Search results for: exergy assessment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5826

Search results for: exergy assessment

5826 Exergy Analysis and Evaluation of the Different Flowsheeting Configurations for CO₂ Capture Plant Using 2-Amino-2-Methyl-1-Propanol

Authors: Ebuwa Osagie, Vasilije Manovic

Abstract:

Exergy analysis provides the identification of the location, sources of thermodynamic inefficiencies, and magnitude in a thermal system. Thus, both the qualitative and quantitative assessment can be evaluated with exergy, unlike energy which is based on quantitative assessment only. The main purpose of exergy analysis is to identify where exergy is destroyed. Thus, reduction of the exergy destruction and losses associated with the capture plant systems can improve work potential. Furthermore, thermodynamic analysis of different configurations of the process helps to identify opportunities for reducing the steam requirements for each of the configurations. This paper presents steady-state simulation and exergy analysis of the 2-amino-2-methyl-1-propanol (AMP)-based post-combustion capture (PCC) plant. Exergy analysis performed for the AMP-based plant and the different configurations revealed that the rich split with intercooling configuration gave the highest exergy efficiency of 73.6%, while that of the intercooling and the reference AMP-based plant were 57.3% and 55.8% respectively.

Keywords: 2-amino-2-methyl-1-propanol, modelling, and simulation, post-combustion capture plant, exergy analysis, flowsheeting configurations

Procedia PDF Downloads 164
5825 Exergy Analyses of Wind Turbine

Authors: Muhammad Abid

Abstract:

Utilization of renewable energy resources for energy conservation, pollution prevention, resource efficiency and systems integration is very important for sustainable development. In this study, we perform energy and exergy analyses of a wind turbine, located on the roof of Mechanical Engineering Department, King Saud University, and Riyadh, Saudi Arabia. The turbine is part of a hybrid photovoltaic (PV)-wind system with hydrogen storage. The power output from this turbine varies between 1.5 and 5.5 kW with a rated wind speed of 12 m/s and a cut-in wind speed of 2.4 m/s. We utilize a wide range of experimental data in the analysis and assessment. We determine energy and exergy efficiencies. The energy efficiency changes between 0% to 45% while the exergy efficiency varies between 0% and 31.3%. We also determined some of the exergoeconomic parameters that are the ratios of energy and exergy loss rates to the capital cost (R en and R ex), respectively. (R en) changes between 0.96% and 59.03% for different values of velocity while R ex has a maximum value of 53.62% for the highest wind speed.

Keywords: exergy, efficiency, performance evaluation, wind energy

Procedia PDF Downloads 366
5824 Exergy: An Effective Tool to Quantify Sustainable Development of Biodiesel Production

Authors: Mahmoud Karimi, Golmohammad Khoobbakht

Abstract:

This study focuses on the exergy flow analysis in the transesterification of waste cooking oil with methanol to decrease the consumption of materials and energy and promote the use of renewable resources. The exergy analysis performed is based on the thermodynamic performance parameters namely exergy destruction and exergy efficiency to investigate the effects of variable parameters on renewability of transesterification. The experiment variables were methanol to WCO ratio, catalyst concentration and reaction temperature in the transesterification reaction. The optimum condition with yield of 90.2% and exergy efficiency of 95.2% was obtained at methanol to oil molar ratio of 8:1, 1 wt.% of KOH, at 55 °C. In this condition, the total waste exergy was found to be 45.4 MJ for 1 kg biodiesel production. However high yield in the optimal condition resulted high exergy efficiency in the transesterification of WCO with methanol.

Keywords: biodiesel, exergy, thermodynamic analysis, transesterification, waste cooking oil

Procedia PDF Downloads 193
5823 Exergy and Energy Analysis of Pre-Heating Unit of Fluid Catalytic Cracking Unit in Kaduna Refining and Petrochemical Company

Authors: M. Nuhu, S. Bilal, A. A. Hamisu, J. A. Abbas, Y. Z. Aminu, P. O. Helen

Abstract:

Exergy and energy analysis of preheating unit of FCCU of KRPC has been calculated and presented in this study. From the design, the efficiency of each heat exchanger was 86%. However, on completion of this work the efficiencies was calculated to be 39.90%, 55.66%, 56.22%, and 57.14% for 16E02, 16E03, 16E04, and 16E05 respectively. 16E04 has the minimum energy loss of 0.86%. The calculated second law and exergy efficiencies of the system were 43.01 and 56.99% respectively.

Keywords: exergy analysis, ideal work, efficiency, exergy destruction, temperature

Procedia PDF Downloads 436
5822 Exergy Analysis of Poultry Litter-to-Energy Production by the Advanced Combustion System

Authors: Samuel Oludayo Alamu, Seong Lee

Abstract:

The need for generating energy from biomass in an efficient way as well as maximizing the yield of total energy from the thermal conversion process has been a major concern for researchers. A holistic approach which involves the combination of First law of thermodynamics (FLT) and the second law of thermodynamics (SLT) is required for conducting an effective assessment of an energy plant since FLT analysis alone fails to identify the quality of the dissipated energy and how much work potential is available. The overall purpose of this study is to investigate the exergy analysis of direct combustion of poultry waste being converted to energy with a handful of environmental assessment of the conversion processes in order to maximize thermal efficiency. The exergy analysis around the shell and tube heat exchanger (STHE) was investigated primarily by varying the operating parameters for different tube shapes and flow direction, and an exergy model was obtained from estimations of the higher heating value and standard entropy of poultry waste from the elemental compositions. The STHE was designed and fabricated by Lee Research Group at Morgan State University. The analysis conducted on theSTHE using the flue gas temperature entering and exiting show that only about one-third of the energy input to the STHE was available to do work with an overall efficiency of 13.8%, while a huge amount was lost to the surrounding. By recirculating the flue gas, the exergy efficiency of the combustion system can be maximized with a greater reduction in the amount of exergy loss.

Keywords: exergy analysis, shell and tube heat exchanger, thermodynamics, combustion system, thermal efficiency

Procedia PDF Downloads 109
5821 Determination of Optimum Torque of an Internal Combustion Engine by Exergy Analysis

Authors: Veena Chaudhary, Rakesh P. Gakkhar

Abstract:

In this study, energy and exergy analysis are applied to the experimental data of an internal combustion engine operating on conventional diesel cycle. The experimental data are collected using an engine unit which enables accurate measurements of fuel flow rate, combustion air flow rate, engine load, engine speed and all relevant temperatures. First and second law efficiencies are calculated for different engine speed and compared. Results indicate that the first law (energy) efficiency is maximum at 1700 rpm whereas exergy efficiency is maximum and exergy destruction is minimum at 1900 rpm.

Keywords: diesel engine, exergy destruction, exergy efficiency, second law of thermodynamics

Procedia PDF Downloads 329
5820 Exergetic and Life Cycle Assessment Analyses of Integrated Biowaste Gasification-Combustion System: A Study Case

Authors: Anabel Fernandez, Leandro Rodriguez-Ortiz, Rosa RodríGuez

Abstract:

Due to the negative impact of fossil fuels, renewable energies are promising sources to limit global temperature rise and damage to the environment. Also, the development of technology is focused on obtaining energetic products from renewable sources. In this study, a thermodynamic model including Exergy balance and a subsequent Life Cycle Assessment (LCA) were carried out for four subsystems of the integrated gasification-combustion of pinewood. Results of exergy analysis and LCA showed the process feasibility in terms of exergy efficiency and global energy efficiency of the life cycle (GEELC). Moreover, the energy return on investment (EROI) index was calculated. The global exergy efficiency resulted in 67 %. For pretreatment, reaction, cleaning, and electric generation subsystems, the results were 85, 59, 87, and 29 %, respectively. Results of LCA indicated that the emissions from the electric generation caused the most damage to the atmosphere, water, and soil. GEELC resulted in 31.09 % for the global process. This result suggested the environmental feasibility of an integrated gasification-combustion system. EROI resulted in 3.15, which determinates the sustainability of the process.

Keywords: exergy analysis, life cycle assessment (LCA), renewability, sustainability

Procedia PDF Downloads 213
5819 A Second Law Assessment of Organic Rankine Cycle Depending on Source Temperature

Authors: Kyoung Hoon Kim

Abstract:

Organic Rankine Cycle (ORC) has potential in reducing fossil fuels and relaxing environmental problems. In this work performance analysis of ORC is conducted based on the second law of thermodynamics for recovery of low temperature heat source from 100°C to 140°C using R134a as the working fluid. Effects of system parameters such as turbine inlet pressure or source temperature are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as net work production or exergy efficiency. Results show that the net work or exergy efficiency has a peak with respect to the turbine inlet pressure when the source temperature is low, however, increases monotonically with increasing turbine inlet pressure when the source temperature is high.

Keywords: Organic Rankine Cycle (ORC), low temperature heat source, exergy, source temperature

Procedia PDF Downloads 451
5818 The Effect of Flue Gas Condensation on the Exergy Efficiency and Economic Performance of a Waste-To-Energy Plant

Authors: Francis Chinweuba Eboh, Tobias Richards

Abstract:

In this study, a waste-to-energy combined heat and power plant under construction was modelled and simulated with the Aspen Plus software. The base case process plant was evaluated and compared when integrated with flue gas condensation (FGC) in order to find out the impact of the exergy efficiency and economic feasibility as well as the effect of overall system exergy losses and revenue generated in the investigated plant. The economic evaluations were carried out using the vendor cost data from Aspen process economic analyser. The results indicate that 4 % increase in the exergy efficiency and 29 % reduction in the exergy loss in the flue gas were obtained when the flue gas condensation was incorporated. Furthermore, with the integrated FGC, the net present values (NPV) and income generated in the base process plant were increased by 29 % and 10 % respectively after 20 years of operation.

Keywords: economic feasibility, exergy efficiency, exergy losses, flue gas condensation, waste-to-energy

Procedia PDF Downloads 190
5817 Co-Gasification Process for Green and Blue Hydrogen Production: Innovative Process Development, Economic Analysis, and Exergy Assessment

Authors: Yousaf Ayub

Abstract:

A co-gasification process, which involves the utilization of both biomass and plastic waste, has been developed to enable the production of blue and green hydrogen. To support this endeavor, an Aspen Plus simulation model has been meticulously created, and sustainability analysis is being conducted, focusing on economic viability, energy efficiency, advanced exergy considerations, and exergoeconomics evaluations. In terms of economic analysis, the process has demonstrated strong economic sustainability, as evidenced by an internal rate of return (IRR) of 8% at a process efficiency level of 70%. At present, the process has the potential to generate approximately 1100 kWh of electric power, with any excess electricity, beyond meeting the process requirements, capable of being harnessed for green hydrogen production via an alkaline electrolysis cell (AEC). This surplus electricity translates to a potential daily hydrogen production of around 200 kg. The exergy analysis of the model highlights that the gasifier component exhibits the lowest exergy efficiency, resulting in the highest energy losses, amounting to approximately 40%. Additionally, advanced exergy analysis findings pinpoint the gasifier as the primary source of exergy destruction, totaling around 9000 kW, with associated exergoeconomics costs amounting to 6500 $/h. Consequently, improving the gasifier's performance is a critical focal point for enhancing the overall sustainability of the process, encompassing energy, exergy, and economic considerations.

Keywords: blue hydrogen, green hydrogen, co-gasification, waste valorization, exergy analysis

Procedia PDF Downloads 65
5816 Exergy Analysis of Vapour Compression Refrigeration System Using R507A, R134a, R114, R22 and R717

Authors: Ali Dinarveis

Abstract:

This paper compares the energy and exergy efficiency of a vapour compression refrigeration system using refrigerants of different groups. In this study, five different refrigerants including R507A, R134a, R114, R22 and R717 have been studied. EES Program is used to solve the thermodynamic equations. The results of this analysis are shown graphically. Based on the results, energy and exergy efficiencies for R717 are higher than the other refrigerants. Also, the energy and exergy efficiencies will be decreased with increasing the condensing temperature and decreasing the evaporating temperature.

Keywords: Energy, Exergy, Refrigeration, thermodynamic, vapour

Procedia PDF Downloads 147
5815 Energetic and Exergetic Evaluation of Box-Type Solar Cookers Using Different Insulation Materials

Authors: A. K. Areamu, J. C. Igbeka

Abstract:

The performance of box-type solar cookers has been reported by several researchers but little attention was paid to the effect of the type of insulation material on the energy and exergy efficiency of these cookers. This research aimed at evaluating the energy and exergy efficiencies of the box-type cookers containing different insulation materials. Energy and exergy efficiencies of five box-type solar cookers insulated with maize cob, air (control), maize husk, coconut coir and polyurethane foam respectively were obtained over a period of three years. The cookers were evaluated using water heating test procedures in determining the energy and exergy analysis. The results were subjected to statistical analysis using ANOVA. The result shows that the average energy input for the five solar cookers were: 245.5, 252.2, 248.7, 241.5 and 245.5J respectively while their respective average energy losses were: 201.2, 212.7, 208.4, 189.1 and 199.8J. The average exergy input for five cookers were: 228.2, 234.4, 231.1, 224.4 and 228.2J respectively while their respective average exergy losses were: 223.4, 230.6, 226.9, 218.9 and 223.0J. The energy and exergy efficiency was highest in the cooker with coconut coir (37.35 and 3.90% respectively) in the first year but was lowest for air (11 and 1.07% respectively) in the third year. Statistical analysis showed significant difference between the energy and exergy efficiencies over the years. These results reiterate the importance of a good insulating material for a box-type solar cooker.

Keywords: efficiency, energy, exergy, heating insolation

Procedia PDF Downloads 367
5814 Exergy Analysis of Regenerative Organic Rankine Cycle Using Turbine Bleeding

Authors: Kyoung Hoon Kim

Abstract:

This work presents an exergetical performance analysis of regenerative organic Rankine cycle (ORC) using turbine bleeding based on the second law of thermodynamics for recovery of finite thermal energy. Effects of system parameters such as turbine bleeding pressure and turbine bleeding fraction are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as the exergy and the second-law efficiencies. Under the conditions of the critical fraction of turbine bleeding, the simulation results show that the exergy efficiency decreases monotonically with respect to the bleeding pressure, however, the second-law efficiency has a peak with respect to the turbine bleeding pressure.

Keywords: organic Rankine cycle, ORC, regeneration, turbine bleeding, exergy, second-law efficiency

Procedia PDF Downloads 499
5813 Comparative Exergy Analysis of Ammonia-Water Rankine Cycles and Kalina Cycle

Authors: Kyoung Hoon Kim

Abstract:

This paper presents a comparative exergy analysis of ammonia-water Rankine cycles with and without regeneration and Kalina cycle for recovery of low-temperature heat source. Special attention is paid to the effect of system parameters such as ammonia mass fraction and turbine inlet pressure on the exergetical performance of the systems. Results show that maximum exergy efficiency can be obtained in the regenerative Rankine cycle for high turbine inlet pressures. However, Kalina cycle shows better exergy efficiency for low turbine inlet pressures, and the optimum ammonia mass fractions of Kalina cycle are lower than Rankine cycles.

Keywords: ammonia-water, Rankine cycle, Kalina cycle, exergy, exergy destruction, low-temperature heat source

Procedia PDF Downloads 163
5812 Exergy Analysis of Reverse Osmosis for Potable Water and Land Irrigation

Authors: M. Sarai Atab, A. Smallbone, A. P. Roskilly

Abstract:

A thermodynamic study is performed on the Reverse Osmosis (RO) desalination process for brackish water. The detailed RO model of thermodynamics properties with and without an energy recovery device was built in Simulink/MATLAB and validated against reported measurement data. The efficiency of desalination plants can be estimated by both the first and second laws of thermodynamics. While the first law focuses on the quantity of energy, the second law analysis (i.e. exergy analysis) introduces quality. This paper used the Main Outfall Drain in Iraq as a case study to conduct energy and exergy analysis of RO process. The result shows that it is feasible to use energy recovery method for reverse osmosis with salinity less than 15000 ppm as the exergy efficiency increases twice. Moreover, this analysis shows that the highest exergy destruction occurs in the rejected water and lowest occurs in the permeate flow rate accounting 37% for 4.3% respectively.

Keywords: brackish water, exergy, irrigation, reverse osmosis (RO)

Procedia PDF Downloads 174
5811 Exergy Losses Relation with Driving Forces in Heat Transfer Process

Authors: S. Ali Ashrafizadeh, M. Amidpour, N. Hedayat

Abstract:

Driving forces along with transfer coefficient affect on heat transfer rate, on the other hand, with regard to the relation of these forces with irriversibilities they are effective on exergy losses. Therefore, the driving forces can be used as a relation between heat transfer rate, transfer coefficients and exergy losses. In this paper, first, the relation of the exergetic efficiency and resistant forces is obtained, next the relation between exergy efficiency, relative driving force, heat transfer rate and heat resistances is considered. In all cases, results are argued graphically. Finally, a case study inspected by obtained results.

Keywords: heat transfer, exergy losses, exergetic efficiency, driving forces

Procedia PDF Downloads 604
5810 Exergetic and Sustainability Evaluation of a Building Heating System in Izmir, Turkey

Authors: Nurdan Yildirim, Arif Hepbasli

Abstract:

Heating, cooling and lighting appliances in buildings account for more than one third of the world’s primary energy demand. Therefore, main components of the building heating systems play an essential role in terms of energy consumption. In this context, efficient energy and exergy utilization in HVAC-R systems has been very essential, especially in developing energy policies towards increasing efficiencies. The main objective of the present study is to assess the performance of a family house with a volume of 326.7 m3 and a net floor area of 121 m2, located in the city of Izmir, Turkey in terms of energetic, exergetic and sustainability aspects. The indoor and exterior air temperatures are taken as 20°C and 1°C, respectively. In the analysis and assessment, various metrics (indices or indicators) such as exergetic efficiency, exergy flexibility ratio and sustainability index are utilized. Two heating options (Case 1: condensing boiler and Case 2: air heat pump) are considered for comparison purposes. The total heat loss rate of the family house is determined to be 3770.72 W. The overall energy efficiencies of the studied cases are calculated to be 49.4% for Case 1 and 54.7% for Case 2. The overall exergy efficiencies, the flexibility factor and the sustainability index of Cases 1 and 2 are computed to be around 3.3%, 0.17 and 1.034, respectively.

Keywords: buildings, exergy, low exergy, sustainability, efficiency, heating, renewable energy

Procedia PDF Downloads 342
5809 Performance of Derna Steam Power Plant at Varying Super-Heater Operating Conditions Based on Exergy

Authors: Idris Elfeituri

Abstract:

In the current study, energy and exergy analysis of a 65 MW steam power plant was carried out. This study investigated the effect of variations of overall conductance of the super heater on the performance of an existing steam power plant located in Derna, Libya. The performance of the power plant was estimated by a mathematical modelling which considers the off-design operating conditions of each component. A fully interactive computer program based on the mass, energy and exergy balance equations has been developed. The maximum exergy destruction has been found in the steam generation unit. A 50% reduction in the design value of overall conductance of the super heater has been achieved, which accordingly decreases the amount of the net electrical power that would be generated by at least 13 MW, as well as the overall plant exergy efficiency by at least 6.4%, and at the same time that would cause an increase of the total exergy destruction by at least 14 MW. The achieved results showed that the super heater design and operating conditions play an important role on the thermodynamics performance and the fuel utilization of the power plant. Moreover, these considerations are very useful in the process of the decision that should be taken at the occasions of deciding whether to replace or renovate the super heater of the power plant.

Keywords: Exergy, Super-heater, Fouling; Steam power plant; Off-design., Fouling;, Super-heater, Steam power plant

Procedia PDF Downloads 333
5808 Making Heat Pumps More Compatible with Environmental and Climatic Conditions

Authors: Erol Sahin, Nesrin Adiguzel

Abstract:

In this study, the effects of air temperature and relative humidity on the operation of the heat pump were examined experimentally. The results were analyzed in an energy and exergetic way. Two heat pumps were used in the experimental system established for experimental analysis. With the first heat pump, the relative humidity and temperature of atmospheric air are reduced. The air at low humidity and temperature is given heat and water vapor to the desired extent on the channel that reaches the other heat pump. Effects of the air reaching the desired humidity and temperature in the 2nd heat pump; temperature, humidity, pressure, flow, and current are detected by meters. The measured values and the exergy yield and thermodynamic favor ratios of the system and its components were determined. In this way, the effects of temperature and relative humidity change in the heat pump and components were tried to be revealed. Relative humidity in the air caused a significant increase in the loss of exergy in the evaporator. This has shown that cooling machines experience greater exergy in areas with high relative humidity. The highest COPSM values were determined to be at 30% and 40%, which is the least relative humidity values. The results showed that heat pump exergy efficiency was affected by increased temperature and relative humidity.

Keywords: relative humidity, effects of relative humidity on heat pumps, exergy analysis, exergy analysis in heat pumps, exergy efficiency

Procedia PDF Downloads 128
5807 The Analysis of Solar Radiation Exergy in Hakkari

Authors: Hasan Yildizhan

Abstract:

According to the Solar Energy Potential Atlas (GEPA) prepared by Turkish Ministry of Energy, Hakkari is ranked first in terms of sunshine duration and it is ranked eighth in terms of solar radiation energy. Accordingly, Hakkari has a rich potential of investment with regard to solar radiation energy. The part of the solar radiation energy arriving on the surface of the earth which is transposable to useful work is determined by means of exergy analysis. In this study, the radiation exergy values for Hakkari have been calculated and evaluated by making use of the monthly average solar radiation energy and temperature values measured by General Directorate of State Meteorology.

Keywords: solar radiation exergy, Hakkari, solar energy potential, Turkey

Procedia PDF Downloads 710
5806 Thermo-Exergy Optimization of Gas Turbine Cycle with Two Different Regenerator Designs

Authors: Saria Abed, Tahar Khir, Ammar Ben Brahim

Abstract:

A thermo-exergy optimization of a gas turbine cycle with two different regenerator designs is established. A comparison was made between the performance of the two regenerators and their roles in improving the cycle efficiencies. The effect of operational parameters (the pressure ratio of the compressor, the ambient temperature, excess of air, geometric parameters of the regenerators, etc.) on thermal efficiencies, the exergy efficiencies, and irreversibilities were studied using thermal balances and quantitative exegetic equilibrium for each component and for the whole system. The results are given graphically by using the EES software, and an appropriate discussion and conclusion was made.

Keywords: exergy efficiency, gas turbine, heat transfer, irreversibility, optimization, regenerator, thermal efficiency

Procedia PDF Downloads 451
5805 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm

Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon

Abstract:

Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.

Keywords: exergy analysis, genetic algorithm, rankine cycle, single and multi-objective function

Procedia PDF Downloads 147
5804 On the Exergy Analysis of the Aluminum Smelter

Authors: Ayoola T. Brimmo, Mohamed I. Hassan

Abstract:

The push to mitigate the aluminum smelting industry’s enormous energy consumption and high emission releases is now even more persistent with the recent climate change happenings. Common approaches to achieve this have been focused on improving energy efficiency in the pot line and cast house sections of the smelter. However, the conventional energy efficiency analyses are based on the first law of thermodynamics, which do not shed proper light on the smelter’s degradation of energy. This just gives a general idea of the furnace’s performance with no reference to locations where improvement is a possibility based on the second law of thermodynamics. In this study, we apply exergy analyses on the pot line and cast house sections of the smelter to identify the locality and causes of energy degradation. The exergy analyses, which are based on a real life smelter conditions, highlight the possible locations for technology improvement in a typical smelter. With this established, methods of minimizing the smelter’s exergy losses are assessed.

Keywords: exergy analysis, electrolytic cell, furnace, heat transfer

Procedia PDF Downloads 288
5803 Estimation of the Exergy-Aggregated Value Generated by a Manufacturing Process Using the Theory of the Exergetic Cost

Authors: German Osma, Gabriel Ordonez

Abstract:

The production of metal-rubber spares for vehicles is a sequential process that consists in the transformation of raw material through cutting activities and chemical and thermal treatments, which demand electricity and fossil fuels. The energy efficiency analysis for these cases is mostly focused on studying of each machine or production step, but is not common to study of the quality of the production process achieves from aggregated value viewpoint, which can be used as a quality measurement for determining of impact on the environment. In this paper, the theory of exergetic cost is used for determining of aggregated exergy to three metal-rubber spares, from an exergy analysis and thermoeconomic analysis. The manufacturing processing of these spares is based into batch production technique, and therefore is proposed the use of this theory for discontinuous flows from of single models of workstations; subsequently, the complete exergy model of each product is built using flowcharts. These models are a representation of exergy flows between components into the machines according to electrical, mechanical and/or thermal expressions; they determine the demanded exergy to produce the effective transformation in raw materials (aggregated exergy value), the exergy losses caused by equipment and irreversibilities. The energy resources of manufacturing process are electricity and natural gas. The workstations considered are lathes, punching presses, cutters, zinc machine, chemical treatment tanks, hydraulic vulcanizing presses and rubber mixer. The thermoeconomic analysis was done by workstation and by spare; first of them describes the operation of the components of each machine and where the exergy losses are; while the second of them estimates the exergy-aggregated value for finished product and wasted feedstock. Results indicate that exergy efficiency of a mechanical workstation is between 10% and 60% while this value in the thermal workstations is less than 5%; also that each effective exergy-aggregated value is one-thirtieth of total exergy required for operation of manufacturing process, which amounts approximately to 2 MJ. These troubles are caused mainly by technical limitations of machines, oversizing of metal feedstock that demands more mechanical transformation work, and low thermal insulation of chemical treatment tanks and hydraulic vulcanizing presses. From established information, in this case, it is possible to appreciate the usefulness of theory of exergetic cost for analyzing of aggregated value in manufacturing processes.

Keywords: exergy-aggregated value, exergy efficiency, thermoeconomics, exergy modeling

Procedia PDF Downloads 170
5802 Thermodynamic Analysis of a Vapor Absorption System Using Modified Gouy-Stodola Equation

Authors: Gulshan Sachdeva, Ram Bilash

Abstract:

In this paper, the exergy analysis of vapor absorption refrigeration system using LiBr-H2O as working fluid is carried out with the modified Gouy-Stodola approach rather than the classical Gouy-Stodola equation and effect of varying input parameters is also studied on the performance of the system. As the modified approach uses the concept of effective temperature, the mathematical expressions for effective temperature have been formulated and calculated for each component of the system. Various constraints and equations are used to develop program in EES to solve these equations. The main aim of this analysis is to determine the performance of the system and the components having major irreversible loss. Results show that exergy destruction rate is considerable in absorber and generator followed by evaporator and condenser. There is an increase in exergy destruction in generator, absorber and condenser and decrease in the evaporator by the modified approach as compared to the conventional approach. The value of exergy determined by the modified Gouy Stodola equation deviates maximum i.e. 26% in the generator as compared to the exergy calculated by the classical Gouy-Stodola method.

Keywords: exergy analysis, Gouy-Stodola, refrigeration, vapor absorption

Procedia PDF Downloads 400
5801 Multi-Objective Exergy Optimization of an Organic Rankine Cycle with Cyclohexane as Working Fluid

Authors: Touil Djamal, Fergani Zineb

Abstract:

In this study, an Organic Rankine Cycle (ORC) with Cyclohexane working fluid is proposed for cogeneration in the cement industry. In this regard: first, a parametric study is conducted to evaluate the effects of some key parameters on the system performances. Next, single and multi-objective optimizations are performed to achieve the system optimal design. The optimization considers the exergy efficiency, the cost per exergy unit and the environmental impact of the net produced power as objective functions. Finally, exergy, exergoeconomic and exergoenvironmental analysis of the cycle is carried out at the optimum operating conditions. The results show that the turbine inlet pressure, the pinch point temperature difference and the heat transfer fluid temperature have significant effects on the performances of the ORC system.

Keywords: organic rankine cycle, multi-objective optimization, exergy, exergoeconomic, exergoenvironmental, multi-objective optimisation, organic rankine cycle, cement plant

Procedia PDF Downloads 280
5800 Thermodynamic Analysis of an Ejector-Absorption Refrigeration Cycle with Using NH3-H2O

Authors: Samad Jafarmadar, Amin Habibzadeh, Mohammad Mehdi Rashidi, Sayed Sina Rezaei, Abbas Aghagoli

Abstract:

In this paper, the ejector-absorption refrigeration cycle is presented. This article deals with the thermodynamic simulation and the first and second law analysis of an ammonia-water. The effects of parameters such as condenser, absorber, generator, and evaporator temperatures have been investigated. The influence of the various operating parameters on the performance coefficient and exergy efficiency of this cycle has been studied. The results show that when the temperature of different parts increases, the performance coefficient and the exergy efficiency of the cycle decrease, except for evaporator and generator, that causes an increase in coefficient of performance (COP). According to the results, absorber and ejector have the highest exergy losses in the studied conditions.

Keywords: absorption refrigeration, COP, ejector, exergy efficiency

Procedia PDF Downloads 324
5799 Carbon Footprint and Exergy Destruction Footprint in White Wine Production Line

Authors: Mahmut Genc, Seda Genc

Abstract:

Wine is the most popular alcoholic drink in the World with 274.4 million of hectoliter annual production in the year of 2015. The wine industry is very important for some regions as well as creating significant value in their economies. This industry is very sensitive to the global warming since viticulture highly depends on climate and geographical region. Sustainability concept is a crucial issue for the wine industry and sustainability performances of wine production processes should be determined. Although wine production industry is an energy intensive sector as a whole, the most energy intensive products are widely used both in the viti and vinicultural process. In this study, gate-to-gate LCA approach in energy resource utilization and global warming potential impacts for white wine production line were attempted and carbon footprint and exergy destruction footprint were calculated, accordingly. As a result, carbon footprint and exergy destruction footprint values were calculated to be 1.75 kg CO2eq and 365.3kW, respectively.

Keywords: carbon footprint, exergy analysis, exergy destruction footprint, white wine

Procedia PDF Downloads 271
5798 Exergetic Analysis of Steam Turbine Power Plant Operated in Chemical Industry

Authors: F. Hafdhi, T. Khir, A. Ben Yahia, A. Ben Brahim

Abstract:

An Energetic and exergetic analysis is conducted on a Steam Turbine Power Plant of an existing Phosphoric Acid Factory. The heat recovery systems used in different parts of the plant are also considered in the analysis. Mass, thermal and exergy balances are established on the main compounds of the factory. A numerical code is established using EES software to perform the calculations required for the thermal and exergy plant analysis. The effects of the key operating parameters such as steam pressure and temperature, mass flow rate as well as seawater temperature, on the cycle performances are investigated. A maximum Exergy Loss Rate of about 72% is obtained for the melters, followed by the condensers, heat exchangers and the pumps. The heat exchangers used in the phosphoric acid unit present exergetic efficiencies around 33% while 60% to 72% are obtained for steam turbines and blower. For the explored ranges of HP steam temperature and pressure, the exergy efficiencies of steam turbine generators STGI and STGII increase of about 2.5% and 5.4% respectively. In the same way, optimum HP steam flow rate values, leading to the maximum exergy efficiencies are defined.

Keywords: steam turbine generator, energy efficiency, exergy efficiency, phosphoric acid plant

Procedia PDF Downloads 310
5797 Exergy Analysis of a Green Dimethyl Ether Production Plant

Authors: Marcello De Falco, Gianluca Natrella, Mauro Capocelli

Abstract:

CO₂ capture and utilization (CCU) is a promising approach to reduce GHG(greenhouse gas) emissions. Many technologies in this field are recently attracting attention. However, since CO₂ is a very stable compound, its utilization as a reagent is energetic intensive. As a consequence, it is unclear whether CCU processes allow for a net reduction of environmental impacts from a life cycle perspective and whether these solutions are sustainable. Among the tools to apply for the quantification of the real environmental benefits of CCU technologies, exergy analysis is the most rigorous from a scientific point of view. The exergy of a system is the maximum obtainable work during a process that brings the system into equilibrium with its reference environment through a series of reversible processes in which the system can only interact with such an environment. In other words, exergy is an “opportunity for doing work” and, in real processes, it is destroyed by entropy generation. The exergy-based analysis is useful to evaluate the thermodynamic inefficiencies of processes, to understand and locate the main consumption of fuels or primary energy, to provide an instrument for comparison among different process configurations and to detect solutions to reduce the energy penalties of a process. In this work, the exergy analysis of a process for the production of Dimethyl Ether (DME) from green hydrogen generated through an electrolysis unit and pure CO₂ captured from flue gas is performed. The model simulates the behavior of all units composing the plant (electrolyzer, carbon capture section, DME synthesis reactor, purification step), with the scope to quantify the performance indices based on the II Law of Thermodynamics and to identify the entropy generation points. Then, a plant optimization strategy is proposed to maximize the exergy efficiency.

Keywords: green DME production, exergy analysis, energy penalties, exergy efficiency

Procedia PDF Downloads 255