Search results for: basis functions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5785

Search results for: basis functions

5785 Bernstein Type Polynomials for Solving Differential Equations and Their Applications

Authors: Yilmaz Simsek

Abstract:

In this paper, we study the Bernstein-type basis functions with their generating functions. We give various properties of these polynomials with the aid of their generating functions. These polynomials and generating functions have many valuable applications in mathematics, in probability, in statistics and also in mathematical physics. By using the Bernstein-Galerkin and the Bernstein-Petrov-Galerkin methods, we give some applications of the Bernstein-type polynomials for solving high even-order differential equations with their numerical computations. We also give Bezier-type curves related to the Bernstein-type basis functions. We investigate fundamental properties of these curves. These curves have many applications in mathematics, in computer geometric design and other related areas. Moreover, we simulate these polynomials with their plots for some selected numerical values.

Keywords: generating functions, Bernstein basis functions, Bernstein polynomials, Bezier curves, differential equations

Procedia PDF Downloads 274
5784 MHD Equilibrium Study in Alborz Tokamak

Authors: Maryamosadat Ghasemi, Reza Amrollahi

Abstract:

Plasma equilibrium geometry has a great influence on the confinement and magnetohydrodynamic stability in tokamaks. The poloidal field (PF) system of a tokamak should be able to support this plasma equilibrium geometry. In this work the prepared numerical code based on radial basis functions are presented and used to solve the Grad–Shafranov (GS) equation for the axisymmetric equilibrium of tokamak plasma. The radial basis functions (RBFs) which is a kind of numerical meshfree method (MFM) for solving partial differential equations (PDEs) has appeared in the last decade and is developing significantly in the last few years. This technique is applied in this study to obtain the equilibrium configuration for Alborz Tokamak. The behavior of numerical solution convergences show the validation of this calculations.

Keywords: equilibrium, grad–shafranov, radial basis functions, Alborz Tokamak

Procedia PDF Downloads 473
5783 Energy-Level Structure of a Confined Electron-Positron Pair in Nanostructure

Authors: Tokuei Sako, Paul-Antoine Hervieux

Abstract:

The energy-level structure of a pair of electron and positron confined in a quasi-one-dimensional nano-scale potential well has been investigated focusing on its trend in the small limit of confinement strength ω, namely, the Wigner molecular regime. An anisotropic Gaussian-type basis functions supplemented by high angular momentum functions as large as l = 19 has been used to obtain reliable full configuration interaction (FCI) wave functions. The resultant energy spectrum shows a band structure characterized by ω for the large ω regime whereas for the small ω regime it shows an energy-level pattern dominated by excitation into the in-phase motion of the two particles. The observed trend has been rationalized on the basis of the nodal patterns of the FCI wave functions.

Keywords: confined systems, positron, wave function, Wigner molecule, quantum dots

Procedia PDF Downloads 387
5782 The Bernstein Expansion for Exponentials in Taylor Functions: Approximation of Fixed Points

Authors: Tareq Hamadneh, Jochen Merker, Hassan Al-Zoubi

Abstract:

Bernstein's expansion for exponentials in Taylor functions provides lower and upper optimization values for the range of its original function. these values converge to the original functions if the degree is elevated or the domain subdivided. Taylor polynomial can be applied so that the exponential is a polynomial of finite degree over a given domain. Bernstein's basis has two main properties: its sum equals 1, and positive for all x 2 (0; 1). In this work, we prove the existence of fixed points for exponential functions in a given domain using the optimization values of Bernstein. The Bernstein basis of finite degree T over a domain D is defined non-negatively. Any polynomial p of degree t can be expanded into the Bernstein form of maximum degree t ≤ T, where we only need to compute the coefficients of Bernstein in order to optimize the original polynomial. The main property is that p(x) is approximated by the minimum and maximum Bernstein coefficients (Bernstein bound). If the bound is contained in the given domain, then we say that p(x) has fixed points in the same domain.

Keywords: Bernstein polynomials, Stability of control functions, numerical optimization, Taylor function

Procedia PDF Downloads 134
5781 Some Results on Generalized Janowski Type Functions

Authors: Fuad Al Sarari

Abstract:

The purpose of the present paper is to study subclasses of analytic functions which generalize the classes of Janowski functions introduced by Polatoglu. We study certain convolution conditions. This leads to a study of the sufficient condition and the neighborhood results related to the functions in the class S (T; H; F ): and a study of new subclasses of analytic functions that are defined using notions of the generalized Janowski classes and -symmetrical functions. In the quotient of analytical representations of starlikeness and convexity with respect to symmetric points, certain inherent properties are pointed out.

Keywords: convolution conditions, subordination, Janowski functions, starlike functions, convex functions

Procedia PDF Downloads 64
5780 Local Radial Basis Functions for Helmholtz Equation in Seismic Inversion

Authors: Hebert Montegranario, Mauricio Londoño

Abstract:

Solutions of Helmholtz equation are essential in seismic imaging methods like full wave inversion, which needs to solve many times the wave equation. Traditional methods like Finite Element Method (FEM) or Finite Differences (FD) have sparse matrices but may suffer the so called pollution effect in the numerical solutions of Helmholtz equation for large values of the wave number. On the other side, global radial basis functions have a better accuracy but produce full matrices that become unstable. In this research we combine the virtues of both approaches to find numerical solutions of Helmholtz equation, by applying a meshless method that produce sparse matrices by local radial basis functions. We solve the equation with absorbing boundary conditions of the kind Clayton-Enquist and PML (Perfect Matched Layers) and compared with results in standard literature, showing a promising performance by tackling both the pollution effect and matrix instability.

Keywords: Helmholtz equation, meshless methods, seismic imaging, wavefield inversion

Procedia PDF Downloads 545
5779 Visualization of Energy Waves via Airy Functions in Time-Domain

Authors: E. Sener, O. Isik, E. Eroglu, U. Sahin

Abstract:

The main idea is to solve the system of Maxwell’s equations in accordance with the causality principle to get the energy quantities via Airy functions in a hollow rectangular waveguide. We used the evolutionary approach to electromagnetics that is an analytical time-domain method. The boundary-value problem for the system of Maxwell’s equations is reformulated in transverse and longitudinal coordinates. A self-adjoint operator is obtained and the complete set of Eigen vectors of the operator initiates an orthonormal basis of the solution space. Hence, the sought electromagnetic field can be presented in terms of this basis. Within the presentation, the scalar coefficients are governed by Klein-Gordon equation. Ultimately, in this study, time-domain waveguide problem is solved analytically in accordance with the causality principle. Moreover, the graphical results are visualized for the case when the energy and surplus of the energy for the time-domain waveguide modes are represented via airy functions.

Keywords: airy functions, Klein-Gordon Equation, Maxwell’s equations, Surplus of energy, wave boundary operators

Procedia PDF Downloads 369
5778 Poor Cognitive Flexibility as Suggested Basis for Learning Difficulties among Children with Moderate-INTO-Severe Asthma: Evidence from WCSTPerformance

Authors: Haitham Taha

Abstract:

The cognitive flexibility of 27 asthmatic children with learning difficulties was tested by using the Wisconsin card sorting test (WCST) and compared to the performances of 30 non-asthmatic children who have persistence learning difficulties also. The results revealed that the asthmatic group had poor performance through all the WCST psychometric parameters and especially the preservative errors one. The results were discussed in light of the postulation that poor executive functions and specifically poor cognitive flexibility are in the basis of the learning difficulties of asthmatic children with learning difficulties. Neurophysiologic framework was suggested for explaining the etiology of poor executive functions and cognitive flexibility among children with moderate into severe asthma.

Keywords: asthma, learning disabilities, executive functions, cognitive flexibility, WCST

Procedia PDF Downloads 500
5777 The Role of Eclectic Approach to Teach Communicative Function at Secondary Level

Authors: Fariha Asif

Abstract:

The main purpose of this study was to investigate the effectiveness of eclectic approach in teaching of communicative functions. The objectives of the study were to get the information about the use of communicative functions through eclectic approach and to point out the most effective way of teaching functional communication and social interaction with the help of communicative activities through eclectic approach. The next step was to select sample from the selected population. As the research was descriptive so a questionnaire was developed on the basis of hypothesis and distributed to different selected schools of Lahore, Pakistan. Then data was tabulated, analyzed and interpreted through computer by finding percentages of different responses given by teachers to see the results. It was concluded that eclectic approach is effective in teaching communicative functions and communicative functions are better when taught through eclectic approach and communicative activities are more appropriate way of teaching communicative functions. It was found those teachers who were qualified in ELT gave better opinions as compare to those who did not have this degree. Techniques like presentations, dialogues and roleplay proved to be effective for teaching functional communication through communicative activities and also motivate the students not only in learning rules but also in using them to communicate with others.

Keywords: methodology, functions, teaching, ESP

Procedia PDF Downloads 567
5776 Collocation Method for Coupled System of Boundary Value Problems with Cubic B-Splines

Authors: K. N. S. Kasi Viswanadham

Abstract:

Coupled system of second order linear and nonlinear boundary value problems occur in various fields of Science and Engineering. In the formulation of the problem, any one of 81 possible types of boundary conditions may occur. These 81 possible boundary conditions are written as a combination of four boundary conditions. To solve a coupled system of boundary value problem with these converted boundary conditions, a collocation method with cubic B-splines as basis functions has been developed. In the collocation method, the mesh points of the space variable domain have been selected as the collocation points. The basis functions have been redefined into a new set of basis functions which in number match with the number of mesh points in the space variable domain. The solution of a non-linear boundary value problem has been obtained as the limit of a sequence of solutions of linear boundary value problems generated by quasilinearization technique. Several linear and nonlinear boundary value problems are presented to test the efficiency of the proposed method and found that numerical results obtained by the present method are in good agreement with the exact solutions available in the literature.

Keywords: collocation method, coupled system, cubic b-splines, mesh points

Procedia PDF Downloads 208
5775 Strongly Coupled Finite Element Formulation of Electromechanical Systems with Integrated Mesh Morphing Using Radial Basis Functions

Authors: David Kriebel, Jan Edgar Mehner

Abstract:

The paper introduces a method to efficiently simulate nonlinear changing electrostatic fields occurring in micro-electromechanical systems (MEMS). Large deflections of the capacitor electrodes usually introduce nonlinear electromechanical forces on the mechanical system. Traditional finite element methods require a time-consuming remeshing process to capture exact results for this physical domain interaction. In order to accelerate the simulation process and eliminate the remeshing process, a formulation of a strongly coupled electromechanical transducer element will be introduced, which uses a combination of finite-element with an advanced mesh morphing technique using radial basis functions (RBF). The RBF allows large geometrical changes of the electric field domain while retaining the high element quality of the deformed mesh. Coupling effects between mechanical and electrical domains are directly included within the element formulation. Fringing field effects are described accurately by using traditional arbitrary shape functions.

Keywords: electromechanical, electric field, transducer, simulation, modeling, finite-element, mesh morphing, radial basis function

Procedia PDF Downloads 239
5774 Performance of Neural Networks vs. Radial Basis Functions When Forming a Metamodel for Residential Buildings

Authors: Philip Symonds, Jon Taylor, Zaid Chalabi, Michael Davies

Abstract:

With the world climate projected to warm and major cities in developing countries becoming increasingly populated and polluted, governments are tasked with the problem of overheating and air quality in residential buildings. This paper presents the development of an adaptable model of these risks. Simulations are performed using the EnergyPlus building physics software. An accurate metamodel is formed by randomly sampling building input parameters and training on the outputs of EnergyPlus simulations. Metamodels are used to vastly reduce the amount of computation time required when performing optimisation and sensitivity analyses. Neural Networks (NNs) are compared to a Radial Basis Function (RBF) algorithm when forming a metamodel. These techniques were implemented using the PyBrain and scikit-learn python libraries, respectively. NNs are shown to perform around 15% better than RBFs when estimating overheating and air pollution metrics modelled by EnergyPlus.

Keywords: neural networks, radial basis functions, metamodelling, python machine learning libraries

Procedia PDF Downloads 445
5773 Handwriting Velocity Modeling by Artificial Neural Networks

Authors: Mohamed Aymen Slim, Afef Abdelkrim, Mohamed Benrejeb

Abstract:

The handwriting is a physical demonstration of a complex cognitive process learnt by man since his childhood. People with disabilities or suffering from various neurological diseases are facing so many difficulties resulting from problems located at the muscle stimuli (EMG) or signals from the brain (EEG) and which arise at the stage of writing. The handwriting velocity of the same writer or different writers varies according to different criteria: age, attitude, mood, writing surface, etc. Therefore, it is interesting to reconstruct an experimental basis records taking, as primary reference, the writing speed for different writers which would allow studying the global system during handwriting process. This paper deals with a new approach of the handwriting system modeling based on the velocity criterion through the concepts of artificial neural networks, precisely the Radial Basis Functions (RBF) neural networks. The obtained simulation results show a satisfactory agreement between responses of the developed neural model and the experimental data for various letters and forms then the efficiency of the proposed approaches.

Keywords: Electro Myo Graphic (EMG) signals, experimental approach, handwriting process, Radial Basis Functions (RBF) neural networks, velocity modeling

Procedia PDF Downloads 440
5772 Extended Arithmetic Precision in Meshfree Calculations

Authors: Edward J. Kansa, Pavel Holoborodko

Abstract:

Continuously differentiable radial basis functions (RBFs) are meshfree, converge faster as the dimensionality increases, and is theoretically spectrally convergent. When implemented on current single and double precision computers, such RBFs can suffer from ill-conditioning because the systems of equations needed to be solved to find the expansion coefficients are full. However, the Advanpix extended precision software package allows computer mathematics to resemble asymptotically ideal Platonic mathematics. Additionally, full systems with extended precision execute faster graphical processors units and field-programmable gate arrays because no branching is needed. Sparse equation systems are fast for iterative solvers in a very limited number of cases.

Keywords: partial differential equations, Meshfree radial basis functions, , no restrictions on spatial dimensions, Extended arithmetic precision.

Procedia PDF Downloads 147
5771 On the Basis Number and the Minimum Cycle Bases of the Wreath Product of Paths with Wheels

Authors: M. M. M. Jaradat

Abstract:

For a given graph G, the set Ԑ of all subsets of E(G) forms an |E(G)| dimensional vector space over Z2 with vector addition X⊕Y = (X\Y ) [ (Y \X) and scalar multiplication 1.X = X and 0.X = Ø for all X, Yϵ Ԑ. The cycle space, C(G), of a graph G is the vector subspace of (E; ⊕; .) spanned by the cycles of G. Traditionally there have been two notions of minimality among bases of C(G). First, a basis B of G is called a d-fold if each edge of G occurs in at most d cycles of the basis B. The basis number, b(G), of G is the least non-negative integer d such that C(G) has a d-fold basis; a required basis of C(G) is a basis for which each edge of G belongs to at most b(G) elements of B. Second, a basis B is called a minimum cycle basis (MCB) if its total length Σ BϵB |B| is minimum among all bases of C(G). The lexicographic product GρH has the vertex set V (GρH) = V (G) x V (H) and the edge set E(GρH) = {(u1, v1)(u2, v2)|u1 = u2 and v1 v2 ϵ E(H); or u1u2 ϵ E(G) and there is α ϵ Aut(H) such that α (v1) = v2}. In this work, a construction of a minimum cycle basis for the wreath product of wheels with paths is presented. Also, the length of the longest cycle of a minimum cycle basis is determined. Moreover, the basis number for the wreath product of the same is investigated.

Keywords: cycle space, minimum cycle basis, basis number, wreath product

Procedia PDF Downloads 278
5770 The Behavior of The Zeros of Bargmann Analytic Functions for Multiple-Mode Systems

Authors: Muna Tabuni

Abstract:

The paper contains an investigation of the behavior of the Zeros of Bargmann functions for one and two-mode systems. A brief introduction to Harmonic oscillator formalism for one and two-mode is given. The Bargmann analytic representation for one and two-mode has been studied. The zeros of Bargmann analytic function for one-mode are considered. The Q Husimi functions are introduced. The Bargmann functions and the Husimi functions have the same zeros. The Bargmann functions f(z) have exactly q zeros. The evolution time of the zeros are discussed. The zeros of Bargmann analytic functions for two-mode are introduced. Various examples have been given.

Keywords: Bargmann functions, two-mode, zeros, harmonic oscillator

Procedia PDF Downloads 569
5769 Numerical Wave Solutions for Nonlinear Coupled Equations Using Sinc-Collocation Method

Authors: Kamel Al-Khaled

Abstract:

In this paper, numerical solutions for the nonlinear coupled Korteweg-de Vries, (abbreviated as KdV) equations are calculated by Sinc-collocation method. This approach is based on a global collocation method using Sinc basis functions. First, discretizing time derivative of the KdV equations by a classic finite difference formula, while the space derivatives are approximated by a $\theta-$weighted scheme. Sinc functions are used to solve these two equations. Soliton solutions are constructed to show the nature of the solution. The numerical results are shown to demonstrate the efficiency of the newly proposed method.

Keywords: Nonlinear coupled KdV equations, Soliton solutions, Sinc-collocation method, Sinc functions

Procedia PDF Downloads 523
5768 Derivatives Formulas Involving I-Functions of Two Variables and Generalized M-Series

Authors: Gebreegziabher Hailu Gebrecherkos

Abstract:

This study explores the derivatives of functions defined by I-functions of two variables and their connections to generalized M-series. We begin by defining I-functions, which are generalized functions that encompass various special functions, and analyze their properties. By employing advanced calculus techniques, we derive new formulas for the first and higher-order derivatives of I-functions with respect to their variables; we establish some derivative formulae of the I-function of two variables involving generalized M-series. The special cases of our derivatives yield interesting results.

Keywords: I-function, Mellin-Barners control integral, generalized M-series, higher order derivative

Procedia PDF Downloads 14
5767 Inverse Cauchy Problem of Doubly Connected Domains via Spectral Meshless Radial Point Interpolation

Authors: Elyas Shivanian

Abstract:

In this paper, the spectral meshless radial point interpolation (SMRPI) technique is applied to the Cauchy problems of two-dimensional elliptic PDEs in doubly connected domains. It is obtained the unknown data on the inner boundary of the domain while overspecified boundary data are imposed on the outer boundary of the domain by using the SMRPI. Shape functions, which are constructed through point interpolation method using the radial basis functions, help us to treat problem locally with the aim of high order convergence rate. In this way, localization in SMRPI can reduce the ill-conditioning for Cauchy problem. Furthermore, we improve previous results and it is revealed the SMRPI is more accurate and stable by adding strong perturbations.

Keywords: cauchy problem, doubly connected domain, radial basis function, shape function

Procedia PDF Downloads 277
5766 Decentralized Control of Interconnected Systems with Non-Linear Unknown Interconnections

Authors: Haci Mehmet Guzey, Levent Acar

Abstract:

In this paper, a novel decentralized controller is developed for linear systems with nonlinear unknown interconnections. A model linear decoupled system is assigned for each system. By using the difference actual and model state dynamics, the problem is formulated as inverse problem. Then, the interconnected dynamics are approximated by using Galerkin’s expansion method for inverse problems. Two different sets of orthogonal basis functions are utilized to approximate the interconnected dynamics. Approximated interconnections are utilized in the controller to cancel the interconnections and decouple the systems. Subsequently, the interconnected systems behave as a collection of decoupled systems.

Keywords: decentralized control, inverse problems, large scale systems, nonlinear interconnections, basis functions, system identification

Procedia PDF Downloads 531
5765 Some Inequalities Related with Starlike Log-Harmonic Mappings

Authors: Melike Aydoğan, Dürdane Öztürk

Abstract:

Let H(D) be the linear space of all analytic functions defined on the open unit disc. A log-harmonic mappings is a solution of the nonlinear elliptic partial differential equation where w(z) ∈ H(D) is second dilatation such that |w(z)| < 1 for all z ∈ D. The aim of this paper is to define some inequalities of starlike logharmonic functions of order α(0 ≤ α ≤ 1).

Keywords: starlike log-harmonic functions, univalent functions, distortion theorem

Procedia PDF Downloads 520
5764 RAFU Functions in Robotics and Automation

Authors: Alicia C. Sanchez

Abstract:

This paper investigates the implementation of RAFU functions (radical functions) in robotics and automation. Specifically, the main goal is to show how these functions may be useful in lane-keeping control and the lateral control of autonomous machines, vehicles, robots or the like. From the knowledge of several points of a certain route, the RAFU functions are used to achieve the lateral control purpose and maintain the lane-keeping errors within the fixed limits. The stability that these functions provide, their ease of approaching any continuous trajectory and the control of the possible error made on the approximation may be useful in practice.

Keywords: automatic navigation control, lateral control, lane-keeping control, RAFU approximation

Procedia PDF Downloads 300
5763 Subclasses of Bi-Univalent Functions Associated with Hohlov Operator

Authors: Rashidah Omar, Suzeini Abdul Halim, Aini Janteng

Abstract:

The coefficients estimate problem for Taylor-Maclaurin series is still an open problem especially for a function in the subclass of bi-univalent functions. A function f ϵ A is said to be bi-univalent in the open unit disk D if both f and f-1 are univalent in D. The symbol A denotes the class of all analytic functions f in D and it is normalized by the conditions f(0) = f’(0) – 1=0. The class of bi-univalent is denoted by  The subordination concept is used in determining second and third Taylor-Maclaurin coefficients. The upper bound for second and third coefficients is estimated for functions in the subclasses of bi-univalent functions which are subordinated to the function φ. An analytic function f is subordinate to an analytic function g if there is an analytic function w defined on D with w(0) = 0 and |w(z)| < 1 satisfying f(z) = g[w(z)]. In this paper, two subclasses of bi-univalent functions associated with Hohlov operator are introduced. The bound for second and third coefficients of functions in these subclasses is determined using subordination. The findings would generalize the previous related works of several earlier authors.

Keywords: analytic functions, bi-univalent functions, Hohlov operator, subordination

Procedia PDF Downloads 290
5762 Geometric Properties of Some q-Bessel Functions

Authors: İbrahim Aktaş, Árpád Baricz

Abstract:

In this paper, the radii of star likeness of the Jackson and Hahn-Exton q-Bessel functions are considered, and for each of them three different normalizations is applied. By applying Euler-Rayleigh inequalities for the first positive zeros of these functions tight lower, and upper bounds for the radii of starlikeness of these functions are obtained. The Laguerre-Pólya class of real entire functions plays an important role in this study. In particular, we obtain some new bounds for the first positive zero of the derivative of the classical Bessel function of the first kind.

Keywords: bessel function, lommel function, radius of starlikeness and convexity, Struve function

Procedia PDF Downloads 274
5761 Optimal Mother Wavelet Function for Shoulder Muscles of Upper Limb Amputees

Authors: Amanpreet Kaur

Abstract:

Wavelet transform (WT) is a powerful statistical tool used in applied mathematics for signal and image processing. The different mother, wavelet basis function, has been compared to select the optimal wavelet function that represents the electromyogram signal characteristics of upper limb amputees. Four different EMG electrode has placed on different location of shoulder muscles. Twenty one wavelet functions from different wavelet families were investigated. These functions included Daubechies (db1-db10), Symlets (sym1-sym5), Coiflets (coif1-coif5) and Discrete Meyer. Using mean square error value, the significance of the mother wavelet functions has been determined for teres, pectorals, and infraspinatus around shoulder muscles. The results show that the best mother wavelet is the db3 from the Daubechies family for efficient classification of the signal.

Keywords: Daubechies, upper limb amputation, shoulder muscles, Symlets, Coiflets

Procedia PDF Downloads 234
5760 Approximation of Analytic Functions of Several Variables by Linear K-Positive Operators in the Closed Domain

Authors: Tulin Coskun

Abstract:

We investigate the approximation of analytic functions of several variables in polydisc by the sequences of linear k-positive operators in Gadjiev sence. The approximation of analytic functions of complex variable by linear k-positive operators was tackled, and k-positive operators and formulated theorems of Korovkin's type for these operators in the space of analytic functions on the unit disc were introduced in the past. Recently, very general results on convergence of the sequences of linear k-positive operators on a simply connected bounded domain within the space of analytic functions were proved. In this presentation, we extend some of these results to the approximation of analytic functions of several complex variables by sequences of linear k-positive operators.

Keywords: analytic functions, approximation of analytic functions, Linear k-positive operators, Korovkin type theorems

Procedia PDF Downloads 334
5759 SVM-Based Modeling of Mass Transfer Potential of Multiple Plunging Jets

Authors: Surinder Deswal, Mahesh Pal

Abstract:

The paper investigates the potential of support vector machines based regression approach to model the mass transfer capacity of multiple plunging jets, both vertical (θ = 90°) and inclined (θ = 60°). The data set used in this study consists of four input parameters with a total of eighty eight cases. For testing, tenfold cross validation was used. Correlation coefficient values of 0.971 and 0.981 (root mean square error values of 0.0025 and 0.0020) were achieved by using polynomial and radial basis kernel functions based support vector regression respectively. Results suggest an improved performance by radial basis function in comparison to polynomial kernel based support vector machines. The estimated overall mass transfer coefficient, by both the kernel functions, is in good agreement with actual experimental values (within a scatter of ±15 %); thereby suggesting the utility of support vector machines based regression approach.

Keywords: mass transfer, multiple plunging jets, support vector machines, ecological sciences

Procedia PDF Downloads 462
5758 Unconventional Calculus Spreadsheet Functions

Authors: Chahid K. Ghaddar

Abstract:

The spreadsheet engine is exploited via a non-conventional mechanism to enable novel worksheet solver functions for computational calculus. The solver functions bypass inherent restrictions on built-in math and user defined functions by taking variable formulas as a new type of argument while retaining purity and recursion properties. The enabling mechanism permits integration of numerical algorithms into worksheet functions for solving virtually any computational problem that can be modelled by formulas and variables. Several examples are presented for computing integrals, derivatives, and systems of deferential-algebraic equations. Incorporation of the worksheet solver functions with the ubiquitous spreadsheet extend the utility of the latter as a powerful tool for computational mathematics.

Keywords: calculus, differential algebraic equations, solvers, spreadsheet

Procedia PDF Downloads 359
5757 Evaluation of a Surrogate Based Method for Global Optimization

Authors: David Lindström

Abstract:

We evaluate the performance of a numerical method for global optimization of expensive functions. The method is using a response surface to guide the search for the global optimum. This metamodel could be based on radial basis functions, kriging, or a combination of different models. We discuss how to set the cycling parameters of the optimization method to get a balance between local and global search. We also discuss the eventual problem with Runge oscillations in the response surface.

Keywords: expensive function, infill sampling criterion, kriging, global optimization, response surface, Runge phenomenon

Procedia PDF Downloads 576
5756 An Interpolation Tool for Data Transfer in Two-Dimensional Ice Accretion Problems

Authors: Marta Cordero-Gracia, Mariola Gomez, Olivier Blesbois, Marina Carrion

Abstract:

One of the difficulties in icing simulations is for extended periods of exposure, when very large ice shapes are created. As well as being large, they can have complex shapes, such as a double horn. For icing simulations, these configurations are currently computed in several steps. The icing step is stopped when the ice shapes become too large, at which point a new mesh has to be created to allow for further CFD and ice growth simulations to be performed. This can be very costly, and is a limiting factor in the simulations that can be performed. A way to avoid the costly human intervention in the re-meshing step of multistep icing computation is to use mesh deformation instead of re-meshing. The aim of the present work is to apply an interpolation method based on Radial Basis Functions (RBF) to transfer deformations from surface mesh to volume mesh. This deformation tool has been developed specifically for icing problems. It is able to deal with localized, sharp and large deformations, unlike the tools traditionally used for more smooth wing deformations. This tool will be presented along with validation on typical two-dimensional icing shapes.

Keywords: ice accretion, interpolation, mesh deformation, radial basis functions

Procedia PDF Downloads 311