Abstracts | Energy and Power Engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1984

World Academy of Science, Engineering and Technology

[Energy and Power Engineering]

Online ISSN : 1307-6892

964 Estimation of Pressure Loss Coefficients in Combining Flows Using Artificial Neural Networks

Authors: Shahzad Yousaf, Imran Shafi

Abstract:

This paper presents a new method for calculation of pressure loss coefficients by use of the artificial neural network (ANN) in tee junctions. Geometry and flow parameters are feed into ANN as the inputs for purpose of training the network. Efficacy of the network is demonstrated by comparison of the experimental and ANN based calculated data of pressure loss coefficients for combining flows in a tee junction. Reynolds numbers ranging from 200 to 14000 and discharge ratios varying from minimum to maximum flow for calculation of pressure loss coefficients have been used. Pressure loss coefficients calculated using ANN are compared to the models from literature used in junction flows. The results achieved after the application of ANN agrees reasonably to the experimental values.

Keywords: artificial neural networks, combining flow, pressure loss coefficients, solar collector tee junctions

Procedia PDF Downloads 372
963 Microgrid: An Alternative of Electricity Supply to an Island in Thailand

Authors: Pawitchaya Srijaiwong, Surin Khomfoi

Abstract:

There are several solutions to supply electricity to an island in Thailand such as diesel generation, submarine power cable, and renewable energy power generation. However, each alternative has its own limitation like fuel and pollution of diesel generation, submarine power cable length resulting in loss of cable and cost of investment, and potential of renewable energy in the local area. This paper shows microgrid system which is a new alternative for power supply to an island. It integrates local power plant from renewable energy, energy storage system, and microgrid controller. The suitable renewable energy power generation on an island is selected from geographic location and potential evaluation. Thus, photovoltaic system and hydro power plant are taken into account. The capacity of energy storage system is also estimated by transient stability study in order to supply electricity demand sufficiently under normal condition. Microgrid controller plays an important role in conducting, communicating and operating for both sources and loads on an island so that its functions are discussed in this study. The conceptual design of microgrid operation is investigated in order to analyze the reliability and power quality. The result of this study shows that microgrid is able to operate in parallel with the main grid and in case of islanding. It is applicable for electricity supply to an island and a remote area. The advantages of operating microgrid on an island include the technical aspect like improving reliability and quality of power system and social aspects like outage cost saving and CO₂ reduction.

Keywords: energy storage, islanding, microgrid, renewable energy

Procedia PDF Downloads 315
962 Shooting Gas Cylinders to Prevent Their Explosion in Fire

Authors: Jerzy Ejsmont, Beata Świeczko-Żurek, Grzegorz Ronowski

Abstract:

Gas cylinders in general and particularly cylinders containing acetylene constitute a great potential danger for fire and rescue services involved in salvage operations. Experiments show that gas cylinders with acetylene, oxygen, hydrogen, CNG, LPG or CO2 may blow after short exposition to heat with very destructive effect as fragments of blown cylinder may fly even several hundred meters. In the case of acetylene, the explosion may occur also several hours after the cylinder is cooled down. One of the possible neutralization procedures that in many cases may be used to prevent explosions is shooting dangerous cylinders by rifle bullets. This technique is used to neutralize acetylene cylinders in a few European countries with great success. In Poland research project 'BLOW' was launched in 2014 with the aim to investigate phenomena related to fire influence on industrial and home used cylinders and to evaluate usefulness of the shooting technique. All together over 100 gas cylinders with different gases were experimentally tested at the military blasting grounds and in shelters. During the experiments cylinder temperature and pressure were recorded. In the case of acetylene that is subjected to thermal decomposition also concentration of hydrogen was monitored. Some of the cylinders were allowed to blow and others were shot by snipers. It was observed that shooting hot cylinders has never created more dangerous situations than letting the cylinders to explode spontaneously. In a great majority of cases cylinders that were punctured by bullets released gas in a more or less violent but relatively safe way. The paper presents detailed information about experiments and presents particularities of behavior of cylinders containing different gases. Extensive research was also done in order to select bullets that may be safely and efficiently used to puncture different cylinders. The paper shows also results of those experiments as well as gives practical information related to techniques that should be used during shooting.

Keywords: fire, gas cylinders, neutralization, shooting

Procedia PDF Downloads 249
961 Lesson Learnt from Solar Photovoltaic Power Generation in Thailand with Global Self-Consumption Experience

Authors: Tongpong Sriboon, Prapita Thanarak, Chaitawatch Khunrangabsang

Abstract:

Nowadays, the usage of power generated from photovoltaic system has been promoted significantly in Thailand. The targeted result which is to increase the Solar Power Generation in 2036 to 6000 megawatts (MW) was planned by Alternative Energy Development Plan (AEDP 2015) and Power Development Plan (PDP 2015). The solar rooftop 200 MW was promoted and supported under the Feed-in Tariff scheme (FiT) in two phases; phase I in 2012 and phase II in 2015. However, the number of people interested in supporting the projects reduced due to many reasons which range from the first process to the last that is to sell electricity back to Electricity Authority. This paper will review this situation especially in total electricity generated from solar rooftop system during the day that has been sold back to the grid utility in different capacity FiT rates. With many stakeholders involved, the regulations and criteria were established to maintain the standard of the system. Besides, lots of problems have occurred during the processes including reliability and quality. These problems were shortly followed by other irrevocably issues concerning politics, social, economic etc. In order to effectively develop solar PV power system in Thailand, the problems and solutions were compared to those from six countries including Japan, Australia. America, China, German and Malaysia. This paper particularly focuses on policies and measurement implemented to encourage the rising in solar PV system interest. This review enables one to gain insight into the nature of the changes that have taken place in each and every country mentioned above as well as the underlying reasons behind them. Brief analysis is carried out on identify key challenges and opportunities for solar PV application. This could help create a development path that is suitable with situations to enhance the overall performance of solar PV power generating system in Thailand.

Keywords: solar PV rooftop, PV policy, self-consumption, solar PV power generation

Procedia PDF Downloads 297
960 Solar Energy Potential Studies of Sindh Province, Pakistan for Power Generation

Authors: M. Akhlaque Ahmed, Sidra A. Shaikh, Maliha Afshan Siddiqui

Abstract:

Solar radiation studies of Sindh province have been studied to evaluate the solar energy potential of the area. Global and diffuse solar radiation on horizontal surface over five cities namely Karachi, Hyderabad, Nawabshah, Chore and Padidan of Sindh province were carried out using sun shine hour data of the area to assess the feasibility of solar energy utilization. The result obtained shows a large variation of direct and diffuse component of solar radiation in winter and summer months. 50% direct and 50% diffuse solar radiation for Karachi and Hyderabad were observed and for Chore in summer month July and August the diffuse radiation is about 33 to 39%. For other areas of Sindh such as Nawabshah and Patidan the contribution of direct solar radiation is high throughout the year. The Kt values for Nawabshah and Patidan indicates a clear sky almost throughout the year. In Nawabshah area the percentage of diffuse radiation does not exceed more than 29%. The appearance of cloud is rare even in the monsoon months July and August whereas Karachi and Hyderabad and Chore has low solar potential during the monsoon months. During the monsoon period Karachi and Hyderabad can utilize hybrid system with wind power as wind speed is higher. From the point of view of power generation the estimated values indicate that Karachi and Hyderabad and chore has low solar potential for July and August while Nawabshah, and Padidan has high solar potential Throughout the year.

Keywords: global and diffuse solar radiation, province of Sindh, solar energy potential, solar radiation studies for power generation

Procedia PDF Downloads 242
959 Exergy Based Performance Analysis of Double Flow Solar Air Heater with Corrugated Absorber

Authors: S. P. Sharma, Som Nath Saha

Abstract:

This paper presents the performance, based on exergy analysis of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater based on energy balance equations has been presented and the results obtained have been compared with that of a conventional flat-plate solar air heater. The double flow corrugated absorber solar air heater performs thermally better than the flat plate double flow and conventional flat-plate solar air heater under same operating conditions. However, the corrugated absorber leads to higher pressure drop thereby increasing pumping power. The results revealed that the energy and exergy efficiencies of double flow corrugated absorber solar air heater is much higher than conventional solar air heater with the concept involving of increase in heat transfer surface area and turbulence in air flow. The results indicate that the energy efficiency increases, however, exergy efficiency decreases with increase in mass flow rate.

Keywords: corrugated absorber, double flow, exergy efficiency, solar air heater

Procedia PDF Downloads 361
958 Thermohydraulic Performance of Double Flow Solar Air Heater with Corrugated Absorber

Authors: S. P. Sharma, Som Nath Saha

Abstract:

This paper deals with the analytical investigation of thermal and thermohydraulic performance of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater has been presented, and a computer program in C++ language is developed to estimate the outlet temperature of air for the evaluation of thermal and thermohydraulic efficiency by solving the governing equations numerically using relevant correlations for heat transfer coefficients. The results obtained from the mathematical model is compared with the available experimental results and it is found to be reasonably good. The results show that the double flow solar air heaters have higher efficiency than conventional solar air heater, although the double flow corrugated absorber is superior to that of flat plate double flow solar air heater. It is also observed that the thermal efficiency increases with increase in mass flow rate; however, thermohydraulic efficiency increases with increase in mass flow rate up to a certain limit, attains the maximum value, then thereafter decreases sharply.

Keywords: corrugated absorber, double flow, solar air heater, thermos-hydraulic efficiency

Procedia PDF Downloads 300
957 Parametric and Analysis Study of the Melting in Slabs Heated by a Laminar Heat Transfer Fluid in Downward and Upward Flows

Authors: Radouane Elbahjaoui, Hamid El Qarnia

Abstract:

The present work aims to investigate numerically the thermal and flow characteristics of a rectangular latent heat storage unit (LHSU) during the melting process of a phase change material (PCM). The LHSU consists of a number of vertical and identical plates of PCM separated by rectangular channels. The melting process is initiated when the LHSU is heated by a heat transfer fluid (HTF: water) flowing in channels in a downward or upward direction. The proposed study is motivated by the need to optimize the thermal performance of the LHSU by accelerating the charging process. A mathematical model is developed and a fixed-grid enthalpy formulation is adopted for modeling the melting process coupling with convection-conduction heat transfer. The finite volume method was used for discretization. The obtained numerical results are compared with experimental, analytical and numerical ones found in the literature and reasonable agreement is obtained. Thereafter, the numerical investigations were carried out to highlight the effects of the HTF flow direction and the aspect ratio of the PCM slabs on the heat transfer characteristics and thermal performance enhancement of the LHSU.

Keywords: PCM, TES, LHSU, melting

Procedia PDF Downloads 247
956 Investigation of Main Operating Parameters Affecting Gas Turbine Efficiency and Gas Releases

Authors: Farhat Hajer, Khir Tahar, Ammar Ben Brahim

Abstract:

This work presents a study on the influence of the main operating variables on the gas turbine cycle. A numerical simulation of a gas turbine cycle is performed for a real net power of 100 MW. A calculation code is developed using EES software. The operating variables are taken in conformity with the local environmental conditions adopted by the Tunisian Society of Electricity and Gas. Results show that the increase of ambient temperature leads to an increase of Tpz and NOx emissions rate and a decrease of cycle efficiency and UHC emissions. The CO emissions decrease with the raise of residence time, while NOx emissions rate increases and UHC emissions rate decreases. Furthermore, both of cycle efficiency and NOx emissions increase with the increase of the pressure ratio.

Keywords: Carbon monoxide, Efficiency, Emissions, Gas Turbine, Nox, UHC

Procedia PDF Downloads 415
955 Assessing the Ways of Improving the Power Saving Modes in the Ore-Grinding Technological Process

Authors: Baghdasaryan Marinka

Abstract:

Monitoring the distribution of electric power consumption in the technological process of ore grinding is conducted. As a result, the impacts of the mill filling rate, the productivity of the ore supply, the volumetric density of the grinding balls, the specific density of the ground ore, and the relative speed of the mill rotation on the specific consumption of electric power have been studied. The power and technological factors affecting the reactive power generated by the synchronous motors, operating within the technological scheme are studied. A block diagram for evaluating the power consumption modes of the technological process is presented, which includes the analysis of the technological scheme, the determination of the place and volumetric density of the ore-grinding mill, the evaluation of the technological and power factors affecting the energy saving process, as well as the assessment of the electric power standards.

Keywords: electric power standard, factor, ore grinding, power consumption, reactive power, technological

Procedia PDF Downloads 538
954 Influence of Photophysical Parameters of Photoactive Materials on Exciton Diffusion Length and Diffusion Coefficient in Bulk Heterojunction Organic Solar Cells

Authors: Douglas Yeboah, Jai Singh

Abstract:

It has been experimentally demonstrated that exciton diffusion length in organic solids can be improved by fine-tuning the material parameters that govern exciton transfer. Here, a theoretical study is carried out to support this finding. We have therefore derived expressions for the exciton diffusion length and diffusion coefficient of singlet and triplet excitons using Förster resonance energy transfer and Dexter carrier transfer mechanisms and are plotted as a function of photoluminescence (PL) quantum yield, spectral overlap integral, refractive index and dipole moment of the photoactive material. We found that singlet exciton diffusion length increases with PL quantum yield and spectral overlap integral, and decreases with increase in refractive index. Likewise, the triplet exciton diffusion length increases when PL quantum yield increases and dipole moment decreases. The calculated diffusion lengths in different organic materials are compared with existing experimental values and found to be in reasonable agreement. The results are expected to provide insight in developing new organic materials for fabricating bulk heterojunction (BHJ) organic solar cells (OSCs) with better photoconversion efficiency.

Keywords: Dexter carrier transfer, diffusion coefficient, exciton diffusion length, Föster resonance energy transfer, photoactive materials, photophysical parameters

Procedia PDF Downloads 316
953 Enhanced Growth of Microalgae Chlamydomonas reinhardtii Cultivated in Different Organic Waste and Effective Conversion of Algal Oil to Biodiesel

Authors: Ajith J. Kings, L. R. Monisha Miriam, R. Edwin Raj, S. Julyes Jaisingh, S. Gavaskar

Abstract:

Microalgae are a potential bio-source for rejuvenated solutions in various disciplines of science and technology, especially in medicine and energy. Biodiesel is being replaced for conventional fuels in automobile industries with reduced pollution and equivalent performance. Since it is a carbon neutral fuel by recycling CO2 in photosynthesis, global warming potential can be held in control using this fuel source. One of the ways to meet the rising demand of automotive fuel is to adopt with eco-friendly, green alternative fuels called sustainable microalgal biodiesel. In this work, a microalga Chlamydomonas reinhardtii was cultivated and optimized in different media compositions developed from under-utilized waste materials in lab scale. Using the optimized process conditions, they are then mass propagated in out-door ponds, harvested, dried and oils extracted for optimization in ambient conditions. The microalgal oil was subjected to two step esterification processes using acid catalyst to reduce the acid value (0.52 mg kOH/g) in the initial stage, followed by transesterification to maximize the biodiesel yield. The optimized esterification process parameters are methanol/oil ratio 0.32 (v/v), sulphuric acid 10 vol.%, duration 45 min at 65 ºC. In the transesterification process, commercially available alkali catalyst (KOH) is used and optimized to obtain a maximum biodiesel yield of 95.4%. The optimized parameters are methanol/oil ratio 0.33(v/v), alkali catalyst 0.1 wt.%, duration 90 min at 65 ºC 90 with smooth stirring. Response Surface Methodology (RSM) is employed as a tool for optimizing the process parameters. The biodiesel was then characterized with standard procedures and especially by GC-MS to confirm its compatibility for usage in internal combustion engine.

Keywords: microalgae, organic media, optimization, transesterification, characterization

Procedia PDF Downloads 217
952 Influence of Bed Depth on Performance of Wire Screen Packed Bed Solar Air Heater

Authors: Vimal Kumar Chouksey, S. P. Sharma

Abstract:

This paper deals with theoretical analysis of performance of solar air collector having its duct packed with blackened wire screen matrices. The heat transfer equations for two-dimensional fully developed fluid flows under quasi-steady-state conditions have been developed in order to analyze the effect of bed depth on performance. A computer programme is developed in C++ language to estimate the temperature rise of entering air for evaluation of performance by solving the governing equations numerically using relevant correlations for heat transfer coefficient for packed bed systems. Results of air temperature rise and thermal efficiency obtained from the analysis have been compared with available experimental results and results have been found fairly in closed agreement. It has been found that there is considerable enhancement in performance with packed bed collector upto a certain total bed depth. Effect of total bed depth on efficiency show that there is an upper limiting value of total bed depth beyond which the thermal efficiency begins to fall again and this type of characteristics behavior is observed at all mass flow rate.

Keywords: plane collector, solar air heater, solar energy, wire screen packed bed

Procedia PDF Downloads 221
951 Combined Influence of Charge Carrier Density and Temperature on Open-Circuit Voltage in Bulk Heterojunction Organic Solar Cells

Authors: Douglas Yeboah, Monishka Narayan, Jai Singh

Abstract:

One of the key parameters in determining the power conversion efficiency (PCE) of organic solar cells (OSCs) is the open-circuit voltage, however, it is still not well understood. In order to examine the performance of OSCs, it is necessary to understand the losses associated with the open-circuit voltage and how best it can be improved. Here, an analytical expression for the open-circuit voltage of bulk heterojunction (BHJ) OSCs is derived from the charge carrier densities without considering the drift-diffusion current. The open-circuit voltage thus obtained is dependent on the donor-acceptor band gap, the energy difference between the highest occupied molecular orbital (HOMO) and the hole quasi-Fermi level of the donor material, temperature, the carrier density (electrons), the generation rate of free charge carriers and the bimolecular recombination coefficient. It is found that open-circuit voltage increases when the carrier density increases and when the temperature decreases. The calculated results are discussed in view of experimental results and agree with them reasonably well. Overall, this work proposes an alternative pathway for improving the open-circuit voltage in BHJ OSCs.

Keywords: charge carrier density, open-circuit voltage, organic solar cells, temperature

Procedia PDF Downloads 353
950 Analysis of the Effect of GSR on the Performance of Double Flow Corrugated Absorber Solar Air Heater

Authors: S. P. Sharma, Som Nath Saha

Abstract:

This study investigates the effect of Global Solar Radiation (GSR) on the performance of double flow corrugated absorber solar air heater. A mathematical model of a double flow solar air heater, in which air is flowing simultaneously over and under the absorbing plate is presented and solved by developing a computer program in C++ language. The performance evaluation is studied in terms of air temperature rise, energy, effective and exergy efficiencies. The performance of double flow corrugated absorber is compared with double flow flat plate and conventional solar air heaters. It is found that double flow effectively increases the air temperature rise and efficiencies in comparison to a conventional collector. However, corrugated absorber is more superior to that of flat plate double flow solar air heater. The results show that increasing the solar radiation leads to achieve higher air temperature rise and efficiencies.

Keywords: corrugated absorber, double flow, flat plate, solar air heater

Procedia PDF Downloads 331
949 Evaluation of Electro-Flocculation for Biomass Production of Marine Microalgae Phaodactylum tricornutum

Authors: Luciana C. Ramos, Leandro J. Sousa, Antônio Ferreira da Silva, Valéria Gomes Oliveira Falcão, Suzana T. Cunha Lima

Abstract:

The commercial production of biodiesel using microalgae demands a high-energy input for harvesting biomass, making production economically unfeasible. Methods currently used involve mechanical, chemical, and biological procedures. In this work, a flocculation system is presented as a cost and energy effective process to increase biomass production of Phaeodactylum tricornutum. This diatom is the only species of the genus that present fast growth and lipid accumulation ability that are of great interest for biofuel production. The algae, selected from the Bank of Microalgae, Institute of Biology, Federal University of Bahia (Brazil), have been bred in tubular reactor with photoperiod of 12 h (clear/dark), providing luminance of about 35 μmol photons m-2s-1, and temperature of 22 °C. The medium used for growing cells was the Conway medium, with addition of silica. The seaweed growth curve was accompanied by cell count in Neubauer camera and by optical density in spectrophotometer, at 680 nm. The precipitation occurred at the end of the stationary phase of growth, 21 days after inoculation, using two methods: centrifugation at 5000 rpm for 5 min, and electro-flocculation at 19 EPD and 95 W. After precipitation, cells were frozen at -20 °C and, subsequently, lyophilized. Biomass obtained by electro-flocculation was approximately four times greater than the one achieved by centrifugation. The benefits of this method are that no addition of chemical flocculants is necessary and similar cultivation conditions can be used for the biodiesel production and pharmacological purposes. The results may contribute to improve biodiesel production costs using marine microalgae.

Keywords: biomass, diatom, flocculation, microalgae

Procedia PDF Downloads 316
948 The Effect of Organic Matter Maturation and Porosity Evolution on Methane Storage Potential in Shale-Gas Reservoirs

Authors: T. Topór, A. Derkowski, P. Ziemiański

Abstract:

Formation of organic matter (OM)-hosted nanopores upon thermal maturation are one of the key factor controlling methane storage potential in unconventional shale-gas reservoirs. In this study, the subcritical CO₂ and N₂ gas adsorption measurements combined with scanning electron microscopy and supercritical methane adsorption have been used to characterize pore system and methane storage potential in black shales from the Baltic Basin (Poland). The samples were collected from a virtually equivalent Llandovery strata across the basin and represent a complete digenetic sequence, from thermally immature to overmature. The results demonstrate that the thermal maturation is a dominant mechanism controlling the formation of OM micro- and mesopores in the Baltic Basin shales. The formation of micro- and mesopores occurs in the oil window (vitrinite reflectance; leavedVR; ~0.5-0.9%) as a result of oil expulsion from kerogenleft OM highly porous. The generated hydrocarbons then turn into solid bitumen causing pore blocking and substantial decrease in micro- and mesopore volume in late-mature shales (VR ~0.9-1.2%). Both micro- and mesopores are regenerated in a middle of the catagenesis range (VR 1.4-1.9%) due to secondary cracking of OM and gas formation. The micropore volume in investigated shales is almost exclusively controlled by the OM content. The contribution of clay minerals to micropore volume is insignificant and masked by a strong contribution from OM. Methane adsorption capacity in the Baltic Basin shales is predominantly controlled by microporous OM with pores < 1.5 nm. The mesopore volume (2-50 nm) and mesopore surface area have no effect on methane sorption behavior. The adsorbed methane density equivalent, calculated as absolute methane adsorption divided by micropore volume, reviled a decrease of the methane loading potential in micropores with increasing maturity. The highest methane loading potential in micropores is observed for OM before metagenesis (VR < 2%), where the adsorbed methane density equivalent is greater than the density of liquid methane. This implies that, in addition to physical adsorption, absorption of methane in OM may occur before metagenesis. After OM content reduction using NaOCl solution methane adoption capacity substantially decreases, suggesting significantly greater adsorption potential for OM microstructure than for the clay minerals matrix.

Keywords: maturation, methane sorption, organic matter, porosity, shales

Procedia PDF Downloads 226
947 Electrical and Thermal Characteristics of a Photovoltaic Solar Wall with Passive and Active Ventilation through a Room

Authors: Himanshu Dehra

Abstract:

An experimental study was conducted for ascertaining electrical and thermal characteristics of a pair of photovoltaic (PV) modules integrated with solar wall of an outdoor room. A pre-fabricated outdoor room was setup for conducting outdoor experiments on a PV solar wall with passive and active ventilation through the outdoor room. The selective operating conditions for glass coated PV modules were utilized for establishing their electrical and thermal characteristics. The PV solar wall was made up of glass coated PV modules, a ventilated air column, and an insulating layer of polystyrene filled plywood board. The measurements collected were currents, voltages, electric power, air velocities, temperatures, solar intensities, and thermal time constant. The results have demonstrated that: i) a PV solar wall installed on a wooden frame was of more heat generating capacity in comparison to a window glass or a standalone PV module; ii) generation of electric power was affected with operation of vertical PV solar wall; iii) electrical and thermal characteristics were not significantly affected by heat and thermal storage losses; and iv) combined heat and electricity generation were function of volume of thermal and electrical resistances developed across PV solar wall. Finally, a comparison of temperature plots of passive and active ventilation envisaged that fan pressure was necessary to avoid overheating of the PV solar wall. The active ventilation was necessary to avoid over-heating of the PV solar wall and to maintain adequate ventilation of room under mild climate conditions.

Keywords: photovoltaic solar wall, solar energy, passive ventilation, active ventilation

Procedia PDF Downloads 381
946 Thermo-Exergy Optimization of Gas Turbine Cycle with Two Different Regenerator Designs

Authors: Saria Abed, Tahar Khir, Ammar Ben Brahim

Abstract:

A thermo-exergy optimization of a gas turbine cycle with two different regenerator designs is established. A comparison was made between the performance of the two regenerators and their roles in improving the cycle efficiencies. The effect of operational parameters (the pressure ratio of the compressor, the ambient temperature, excess of air, geometric parameters of the regenerators, etc.) on thermal efficiencies, the exergy efficiencies, and irreversibilities were studied using thermal balances and quantitative exegetic equilibrium for each component and for the whole system. The results are given graphically by using the EES software, and an appropriate discussion and conclusion was made.

Keywords: exergy efficiency, gas turbine, heat transfer, irreversibility, optimization, regenerator, thermal efficiency

Procedia PDF Downloads 436
945 Detection of Voltage Sag and Voltage Swell in Power Quality Using Wavelet Transforms

Authors: Nor Asrina Binti Ramlee

Abstract:

Voltage sag, voltage swell, high-frequency noise and voltage transients are kinds of disturbances in power quality. They are also known as power quality events. Equipment used in the industry nowadays has become more sensitive to these events with the increasing complexity of equipment. This leads to the importance of distributing clean power quality to the consumer. To provide better service, the best analysis on power quality is very vital. Thus, this paper presents the events detection focusing on voltage sag and swell. The method is developed by applying time domain signal analysis using wavelet transform approach in MATLAB. Four types of mother wavelet namely Haar, Dmey, Daubechies, and Symlet are used to detect the events. This project analyzed real interrupted signal obtained from 22 kV transmission line in Skudai, Johor Bahru, Malaysia. The signals will be decomposed through the wavelet mothers. The best mother is the one that is capable to detect the time location of the event accurately.

Keywords: power quality, voltage sag, voltage swell, wavelet transform

Procedia PDF Downloads 356
944 Optimal Placement and Sizing of Energy Storage System in Distribution Network with Photovoltaic Based Distributed Generation Using Improved Firefly Algorithms

Authors: Ling Ai Wong, Hussain Shareef, Azah Mohamed, Ahmad Asrul Ibrahim

Abstract:

The installation of photovoltaic based distributed generation (PVDG) in active distribution system can lead to voltage fluctuation due to the intermittent and unpredictable PVDG output power. This paper presented a method in mitigating the voltage rise by optimally locating and sizing the battery energy storage system (BESS) in PVDG integrated distribution network. The improved firefly algorithm is used to perform optimal placement and sizing. Three objective functions are presented considering the voltage deviation and BESS off-time with state of charge as the constraint. The performance of the proposed method is compared with another optimization method such as the original firefly algorithm and gravitational search algorithm. Simulation results show that the proposed optimum BESS location and size improve the voltage stability.

Keywords: BESS, firefly algorithm, PVDG, voltage fluctuation

Procedia PDF Downloads 307
943 Existence of Nano-Organic Carbon Particles below the Size Range of 10 nm in the Indoor Air Environment

Authors: Bireswar Paul, Amitava Datta

Abstract:

Indoor air environment is a big concern in the last few decades in the developing countries, with increased focus on monitoring the air quality. In this work, an experimental study has been conducted to establish the existence of carbon nanoparticles below the size range of 10 nm in the non-sooting zone of a LPG/air partially premixed flame. Mainly, four optical techniques, UV absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering and TEM have been used to characterize and measure the size of carbon nanoparticles in the sampled materials collected from the inner surface of the flame front. The existence of the carbon nanoparticles in the sampled material has been confirmed with the typical nature of the absorption and fluorescence spectra already reported in the literature. The band gap energy shows that the particles are made up of three to six aromatic rings. The size measurement by DLS technique also shows that the particles below the size range of 10 nm. The results of DLS are also corroborated by the TEM image of the same material. 

Keywords: indoor air, carbon nanoparticle, lpg, partially premixed flame, optical techniques

Procedia PDF Downloads 266
942 Composite Distributed Generation and Transmission Expansion Planning Considering Security

Authors: Amir Lotfi, Seyed Hamid Hosseini

Abstract:

During the recent past, due to the increase of electrical energy demand and governmental resources constraints in creating additional capacity in the generation, transmission, and distribution, privatization, and restructuring in electrical industry have been considered. So, in most of the countries, different parts of electrical industry like generation, transmission, and distribution have been separated in order to create competition. Considering these changes, environmental issues, energy growth, investment of private equity in energy generation units and difficulties of transmission lines expansion, distributed generation (DG) units have been used in power systems. Moreover, reduction in the need for transmission and distribution, the increase of reliability, improvement of power quality, and reduction of power loss have caused DG to be placed in power systems. On the other hand, considering low liquidity need, private investors tend to spend their money for DGs. In this project, the main goal is to offer an algorithm for planning and placing DGs in order to reduce the need for transmission and distribution network.

Keywords: planning, transmission, distributed generation, power security, power systems

Procedia PDF Downloads 464
941 Choosing the Green Energy Option: A Willingness to Pay Study of Metro Manila Residents for Solar Renewable Energy

Authors: Paolo Magnata

Abstract:

The energy market in the Philippines remains to have one of the highest electricity rates in the region averaging at US$0.16/kWh (PHP6.89/kWh), excluding VAT, as opposed to the overall energy market average of US$0.13/kWh. The movement towards renewable energy, specifically solar energy, will pose as an expensive one with the country’s energy sector providing Feed-in-Tariff rates as high as US$0.17/kWh (PHP8.69/kWh) for solar energy power plants. Increasing the share of renewables at the current state of the energy regulatory background would yield a three-fold increase in residential electricity bills. The issue lies in the uniform charge that consumers bear regardless of where the electricity is sourced resulting in rates that only consider costs and not the consumers. But if they are given the option to choose where their electricity comes from, a number of consumers may potentially choose economically costlier sources of electricity due to higher levels of utility coupled with the willingness to pay of consuming environmentally-friendly sourced electricity. A contingent valuation survey was conducted to determine their willingness-to-pay for solar energy on a sample that was representative of Metro Manila to elicit their willingness-to-pay and a Single Bounded Dichotomous Choice and Double Bounded Dichotomous Choice analysis was used to estimate the amount they were willing to pay. The results showed that Metro Manila residents are willing to pay a premium on top of their current electricity bill amounting to US$5.71 (PHP268.42) – US$9.26 (PHP435.37) per month which is approximately 0.97% - 1.29% of their monthly household income. It was also discovered that besides higher income of households, a higher level of self-perceived knowledge on environmental awareness significantly affected the likelihood of a consumer to pay the premium. Shifting towards renewable energy is an expensive move not only for the government because of high capital investment but also to consumers; however, the Green Energy Option (a policy mechanism which gives consumers the option to decide where their electricity comes from) can potentially balance the shift of the economic burden by transitioning from a uniformly charged electricity rate to equitably charging consumers based on their willingness to pay for renewably sourced energy.

Keywords: contingent valuation, dichotomous choice, Philippines, solar energy

Procedia PDF Downloads 319
940 Influence of Channel Depth on the Performance of Wavy Fin Absorber Solar Air Heater

Authors: Abhishek Priyam, Prabha Chand

Abstract:

Channel depth is an important design parameter to be fixed in designing a solar air heater. In this paper, a mathematical model has been developed to study the influence of channel duct on the thermal performance of solar air heaters. The channel depth has been varied from 1.5 cm to 3.5 cm for the mass flow range 0.01 to 0.11 kg/s. Based on first law of thermodynamics, the channel depth of 1.5 cm shows better thermal performance for all the mass flow range. Also, better thermohydraulic performance has been found up to 0.05 kg/s, and beyond this, thermohydraulic efficiency starts decreasing. It has been seen that, with the increase in the mass flow rate, the difference between thermal and thermohydraulic efficiency increases because of the increase in pressure drop. At lower mass flow rate, 0.01 kg/s, the thermal and thermohydraulic efficiencies for respective channel depth remain the same.

Keywords: channel depth, thermal efficiency, wavy fin, thermohydraulic efficiency

Procedia PDF Downloads 360
939 [Keynote Talk]: Implementation of 5 Level and 7 Level Multilevel Inverter in Local Trains of Mumbai

Authors: Sharvari Sane, Swati Sharma, Sanjay K. Prasad

Abstract:

Local trains are the lifelines of Mumbai city. Earlier 1500 Volt D.C. supply, is now completely and successfully converted into 25 KV A.C. in central, western and harbour routes. This task is the outcome of the advancement in the area of power electronics. Author has already done the comparative study between D.C. and A.C. supply of traction and predicted the serious problem regarding the harmonics. In this paper, the simulation for 5 level as well as 7 level multilevel inverter has been done which is the substitute for the present cascade type inverter. This paper also showed the reduced level of Total Harmonic Distortion (THD) in the traction system.

Keywords: total harmonic distortion (THD), traction sub station (TSS), harmonics, multilevel inverter

Procedia PDF Downloads 402
938 Viability Analysis of a Centralized Hydrogen Generation Plant for Use in Oil Refining Industry

Authors: C. Fúnez Guerra, B. Nieto Calderón, M. Jaén Caparrós, L. Reyes-Bozo, A. Godoy-Faúndez, E. Vyhmeister

Abstract:

The global energy system is experiencing a change of scenery. Unstable energy markets, an increasing focus on climate change and its sustainable development is forcing businesses to pursue new solutions in order to ensure future economic growth. This has led to the interest in using hydrogen as an energy carrier in transportation and industrial applications. As an energy carrier, hydrogen is accessible and holds a high gravimetric energy density. Abundant in hydrocarbons, hydrogen can play an important role in the shift towards low-emission fossil value chains. By combining hydrogen production by natural gas reforming with carbon capture and storage, the overall CO2 emissions are significantly reduced. In addition, the flexibility of hydrogen as an energy storage makes it applicable as a stabilizer in the renewable energy mix. The recent development in hydrogen fuel cells is also raising the expectations for a hydrogen powered transportation sector. Hydrogen value chains exist to a large extent in the industry today. The global hydrogen consumption was approximately 50 million tonnes (7.2 EJ) in 2013, where refineries, ammonia, methanol production and metal processing were main consumers. Natural gas reforming produced 48% of this hydrogen, but without carbon capture and storage (CCS). The total emissions from the production reached 500 million tonnes of CO2, hence alternative production methods with lower emissions will be necessary in future value chains. Hydrogen from electrolysis is used for a wide range of industrial chemical reactions for many years. Possibly, the earliest use was for the production of ammonia-based fertilisers by Norsk Hydro, with a test reactor set up in Notodden, Norway, in 1927. This application also claims one of the world’s largest electrolyser installations, at Sable Chemicals in Zimbabwe. Its array of 28 electrolysers consumes 80 MW per hour, producing around 21,000 Nm3/h of hydrogen. These electrolysers can compete if cheap sources of electricity are available and natural gas for steam reforming is relatively expensive. Because electrolysis of water produces oxygen as a by-product, a system of Autothermal Reforming (ATR) utilizing this oxygen has been analyzed. Replacing the air separation unit with electrolysers produces the required amount of oxygen to the ATR as well as additional hydrogen. The aim of this paper is to evaluate the technical and economic potential of large-scale production of hydrogen for oil refining industry. Sensitivity analysis of parameters such as investment costs, plant operating hours, electricity price and sale price of hydrogen and oxygen are performed.

Keywords: autothermal reforming, electrolyser, hydrogen, natural gas, steam methane reforming

Procedia PDF Downloads 194
937 Electrical Performance Analysis of Single Junction Amorphous Silicon Solar (a-Si:H) Modules Using IV Tracer (PVPM)

Authors: Gilbert Omorodion Osayemwenre, Edson Meyer, R. T. Taziwa

Abstract:

The electrical analysis of single junction amorphous silicon solar modules is carried out using outdoor monitoring technique. Like crystalline silicon PV modules, the electrical characterisation and performance of single junction amorphous silicon modules are best described by its current-voltage (IV) characteristic. However, IV curve has a direct dependence on the type of PV technology and material properties used. The analysis reveals discrepancies in the modules performance parameter even though they are of similar technology. The aim of this work is to compare the electrical performance output of each module, using electrical parameters with the aid of PVPM 100040C IV tracer. These results demonstrated the relevance of standardising the performance parameter for effective degradation analysis of a-Si:H.

Keywords: PVPM 100040C IV tracer, SolarWatt part, single junction amorphous silicon module (a-Si:H), Staebler-Wronski (S-W) degradation effect

Procedia PDF Downloads 302
936 Economic Development and New Challenges: Biomass Energy and Sustainability

Authors: Fabricia G. F. S. Rossato, Ieda G. Hidalgo, Andres Susseta, Felipe Casale, Leticia H. Nakamiti

Abstract:

This research was conducted to show the useful source of biomass energy provided from forest waste and the black liquor from the pulping process. This energy source could be able to assist and improve its area environment in a sustainable way. The research will demonstrate the challenges from producing the biomass energy and the implantation of the pulp industry in the city of Três Lagoas, MS. – Brazil. Planted forest’s potential, energy production in the pulp industries and its consequence of impacts on the local region environmental was also studied and examined. The present study is classified as descriptive purposes as it exposes the characteristics of a given population and the means such as bibliographical and documentary. All the data and information collected and demonstrate in this study was carefully analyzed and provided from reliable sources such as official government agencies.

Keywords: Brazil, pulp industry, renewable energy, Três Lagoas

Procedia PDF Downloads 310
935 Non-Convex Multi Objective Economic Dispatch Using Ramp Rate Biogeography Based Optimization

Authors: Susanta Kumar Gachhayat, S. K. Dash

Abstract:

Multi objective non-convex economic dispatch problems of a thermal power plant are of grave concern for deciding the cost of generation and reduction of emission level for diminishing the global warming level for improving green-house effect. This paper deals with ramp rate constraints for achieving better inequality constraints so as to incorporate valve point loading for cost of generation in thermal power plant through ramp rate biogeography based optimization involving mutation and migration. Through 50 out of 100 trials, the cost function and emission objective function were found to have outperformed other classical methods such as lambda iteration method, quadratic programming method and many heuristic methods like particle swarm optimization method, weight improved particle swarm optimization method, constriction factor based particle swarm optimization method, moderate random particle swarm optimization method etc. Ramp rate biogeography based optimization applications prove quite advantageous in solving non convex multi objective economic dispatch problems subjected to nonlinear loads that pollute the source giving rise to third harmonic distortions and other such disturbances.

Keywords: economic load dispatch, ELD, biogeography-based optimization, BBO, ramp rate biogeography-based optimization, RRBBO, valve-point loading, VPL

Procedia PDF Downloads 364