Search results for: shifting equilibrium.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 344

Search results for: shifting equilibrium.

14 Study of Equilibrium and Mass Transfer of Co- Extraction of Different Mineral Acids with Iron(III) from Aqueous Solution by Tri-n-Butyl Phosphate Using Liquid Membrane

Authors: Diptendu Das, Vikas Kumar Rahi, V. A. Juvekar, R. Bhattacharya

Abstract:

Extraction of Fe(III) from aqueous solution using Trin- butyl Phosphate (TBP) as carrier needs a highly acidic medium (>6N) as it favours formation of chelating complex FeCl3.TBP. Similarly, stripping of Iron(III) from loaded organic solvents requires neutral pH or alkaline medium to dissociate the same complex. It is observed that TBP co-extracts acids along with metal, which causes reversal of driving force of extraction and iron(III) is re-extracted back from the strip phase into the feed phase during Liquid Emulsion Membrane (LEM) pertraction. Therefore, rate of extraction of different mineral acids (HCl, HNO3, H2SO4) using TBP with and without presence of metal Fe(III) was examined. It is revealed that in presence of metal acid extraction is enhanced. Determination of mass transfer coefficient of both acid and metal extraction was performed by using Bulk Liquid Membrane (BLM). The average mass transfer coefficient was obtained by fitting the derived model equation with experimentally obtained data. The mass transfer coefficient of the mineral acid extraction is in the order of kHNO3 = 3.3x10-6m/s > kHCl = 6.05x10-7m/s > kH2SO4 = 1.85x10-7m/s. The distribution equilibria of the above mentioned acids between aqueous feed solution and a solution of tri-n-butyl-phosphate (TBP) in organic solvents have been investigated. The stoichiometry of acid extraction reveals the formation of TBP.2HCl, HNO3.2TBP, and TBP.H2SO4 complexes. Moreover, extraction of Iron(III) by TBP in HCl aqueous solution forms complex FeCl3.TBP.2HCl while in HNO3 medium forms complex 3FeCl3.TBP.2HNO3

Keywords: Bulk Liquid Membrane (BLM) Transport, Iron(III) extraction, Tri-n-butyl Phosphate, Mass Transfer coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541
13 Removal of Polycyclic Aromatic Hydrocarbons Present in Tyre Pyrolytic Oil Using Low Cost Natural Adsorbents

Authors: Neha Budhwani

Abstract:

Polycyclic aromatic hydrocarbons (PAHs) are formed during the pyrolysis of scrap tyres to produce tyre pyrolytic oil (TPO). Due to carcinogenic, mutagenic, and toxic properties PAHs are priority pollutants. Hence it is essential to remove PAHs from TPO before utilising TPO as a petroleum fuel alternative (to run the engine). Agricultural wastes have promising future to be utilized as biosorbent due to their cost effectiveness, abundant availability, high biosorption capacity and renewability. Various low cost adsorbents were prepared from natural sources. Uptake of PAHs present in tyre pyrolytic oil was investigated using various low-cost adsorbents of natural origin including sawdust (shisham), coconut fiber, neem bark, chitin, activated charcoal. Adsorption experiments of different PAHs viz. naphthalene, acenaphthalene, biphenyl and anthracene have been carried out at ambient temperature (25°C) and at pH 7. It was observed that for any given PAH, the adsorption capacity increases with the lignin content. Freundlich constant Kf and 1/n have been evaluated and it was found that the adsorption isotherms of PAHs were in agreement with a Freundlich model, while the uptake capacity of PAHs followed the order: activated charcoal> saw dust (shisham) > coconut fiber > chitin. The partition coefficients in acetone-water, and the adsorption constants at equilibrium, could be linearly correlated with octanol–water partition coefficients. It is observed that natural adsorbents are good alternative for PAHs removal. Sawdust of Dalbergia sissoo, a by-product of sawmills was found to be a promising adsorbent for the removal of PAHs present in TPO. It is observed that adsorbents studied were comparable to those of some conventional adsorbents.

Keywords: Acenaphthene, anthracene, biphenyl, Coconut fiber, naphthalene, natural adsorbent, PAHs, TPO and wood powder (shisham).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4018
12 Utilization of Cement Kiln Dust in Adsorption Technology

Authors: Yousef Swesi, Asia Elmeshergi, Abdelati Elalem, Walid Alfoghy

Abstract:

This paper involves a study of the heavy metal pollution of the soils around one of cement plants in Libya called Suk-Alkhameas and surrounding urban areas caused by cement kiln dust (CKD) emitted. Samples of soil was collected from sites at four directions around the cement factory at distances 250m, 1000m, and 3000m from the factory and at (0-10)cm deep in the soil. These samples are analyzed for Fe (iii), Zn(ii), and Pb (ii) as major pollutants. These values are compared with soils at 25 Km distances from the factory as a reference or control samples. The results show that the concentration of Fe ions in the surface soil was within the acceptable range of 1000ppm. However, for Zn and Pb ions the concentrations at the east and north sides of the factory were found six fold higher than the benchmark level. This high value was attributed to the wind which blows usually from south to north and from west to east. This work includes an investigation of the adsorption isotherms and adsorption efficiency of CKD as adsorbent of heavy metal ions (Fe (iii), Zn(ii), and Pb(ii)) from the polluted soils of Suk-Alkameas city. The investigation was conducted in batch and fixed bed column flow technique. The adsorption efficiency of the studied heavy metals ions removals onto CKD depends on the pH of the solution. The optimum pH values are found to be in the ranges of 8-10 and decreases at lower pH values. The removal efficiency of these heavy metals ions ranged from 93% for Pb, 94% for Zn, and 98% for Fe ions for 10 g.l-1 adsorbent concentration. The maximum removal efficiency of these ions was achieved at 50-60 minutes contact times at which equilibrium is reached. Fixed bed column experimental measurements are also made to evaluate CKD as an adsorbent for the heavy metals. Results obtained are with good agreement with Langmuir and Drachsal assumption of multilayer formation on the adsorbent surface.

Keywords: Adsorption, Cement Kiln dust (CKD & CAC), Isotherms, Zn and Pb ions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2349
11 Kinetic, Thermodynamic and Process Modeling of Synthesis of UV Curable Glyceryl and Neopentyl Glycol Acrylates

Authors: R. D. Kulkarni, Mayur Chaudhari, S. Mishra

Abstract:

Curing of paints by exposure to UV radiations is emerging as one of the best film forming technique as an alternative to traditional solvent borne oxidative and thermal curing coatings. The composition and chemistry of UV curable coatings and role of multifunctional and monofunctional monomers, oligomers, and photoinitiators have been discussed. The limitations imposed by thermodynamic equilibrium and tendency for acrylic double bond polymerizations during synthesis of multifunctional acrylates have been presented. Aim of present investigation was thus to explore the reaction variables associated with synthesis of multifunctional acrylates. Zirconium oxychloride was evaluated as catalyst against regular acid functional catalyst. The catalyzed synthesis of glyceryl acrylate and neopentyl glycol acrylate was conducted by variation of following reaction parameters: two different reactant molar ratios- 1:4 and 1:6; catalyst usage in % by moles on polyol- 2.5, 5.0 and 7.5 and two different reaction temperatures- 45 and 75 0C. The reaction was monitored by determination of acid value and hydroxy value at regular intervals, besides TLC, HPLC, and FTIR analysis of intermediates and products. On the basis of determination of reaction progress over 1-60 hrs, the esterification reaction was observed to follow 2nd order kinetics with rate constant varying from 1*10-4 to 7*10-4. The thermal and catalytic components of second order rate constant and energy of activation were also determined. Uses of these kinetic and thermodynamic parameters in design of reactor for manufacture of multifunctional acrylate ester have been presented. The synthesized multifunctional acrylates were used to formulate and apply UV curable clear coat followed by determination of curing characteristics and mechanical properties of cured film. The overall curing rates less than 05 min. were easily attained indicating economical viability of radiation curable system due to faster production schedules

Keywords: glyceryl acrylate, neopentyl glycol acrylate, kinetic modeling, zirconium oxychloride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
10 TNFRSF11B Gene Polymorphisms A163G and G11811C in Prediction of Osteoporosis Risk

Authors: Boroňová I., Bernasovská J., Kľoc J., Tomková Z., Petrejčíková E., Gabriková D., Mačeková S.

Abstract:

Osteoporosis is a complex health disease characterized by low bone mineral density, which is determined by an interaction of genetics with metabolic and environmental factors. Current research in genetics of osteoporosis is focused on identification of responsible genes and polymorphisms. TNFRSF11B gene plays a key role in bone remodeling. The aim of this study was to investigate the genotype and allele distribution of A163G (rs3102735) osteoprotegerin gene promoter and G1181C (rs2073618) osteoprotegerin first exon polymorphisms in the group of 180 unrelated postmenopausal women with diagnosed osteoporosis and 180 normal controls. Genomic DNA was isolated from peripheral blood leukocytes using standard methodology. Genotyping for presence of different polymorphisms was performed using the Custom Taqman®SNP Genotyping assays. Hardy-Weinberg equilibrium was tested for each SNP in the groups of participants using the chi-square (χ2) test. The distribution of investigated genotypes in the group of patients with osteoporosis were as follows: AA (66.7%), AG (32.2%), GG (1.1%) for A163G polymorphism; GG (19.4%), CG (44.4%), CC (36.1%) for G1181C polymorphism. The distribution of genotypes in normal controls were follows: AA (71.1%), AG (26.1%), GG (2.8%) for A163G polymorphism; GG (22.2%), CG (48.9%), CC (28.9%) for G1181C polymorphism. In A163G polymorphism the variant G allele was more common among patients with osteoporosis: 17.2% versus 15.8% in normal controls. Also, in G1181C polymorphism the phenomenon of more frequent occurrence of C allele in the group of patients with osteoporosis was observed (58.3% versus 53.3%). Genotype and allele distributions showed no significant differences (A163G: χ2=0.270, p=0.605; χ2=0.250, p=0.616; G1181C: χ2= 1.730, p=0.188; χ2=1.820, p=0.177). Our results represents an initial study, further studies of more numerous file and associations studies will be carried out. Knowing the distribution of genotypes is important for assessing the impact of these polymorphisms on various parameters associated with osteoporosis. Screening for identification of “at-risk” women likely to develop osteoporosis and initiating subsequent early intervention appears to be most effective strategy to substantially reduce the risks of osteoporosis.

Keywords: Osteoporosis, Real-time PCR method, SNP polymorphisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
9 Port Positions on the Mixing Efficiency of a Rotor-Type Mixer – A Numerical Study

Authors: Y. C. Liou, J. M. Miao, T. L. Liu, M. H. Ho

Abstract:

The purpose of this study was to explore the complex flow structure a novel active-type micromixer that based on concept of Wankle-type rotor. The characteristics of this micromixer are two folds; a rapid mixing of reagents in a limited space due to the generation of multiple vortices and a graduate increment in dynamic pressure as the mixed reagents is delivered to the output ports. Present micro-mixer is consisted of a rotor with shape of triangle column, a blending chamber and several inlet and outlet ports. The geometry of blending chamber is designed to make the rotor can be freely internal rotated with a constant eccentricity ratio. When the shape of the blending chamber and the rotor are fixed, the effects of rotating speed of rotor and the relative locations of ports on the mixing efficiency are numerical studied. The governing equations are unsteady, two-dimensional incompressible Navier-Stokes equation and the working fluid is the water. The species concentration equation is also solved to reveal the mass transfer process of reagents in various regions then to evaluate the mixing efficiency. The dynamic mesh technique was implemented to model the dynamic volume shrinkage and expansion of three individual sub-regions of blending chamber when the rotor conducted a complete rotating cycle. Six types of ports configuration on the mixing efficiency are considered in a range of Reynolds number from 10 to 300. The rapid mixing process was accomplished with the multiple vortex structures within a tiny space due to the equilibrium of shear force, viscous force and inertial force. Results showed that the highest mixing efficiency could be attained in the following conditions: two inlet and two outlet ports configuration, that is an included angle of 60 degrees between two inlets and an included angle of 120 degrees between inlet and outlet ports when Re=10.

Keywords: active micro-mixer, CFD, mixing efficiency, ports configuration, Reynolds number, Wankle-type rotor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
8 Polymer Mediated Interaction between Grafted Nanosheets

Authors: Supriya Gupta, Paresh Chokshi

Abstract:

Polymer-particle interactions can be effectively utilized to produce composites that possess physicochemical properties superior to that of neat polymer. The incorporation of fillers with dimensions comparable to polymer chain size produces composites with extra-ordinary properties owing to very high surface to volume ratio. The dispersion of nanoparticles is achieved by inducing steric repulsion realized by grafting particles with polymeric chains. A comprehensive understanding of the interparticle interaction between these functionalized nanoparticles plays an important role in the synthesis of a stable polymer nanocomposite. With the focus on incorporation of clay sheets in a polymer matrix, we theoretically construct the polymer mediated interparticle potential for two nanosheets grafted with polymeric chains. The self-consistent field theory (SCFT) is employed to obtain the inhomogeneous composition field under equilibrium. Unlike the continuum models, SCFT is built from the microscopic description taking in to account the molecular interactions contributed by both intra- and inter-chain potentials. We present the results of SCFT calculations of the interaction potential curve for two grafted nanosheets immersed in the matrix of polymeric chains of dissimilar chemistry to that of the grafted chains. The interaction potential is repulsive at short separation and shows depletion attraction for moderate separations induced by high grafting density. It is found that the strength of attraction well can be tuned by altering the compatibility between the grafted and the mobile chains. Further, we construct the interaction potential between two nanosheets grafted with diblock copolymers with one of the blocks being chemically identical to the free polymeric chains. The interplay between the enthalpic interaction between the dissimilar species and the entropy of the free chains gives rise to a rich behavior in interaction potential curve obtained for two separate cases of free chains being chemically similar to either the grafted block or the free block of the grafted diblock chains.

Keywords: Clay nanosheets, polymer brush, polymer nanocomposites, self-consistent field theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
7 Stochastic Simulation of Reaction-Diffusion Systems

Authors: Paola Lecca, Lorenzo Dematte

Abstract:

Reactiondiffusion systems are mathematical models that describe how the concentration of one or more substances distributed in space changes under the influence of local chemical reactions in which the substances are converted into each other, and diffusion which causes the substances to spread out in space. The classical representation of a reaction-diffusion system is given by semi-linear parabolic partial differential equations, whose general form is ÔêétX(x, t) = DΔX(x, t), where X(x, t) is the state vector, D is the matrix of the diffusion coefficients and Δ is the Laplace operator. If the solute move in an homogeneous system in thermal equilibrium, the diffusion coefficients are constants that do not depend on the local concentration of solvent and of solutes and on local temperature of the medium. In this paper a new stochastic reaction-diffusion model in which the diffusion coefficients are function of the local concentration, viscosity and frictional forces of solvent and solute is presented. Such a model provides a more realistic description of the molecular kinetics in non-homogenoeus and highly structured media as the intra- and inter-cellular spaces. The movement of a molecule A from a region i to a region j of the space is described as a first order reaction Ai k- → Aj , where the rate constant k depends on the diffusion coefficient. Representing the diffusional motion as a chemical reaction allows to assimilate a reaction-diffusion system to a pure reaction system and to simulate it with Gillespie-inspired stochastic simulation algorithms. The stochastic time evolution of the system is given by the occurrence of diffusion events and chemical reaction events. At each time step an event (reaction or diffusion) is selected from a probability distribution of waiting times determined by the specific speed of reaction and diffusion events. Redi is the software tool, developed to implement the model of reaction-diffusion kinetics and dynamics. It is a free software, that can be downloaded from http://www.cosbi.eu. To demonstrate the validity of the new reaction-diffusion model, the simulation results of the chaperone-assisted protein folding in cytoplasm obtained with Redi are reported. This case study is redrawing the attention of the scientific community due to current interests on protein aggregation as a potential cause for neurodegenerative diseases.

Keywords: Reaction-diffusion systems, Fick's law, stochastic simulation algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
6 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters

Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran

Abstract:

The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.

Keywords: Electric propulsion, mass gauging, propellant, PVT, xenon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143
5 Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Partitioned Solution Approach and an Exponential Model

Authors: Nicolò Vaiana, Filip C. Filippou, Giorgio Serino

Abstract:

The solution of the nonlinear dynamic equilibrium equations of base-isolated structures adopting a conventional monolithic solution approach, i.e. an implicit single-step time integration method employed with an iteration procedure, and the use of existing nonlinear analytical models, such as differential equation models, to simulate the dynamic behavior of seismic isolators can require a significant computational effort. In order to reduce numerical computations, a partitioned solution method and a one dimensional nonlinear analytical model are presented in this paper. A partitioned solution approach can be easily applied to base-isolated structures in which the base isolation system is much more flexible than the superstructure. Thus, in this work, the explicit conditionally stable central difference method is used to evaluate the base isolation system nonlinear response and the implicit unconditionally stable Newmark’s constant average acceleration method is adopted to predict the superstructure linear response with the benefit in avoiding iterations in each time step of a nonlinear dynamic analysis. The proposed mathematical model is able to simulate the dynamic behavior of seismic isolators without requiring the solution of a nonlinear differential equation, as in the case of widely used differential equation model. The proposed mixed explicit-implicit time integration method and nonlinear exponential model are adopted to analyze a three dimensional seismically isolated structure with a lead rubber bearing system subjected to earthquake excitation. The numerical results show the good accuracy and the significant computational efficiency of the proposed solution approach and analytical model compared to the conventional solution method and mathematical model adopted in this work. Furthermore, the low stiffness value of the base isolation system with lead rubber bearings allows to have a critical time step considerably larger than the imposed ground acceleration time step, thus avoiding stability problems in the proposed mixed method.

Keywords: Base-isolated structures, earthquake engineering, mixed time integration, nonlinear exponential model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
4 International Financial Crises and the Political Economy of Financial Reforms in Turkey: 1994-2009

Authors: Birgül Şakar

Abstract:

This study1 holds for the formation of international financial crisis and political factors for economic crisis in Turkey, are evaluated in chronological order. The international arena and relevant studies conducted in Turkey work in the literature are assessed. The main purpose of the study is to hold the linkage between the crises and political stability in Turkey in details, and to examine the position of Turkey in this regard. The introduction part follows the literature survey on the models explaining causes and results of the crises, the second part of the study. In the third part, the formations of the world financial crises are studied. The fourth part, financial crisis in Turkey in 1994, 2000, 2001 and 2008 are reviewed and their political reasons are analyzed. In the last part of the study the results and recommendations are held. Political administrations have laid the grounds for an economic crisis in Turkey. In this study, the emergence of an economic crisis in Turkey and the developments after the crisis are chronologically examined and an explanation is offered as to the cause and effect relationship between the political administration and economic equilibrium in the country. Economic crises can be characterized as follows: high prices of consumables, high interest rates, current account deficits, budget deficits, structural defects in government finance, rising inflation and fixed currency applications, rising government debt, declining savings rates and increased dependency on foreign capital stock. Entering into the conditions of crisis during a time when the exchange value of the country-s national currency was rising, speculative finance movements and shrinking of foreign currency reserves happened due to expectations for devaluation and because of foreign investors- resistance to financing national debt, and a financial risk occurs. During the February 2001 crisis and immediately following, devaluation and reduction of value occurred in Turkey-s stock market. While changing over to the system of floating exchange rates in the midst of this crisis, the effects of the crisis on the real economy are discussed in this study. Administered politics include financial reforms, such as the rearrangement of banking systems. These reforms followed with the provision of foreign financial support. There have been winners and losers in the imbalance of income distribution, which has recently become more evident in Turkey-s fragile economy.

Keywords: Economics, marketing crisis, financial reforms, political economy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
3 H2 Permeation Properties of a Catalytic Membrane Reactor in Methane Steam Reforming Reaction

Authors: M. Amanipour, J. Towfighi, E. Ganji Babakhani, M. Heidari

Abstract:

Cylindrical alumina microfiltration membrane (GMITM Corporation, inside diameter=9 mm, outside diameter=13 mm, length= 50 mm) with an average pore size of 0.5 micrometer and porosity of about 0.35 was used as the support for membrane reactor. This support was soaked in boehmite sols, and the mean particle size was adjusted in the range of 50 to 500 nm by carefully controlling hydrolysis time, and calcined at 650 °C for two hours. This process was repeated with different boehmite solutions in order to achieve an intermediate layer with an average pore size of about 50 nm. The resulting substrate was then coated with a thin and dense layer of silica by counter current chemical vapour deposition (CVD) method. A boehmite sol with 10 wt.% of nickel which was prepared by a standard procedure was used to make the catalytic layer. BET, SEM, and XRD analysis were used to characterize this layer. The catalytic membrane reactor was placed in an experimental setup to evaluate the permeation and hydrogen separation performance for a steam reforming reaction. The setup consisted of a tubular module in which the membrane was fixed, and the reforming reaction occurred at the inner side of the membrane. Methane stream, diluted with nitrogen, and deionized water with a steam to carbon (S/C) ratio of 3.0 entered the reactor after the reactor was heated up to 500 °C with a specified rate of 2 °C/ min and the catalytic layer was reduced at presence of hydrogen for 2.5 hours. Nitrogen flow was used as sweep gas through the outer side of the reactor. Any liquid produced was trapped and separated at reactor exit by a cold trap, and the produced gases were analyzed by an on-line gas chromatograph (Agilent 7890A) to measure total CH4 conversion and H2 permeation. BET analysis indicated uniform size distribution for catalyst with average pore size of 280 nm and average surface area of 275 m2.g-1. Single-component permeation tests were carried out for hydrogen, methane, and carbon dioxide at temperature range of 500-800 °C, and the results showed almost the same permeance and hydrogen selectivity values for hydrogen as the composite membrane without catalytic layer. Performance of the catalytic membrane was evaluated by applying membranes as a membrane reactor for methane steam reforming reaction at gas hourly space velocity (GHSV) of 10,000 h−1 and 2 bar. CH4 conversion increased from 50% to 85% with increasing reaction temperature from 600 °C to 750 °C, which is sufficiently above equilibrium curve at reaction conditions, but slightly lower than membrane reactor with packed nickel catalytic bed because of its higher surface area compared to the catalytic layer.

Keywords: Catalytic membrane, hydrogen, methane steam reforming, permeance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855
2 Green Synthesis of Nanosilver-Loaded Hydrogel Nanocomposites for Antibacterial Application

Authors: D. Berdous, H. Ferfera-Harrar

Abstract:

Superabsorbent polymers (SAPs) or hydrogels with three-dimensional hydrophilic network structure are high-performance water absorbent and retention materials. The in situ synthesis of metal nanoparticles within polymeric network as antibacterial agents for bio-applications is an approach that takes advantage of the existing free-space into networks, which not only acts as a template for nucleation of nanoparticles, but also provides long term stability and reduces their toxicity by delaying their oxidation and release. In this work, SAP/nanosilver nanocomposites were successfully developed by a unique green process at room temperature, which involves in situ formation of silver nanoparticles (AgNPs) within hydrogels as a template. The aim of this study is to investigate whether these AgNPs-loaded hydrogels are potential candidates for antimicrobial applications. Firstly, the superabsorbents were prepared through radical copolymerization via grafting and crosslinking of acrylamide (AAm) onto chitosan backbone (Cs) using potassium persulfate as initiator and N,N’-methylenebisacrylamide as the crosslinker. Then, they were hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. Lastly, the AgNPs were biosynthesized and entrapped into hydrogels through a simple, eco-friendly and cost-effective method using aqueous silver nitrate as a silver precursor and curcuma longa tuber-powder extracts as both reducing and stabilizing agent. The formed superabsorbents nanocomposites (Cs-g-PAAm)/AgNPs were characterized by X-ray Diffraction (XRD), UV-visible Spectroscopy, Attenuated Total reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Inductively Coupled Plasma (ICP), and Thermogravimetric Analysis (TGA). Microscopic surface structure analyzed by Transmission Electron Microscopy (TEM) has showed spherical shapes of AgNPs with size in the range of 3-15 nm. The extent of nanosilver loading was decreased by increasing Cs content into network. The silver-loaded hydrogel was thermally more stable than the unloaded dry hydrogel counterpart. The swelling equilibrium degree (Q) and centrifuge retention capacity (CRC) in deionized water were affected by both contents of Cs and the entrapped AgNPs. The nanosilver-embedded hydrogels exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria. These comprehensive results suggest that the elaborated AgNPs-loaded nanomaterials could be used to produce valuable wound dressing.

Keywords: Antibacterial activity, nanocomposites, silver nanoparticles, superabsorbent hydrogel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
1 High-Speed Particle Image Velocimetry of the Flow around a Moving Train Model with Boundary Layer Control Elements

Authors: Alexander Buhr, Klaus Ehrenfried

Abstract:

Trackside induced airflow velocities, also known as slipstream velocities, are an important criterion for the design of high-speed trains. The maximum permitted values are given by the Technical Specifications for Interoperability (TSI) and have to be checked in the approval process. For train manufactures it is of great interest to know in advance, how new train geometries would perform in TSI tests. The Reynolds number in moving model experiments is lower compared to full-scale. Especially the limited model length leads to a thinner boundary layer at the rear end. The hypothesis is that the boundary layer rolls up to characteristic flow structures in the train wake, in which the maximum flow velocities can be observed. The idea is to enlarge the boundary layer using roughness elements at the train model head so that the ratio between the boundary layer thickness and the car width at the rear end is comparable to a full-scale train. This may lead to similar flow structures in the wake and better prediction accuracy for TSI tests. In this case, the design of the roughness elements is limited by the moving model rig. Small rectangular roughness shapes are used to get a sufficient effect on the boundary layer, while the elements are robust enough to withstand the high accelerating and decelerating forces during the test runs. For this investigation, High-Speed Particle Image Velocimetry (HS-PIV) measurements on an ICE3 train model have been realized in the moving model rig of the DLR in Göttingen, the so called tunnel simulation facility Göttingen (TSG). The flow velocities within the boundary layer are analysed in a plain parallel to the ground. The height of the plane corresponds to a test position in the EN standard (TSI). Three different shapes of roughness elements are tested. The boundary layer thickness and displacement thickness as well as the momentum thickness and the form factor are calculated along the train model. Conditional sampling is used to analyse the size and dynamics of the flow structures at the time of maximum velocity in the train wake behind the train. As expected, larger roughness elements increase the boundary layer thickness and lead to larger flow velocities in the boundary layer and in the wake flow structures. The boundary layer thickness, displacement thickness and momentum thickness are increased by using larger roughness especially when applied in the height close to the measuring plane. The roughness elements also cause high fluctuations in the form factors of the boundary layer. Behind the roughness elements, the form factors rapidly are approaching toward constant values. This indicates that the boundary layer, while growing slowly along the second half of the train model, has reached a state of equilibrium.

Keywords: Boundary layer, high-speed PIV, ICE3, moving train model, roughness elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491