back projection. Hence, a moving object trajectory can be recorded and the object itself can be located. This particular technique can be used in a camera surveillance system in a shopping area to perform real-time intelligent surveillance, thus preventing theft. Experimental results verify the validity of the developed surveillance algorithm with an accuracy of 83% for shoplifting detection.Keywords: Automatic Tracking, Back Projection, Motion Recognition, Shoplifting
Procedia PDF Downloads 3334457 Hybrid Deep Learning and FAST-BRISK 3D Object Detection Technique for Bin-Picking Application
Authors: Thanakrit Taweesoontorn, Sarucha Yanyong, Poom Konghuayrob
Abstract:
Robotic arms have gained popularity in various industries due to their accuracy and efficiency. This research proposes a method for bin-picking tasks using the Cobot, combining the YOLOv5 CNNs model for object detection and pose estimation with traditional feature detection (FAST), feature description (BRISK), and matching algorithms. By integrating these algorithms and utilizing a small-scale depth sensor camera for capturing depth and color images, the system achieves real-time object detection and accurate pose estimation, enabling the robotic arm to pick objects correctly in both position and orientation. Furthermore, the proposed method is implemented within the ROS framework to provide a seamless platform for robotic control and integration. This integration of robotics, cameras, and AI technology contributes to the development of industrial robotics, opening up new possibilities for automating challenging tasks and improving overall operational efficiency.Keywords: robotic vision, image processing, applications of robotics, artificial intelligent
Procedia PDF Downloads 974456 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection
Authors: Tim Farrelly
Abstract:
In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.Keywords: deep learning, object detection, machine vision applications, sport, network design
Procedia PDF Downloads 1464455 Canonical Objects and Other Objects in Arabic
Authors: Safiah Ahmed Madkhali
Abstract:
The grammatical relation object has not attracted the same attention in the literature as subject has. Where there is a clearly monotransitive verb such as kick, the criteria for identifying the grammatical relation may converge. However, the term object is also used to refer to phenomena that do not subsume all, or even most, of the recognized properties of the canonical object. Instances of such phenomena include non-canonical objects such as the ones in the so-called double-object construction i.e. the indirect object and the direct object as in (He bought his dog a new collar). In this paper, it is demonstrated how criteria of identifying the grammatical relation object that are found in the theoretical and typological literature can be applied to Arabic. Also, further language-specific criteria are here derived from the regularities of the canonical object in the language. The criteria established in this way are then applied to the non-canonical objects to demonstrate how far they conform to, or diverge from, the canonical object. Contrary to the claim that the direct object is more similar to the canonical object than is the indirect object, it was found that it is, in fact, the indirect object rather than the direct object that shares most of the aspects of the canonical object in monotransitive clauses.Keywords: canonical objects, double-object constructions, cognate object constructions, non-canonical objects
Procedia PDF Downloads 2324454 Robust and Real-Time Traffic Counting System
Authors: Hossam M. Moftah, Aboul Ella Hassanien
Abstract:
In the recent years the importance of automatic traffic control has increased due to the traffic jams problem especially in big cities for signal control and efficient traffic management. Traffic counting as a kind of traffic control is important to know the road traffic density in real time. This paper presents a fast and robust traffic counting system using different image processing techniques. The proposed system is composed of the following four fundamental building phases: image acquisition, pre-processing, object detection, and finally counting the connected objects. The object detection phase is comprised of the following five steps: subtracting the background, converting the image to binary, closing gaps and connecting nearby blobs, image smoothing to remove noises and very small objects, and detecting the connected objects. Experimental results show the great success of the proposed approach.Keywords: traffic counting, traffic management, image processing, object detection, computer vision
Procedia PDF Downloads 2944453 Humeral Head and Scapula Detection in Proton Density Weighted Magnetic Resonance Images Using YOLOv8
Authors: Aysun Sezer
Abstract:
Magnetic Resonance Imaging (MRI) is one of the advanced diagnostic tools for evaluating shoulder pathologies. Proton Density (PD)-weighted MRI sequences prove highly effective in detecting edema. However, they are deficient in the anatomical identification of bones due to a trauma-induced decrease in signal-to-noise ratio and blur in the traumatized cortices. Computer-based diagnostic systems require precise segmentation, identification, and localization of anatomical regions in medical imagery. Deep learning-based object detection algorithms exhibit remarkable proficiency in real-time object identification and localization. In this study, the YOLOv8 model was employed to detect humeral head and scapular regions in 665 axial PD-weighted MR images. The YOLOv8 configuration achieved an overall success rate of 99.60% and 89.90% for detecting the humeral head and scapula, respectively, with an intersection over union (IoU) of 0.5. Our findings indicate a significant promise of employing YOLOv8-based detection for the humerus and scapula regions, particularly in the context of PD-weighted images affected by both noise and intensity inhomogeneity.Keywords: YOLOv8, object detection, humerus, scapula, IRM
Procedia PDF Downloads 664452 Pyramidal Lucas-Kanade Optical Flow Based Moving Object Detection in Dynamic Scenes
Authors: Hyojin Lim, Cuong Nguyen Khac, Yeongyu Choi, Ho-Youl Jung
Abstract:
In this paper, we propose a simple moving object detection, which is based on motion vectors obtained from pyramidal Lucas-Kanade optical flow. The proposed method detects moving objects such as pedestrians, the other vehicles and some obstacles at the front-side of the host vehicle, and it can provide the warning to the driver. Motion vectors are obtained by using pyramidal Lucas-Kanade optical flow, and some outliers are eliminated by comparing the amplitude of each vector with the pre-defined threshold value. The background model is obtained by calculating the mean and the variance of the amplitude of recent motion vectors in the rectangular shaped local region called the cell. The model is applied as the reference to classify motion vectors of moving objects and those of background. Motion vectors are clustered to rectangular regions by using the unsupervised clustering K-means algorithm. Labeling method is applied to label groups which is close to each other, using by distance between each center points of rectangular. Through the simulations tested on four kinds of scenarios such as approaching motorbike, vehicle, and pedestrians to host vehicle, we prove that the proposed is simple but efficient for moving object detection in parking lots.Keywords: moving object detection, dynamic scene, optical flow, pyramidal optical flow
Procedia PDF Downloads 3494451 Refactoring Object Oriented Software through Community Detection Using Evolutionary Computation
Authors: R. Nagarani
Abstract:
An intrinsic property of software in a real-world environment is its need to evolve, which is usually accompanied by the increase of software complexity and deterioration of software quality, making software maintenance a tough problem. Refactoring is regarded as an effective way to address this problem. Many refactoring approaches at the method and class level have been proposed. But the extent of research on software refactoring at the package level is less. This work presents a novel approach to refactor the package structures of object oriented software using genetic algorithm based community detection. It uses software networks to represent classes and their dependencies. It uses a constrained community detection algorithm to obtain the optimized community structures in software networks, which also correspond to the optimized package structures. It finally provides a list of classes as refactoring candidates by comparing the optimized package structures with the real package structures.Keywords: community detection, complex network, genetic algorithm, package, refactoring
Procedia PDF Downloads 4184450 Design and Implementation of an Image Based System to Enhance the Security of ATM
Authors: Seyed Nima Tayarani Bathaie
Abstract:
In this paper, an image-receiving system was designed and implemented through optimization of object detection algorithms using Haar features. This optimized algorithm served as face and eye detection separately. Then, cascading them led to a clear image of the user. Utilization of this feature brought about higher security by preventing fraud. This attribute results from the fact that services will be given to the user on condition that a clear image of his face has already been captured which would exclude the inappropriate person. In order to expedite processing and eliminating unnecessary ones, the input image was compressed, a motion detection function was included in the program, and detection window size was confined.Keywords: face detection algorithm, Haar features, security of ATM
Procedia PDF Downloads 419