Search results for: recommendation systems.
4474 A Hybrid Recommendation System Based On Association Rules
Authors: Ahmed Mohammed K. Alsalama
Abstract:
Recommendation systems are widely used in e-commerce applications. The engine of a current recommendation system recommends items to a particular user based on user preferences and previous high ratings. Various recommendation schemes such as collaborative filtering and content-based approaches are used to build a recommendation system. Most of current recommendation systems were developed to fit a certain domain such as books, articles, and movies. We propose1 a hybrid framework recommendation system to be applied on two dimensional spaces (User × Item) with a large number of Users and a small number of Items. Moreover, our proposed framework makes use of both favorite and non-favorite items of a particular user. The proposed framework is built upon the integration of association rules mining and the content-based approach. The results of experiments show that our proposed framework can provide accurate recommendations to users.
Keywords: Data Mining, Association Rules, Recommendation Systems, Hybrid Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39894473 MovieReco: A Recommendation System
Authors: Dipankaj G Medhi, Juri Dakua
Abstract:
Recommender Systems act as personalized decision guides, aiding users in decisions on matters related to personal taste. Most previous research on Recommender Systems has focused on the statistical accuracy of the algorithms driving the systems, with no emphasis on the trustworthiness of the user. RS depends on information provided by different users to gather its knowledge. We believe, if a large group of users provide wrong information it will not be possible for the RS to arrive in an accurate conclusion. The system described in this paper introduce the concept of Testing the knowledge of user to filter out these “bad users". This paper emphasizes on the mechanism used to provide robust and effective recommendation.Keywords: Collaborative Filtering, Content Based Filtering, Intelligent Agent, Level of Interest, Recommendation System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16454472 The Impact of Recommendation Sources on Online Purchase Intentions: The Moderating Effects of Gender and Perceived Risk
Authors: Chiao-Chen Chang, Yang-Chieh Chin
Abstract:
This study examines the issue of recommendation sources from the perspectives of gender and consumers- perceived risk, and validates a model for the antecedents of consumer online purchases. The method of obtaining quantitative data was that of the instrument of a survey questionnaire. Data were collected via questionnaires from 396 undergraduate students aged 18-24, and a multiple regression analysis was conducted to identify causal relationships. Empirical findings established the link between recommendation sources (word-of-mouth, advertising, and recommendation systems) and the likelihood of making online purchases and demonstrated the role of gender and perceived risk as moderators in this context. The results showed that the effects of word-of-mouth on online purchase intentions were stronger than those of advertising and recommendation systems. In addition, female consumers have less experience with online purchases, so they may be more likely than males to refer to recommendations during the decision-making process. The findings of the study will help marketers to address the recommendation factor which influences consumers- intention to purchase and to improve firm performances to meet consumer needs.Keywords: Recommendation sources, Online purchaseintentions, Gender differences, Perceived risk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30204471 E-Learning Recommender System Based on Collaborative Filtering and Ontology
Authors: John Tarus, Zhendong Niu, Bakhti Khadidja
Abstract:
In recent years, e-learning recommender systems has attracted great attention as a solution towards addressing the problem of information overload in e-learning environments and providing relevant recommendations to online learners. E-learning recommenders continue to play an increasing educational role in aiding learners to find appropriate learning materials to support the achievement of their learning goals. Although general recommender systems have recorded significant success in solving the problem of information overload in e-commerce domains and providing accurate recommendations, e-learning recommender systems on the other hand still face some issues arising from differences in learner characteristics such as learning style, skill level and study level. Conventional recommendation techniques such as collaborative filtering and content-based deal with only two types of entities namely users and items with their ratings. These conventional recommender systems do not take into account the learner characteristics in their recommendation process. Therefore, conventional recommendation techniques cannot make accurate and personalized recommendations in e-learning environment. In this paper, we propose a recommendation technique combining collaborative filtering and ontology to recommend personalized learning materials to online learners. Ontology is used to incorporate the learner characteristics into the recommendation process alongside the ratings while collaborate filtering predicts ratings and generate recommendations. Furthermore, ontological knowledge is used by the recommender system at the initial stages in the absence of ratings to alleviate the cold-start problem. Evaluation results show that our proposed recommendation technique outperforms collaborative filtering on its own in terms of personalization and recommendation accuracy.
Keywords: Collaborative filtering, e-learning, ontology, recommender system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31144470 Instruction Resource Recommendation Services for Elementary Schools in Taiwan
Authors: Hong-Ren Chen, Fang-Yu Yeh
Abstract:
In the past, there were more researches of recommendation system in applied electronic commerce. However, because all circles promote information technology integrative instruction actively, the quantity of instruction resources website is more and more increasing on the Internet. But there are less website including recommendation service, especially for teachers. This study established an instruction resource recommendation website that analyzed teaching style of teachers, then provided appropriate instruction resources for teachers immediately. We used the questionnaire survey to realize teacher-s suggestions and satisfactions with the instruction resource contents and recommendation results. The study shows: (1)The website used “Transactional Ability Inventory" that realized teacher-s style and provided appropriate instruction resources for teachers in a short time, it reduced the step of data filter. (2)According to the content satisfaction of questionnaire survey, four styles teachers were almost satisfied with the contents of the instruction resources that the website recommended, thus, the conception of developing instruction resources with different teaching style is accepted. (3) According to the recommendation satisfaction of questionnaire survey, four styles teachers were almost satisfied with the recommendation service of the website, thus, the recommendation strategy that provide different results for teachers in different teaching styles is accepted.
Keywords: Instruction resource, recommendation service, teaching style.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14894469 A Design Framework for Event Recommendation in Novice Low-Literacy Communities
Authors: Yimeng Deng, Klarissa T.T. Chang
Abstract:
The proliferation of user-generated content (UGC) results in huge opportunities to explore event patterns. However, existing event recommendation systems primarily focus on advanced information technology users. Little work has been done to address novice and low-literacy users. The next billion users providing and consuming UGC are likely to include communities from developing countries who are ready to use affordable technologies for subsistence goals. Therefore, we propose a design framework for providing event recommendations to address the needs of such users. Grounded in information integration theory (IIT), our framework advocates that effective event recommendation is supported by systems capable of (1) reliable information gathering through structured user input, (2) accurate sense making through spatial-temporal analytics, and (3) intuitive information dissemination through interactive visualization techniques. A mobile pest management application is developed as an instantiation of the design framework. Our preliminary study suggests a set of design principles for novice and low-literacy users.
Keywords: Event recommendation, iconic interface, information integration, spatial-temporal clustering, user-generated content, visualization techniques
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16564468 Business Intelligence for N=1 Analytics using Hybrid Intelligent System Approach
Authors: Rajendra M Sonar
Abstract:
The future of business intelligence (BI) is to integrate intelligence into operational systems that works in real-time analyzing small chunks of data based on requirements on continuous basis. This is moving away from traditional approach of doing analysis on ad-hoc basis or sporadically in passive and off-line mode analyzing huge amount data. Various AI techniques such as expert systems, case-based reasoning, neural-networks play important role in building business intelligent systems. Since BI involves various tasks and models various types of problems, hybrid intelligent techniques can be better choice. Intelligent systems accessible through web services make it easier to integrate them into existing operational systems to add intelligence in every business processes. These can be built to be invoked in modular and distributed way to work in real time. Functionality of such systems can be extended to get external inputs compatible with formats like RSS. In this paper, we describe a framework that use effective combinations of these techniques, accessible through web services and work in real-time. We have successfully developed various prototype systems and done few commercial deployments in the area of personalization and recommendation on mobile and websites.Keywords: Business Intelligence, Customer Relationship Management, Hybrid Intelligent Systems, Personalization and Recommendation (P&R), Recommender Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20774467 User Intention Generation with Large Language Models Using Chain-of-Thought Prompting
Authors: Gangmin Li, Fan Yang
Abstract:
Personalized recommendation is crucial for any recommendation system. One of the techniques for personalized recommendation is to identify the intention. Traditional user intention identification uses the user’s selection when facing multiple items. This modeling relies primarily on historical behavior data resulting in challenges such as the cold start, unintended choice, and failure to capture intention when items are new. Motivated by recent advancements in Large Language Models (LLMs) like ChatGPT, we present an approach for user intention identification by embracing LLMs with Chain-of-Thought (CoT) prompting. We use the initial user profile as input to LLMs and design a collection of prompts to align the LLM's response through various recommendation tasks encompassing rating prediction, search and browse history, user clarification, etc. Our tests on real-world datasets demonstrate the improvements in recommendation by explicit user intention identification and, with that intention, merged into a user model.
Keywords: Personalized recommendation, generative user modeling, user intention identification, large language models, chain-of-thought prompting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 874466 The Use of Recommender Systems in Decision Support–A Case Study on Used Car Dealers
Authors: Nalinee Sophatsathit
Abstract:
This research focuses on the use of a recommender system in decision support by means of a used car dealer case study in Bangkok Metropolitan. The goal is to develop an effective used car purchasing system for dealers based on the above premise. The underlying principle rests on content-based recommendation from a set of usability surveys. A prototype was developed to conduct buyers- survey selected from 5 experts and 95 general public. The responses were analyzed to determine the mean and standard deviation of buyers- preference. The results revealed that both groups were in favor of using the proposed system to assist their buying decision. This indicates that the proposed system is meritorious to used car dealers.Keywords: Recommender Systems, Decision Support, Content- Based Recommendation, used car dealer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23724465 A Goal-Oriented Social Business Process Management Framework
Authors: Mohammad Ehson Rangiha, Bill Karakostas
Abstract:
Social Business Process Management (SBPM) promises to overcome limitations of traditional BPM by allowing flexible process design and enactment through the involvement of users from a social community. This paper proposes a meta-model and architecture for socially driven business process management systems. It discusses the main facets of the architecture such as goalbased role assignment that combines social recommendations with user profile, and process recommendation, through a real example of a charity organization.
Keywords: Business Process Management, Goal-Based Modelling, Process Recommendation Social Collaboration, Social BPM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25684464 Rule-Based Expert System for Headache Diagnosis and Medication Recommendation
Authors: Noura Al-Ajmi, Mohammed A. Almulla
Abstract:
With the increased utilization of technology devices around the world, healthcare and medical diagnosis are critical issues that people worry about these days. Doctors are doing their best to avoid any medical errors while diagnosing diseases and prescribing the wrong medication. Subsequently, artificial intelligence applications that can be installed on mobile devices such as rule-based expert systems facilitate the task of assisting doctors in several ways. Due to their many advantages, the usage of expert systems has increased recently in health sciences. This work presents a backward rule-based expert system that can be used for a headache diagnosis and medication recommendation system. The structure of the system consists of three main modules, namely the input unit, the processing unit, and the output unit.Keywords: Headache diagnosis system, treatment recommender system, rule-based expert system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7454463 A Semantic Recommendation Procedure for Electronic Product Catalog
Authors: Hadi Khosravi Farsani, Mohammadali Nematbakhsh
Abstract:
To overcome the product overload of Internet shoppers, we introduce a semantic recommendation procedure which is more efficient when applied to Internet shopping malls. The suggested procedure recommends the semantic products to the customers and is originally based on Web usage mining, product classification, association rule mining, and frequently purchasing. We applied the procedure to the data set of MovieLens Company for performance evaluation, and some experimental results are provided. The experimental results have shown superior performance in terms of coverage and precision.Keywords: Personalization, Recommendation, OWL Ontology, Electronic Catalogs, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19234462 Towards an Effective Reputation Assessment Process in Peer-to-Peer Systems
Authors: Farag Azzedin, Ahmad Ridha
Abstract:
The need for reputation assessment is particularly strong in peer-to-peer (P2P) systems because the peers' personal site autonomy is amplified by the inherent technological decentralization of the environment. However, the decentralization notion makes the problem of designing a peer-to-peer based reputation assessment substantially harder in P2P networks than in centralized settings.Existing reputation systems tackle the reputation assessment process in an ad-hoc manner. There is no systematic and coherent way to derive measures and analyze the current reputation systems. In this paper, we propose a reputation assessment process and use it to classify the existing reputation systems. Simulation experiments are conducted and focused on the different methods in selecting the recommendation sources and retrieving the recommendations. These two phases can contribute significantly to the overall performance due to communication cost and coverage.
Keywords: P2P Systems, Trust, Reputation, Performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14434461 Comparative Analysis of Photovoltaic Systems
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
This paper presents comparative analysis of photovoltaic systems (PVS) and propose practical techniques to improve operational efficiency of the PVS. The best engineering and construction practices for PVS are identified and field oriented recommendation are made. Comparative analysis of central and string inverter based, as well as 600 and 1000VDC PVS are performed. In addition, direct current (DC) and alternating current (AC) photovoltaic (PV) module based systems are compared. Comparison shows that 1000V DC String Inverters based PVS is the best choice.Keywords: Photovoltaic module, photovoltaic systems, operational efficiency improvement, comparative analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22984460 The Role of Cognitive Decision Effort in Electronic Commerce Recommendation System
Authors: Cheng-Che Tsai, Huang-Ming Chuang
Abstract:
The purpose of this paper is to explore the role of cognitive decision effort in recommendation system, combined with indicators "information quality" and "service quality" from IS success model to exam the awareness of the user for the "recommended system performance". A total of 411 internet user answered a questionnaire assessing their attention of use and satisfaction of recommendation system in internet book store. Quantitative result indicates following research results. First, information quality of recommended system has obvious influence in consumer shopping decision-making process, and the attitude to use the system. Second, in the process of consumer's shopping decision-making, the recommendation system has no significant influence for consumers to pay lower cognitive decision-making effort. Third, e-commerce platform provides recommendations and information is necessary, but the quality of information on user needs must be considered, or they will be other competitors offer homogeneous services replaced.Keywords: Recommender system, Cognitive decision-making efforts, IS success model, Internet bookstore.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20744459 Design of Personal Job Recommendation Framework on Smartphone Platform
Authors: Chayaporn Kaensar
Abstract:
Recently, Job Recommender Systems have gained much attention in industries since they solve the problem of information overload on the recruiting website. Therefore, we proposed Extended Personalized Job System that has the capability of providing the appropriate jobs for job seeker and recommending some suitable information for them using Data Mining Techniques and Dynamic User Profile. On the other hands, company can also interact to the system for publishing and updating job information. This system have emerged and supported various platforms such as web application and android mobile application. In this paper, User profiles, Implicit User Action, User Feedback, and Clustering Techniques in WEKA libraries were applied and implemented. In additions, open source tools like Yii Web Application Framework, Bootstrap Front End Framework and Android Mobile Technology were also applied.Keywords: Recommendation, user profile, data mining, web technology, mobile technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21514458 Customer Need Type Classification Model using Data Mining Techniques for Recommender Systems
Authors: Kyoung-jae Kim
Abstract:
Recommender systems are usually regarded as an important marketing tool in the e-commerce. They use important information about users to facilitate accurate recommendation. The information includes user context such as location, time and interest for personalization of mobile users. We can easily collect information about location and time because mobile devices communicate with the base station of the service provider. However, information about user interest can-t be easily collected because user interest can not be captured automatically without user-s approval process. User interest usually represented as a need. In this study, we classify needs into two types according to prior research. This study investigates the usefulness of data mining techniques for classifying user need type for recommendation systems. We employ several data mining techniques including artificial neural networks, decision trees, case-based reasoning, and multivariate discriminant analysis. Experimental results show that CHAID algorithm outperforms other models for classifying user need type. This study performs McNemar test to examine the statistical significance of the differences of classification results. The results of McNemar test also show that CHAID performs better than the other models with statistical significance.Keywords: Customer need type, Data mining techniques, Recommender system, Personalization, Mobile user.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21464457 Forthcoming Big Data on Smart Buildings and Cities: An Experimental Study on Correlations among Urban Data
Authors: Yu-Mi Song, Sung-Ah Kim, Dongyoun Shin
Abstract:
Cities are complex systems of diverse and inter-tangled activities. These activities and their complex interrelationships create diverse urban phenomena. And such urban phenomena have considerable influences on the lives of citizens. This research aimed to develop a method to reveal the causes and effects among diverse urban elements in order to enable better understanding of urban activities and, therefrom, to make better urban planning strategies. Specifically, this study was conducted to solve a data-recommendation problem found on a Korean public data homepage. First, a correlation analysis was conducted to find the correlations among random urban data. Then, based on the results of that correlation analysis, the weighted data network of each urban data was provided to people. It is expected that the weights of urban data thereby obtained will provide us with insights into cities and show us how diverse urban activities influence each other and induce feedback.
Keywords: Big data, correlation analysis, data recommendation system, urban data network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11054456 Mitigation of Radiation Levels for Base Transceiver Stations based on ITU-T Recommendation K.70
Abstract:
This essay presents applicative methods to reduce human exposure levels in the area around base transceiver stations in a environment with multiple sources based on ITU-T recommendation K.70. An example is presented to understand the mitigation techniques and their results and also to learn how they can be applied, especially in developing countries where there is not much research on non-ionizing radiations.
Keywords: Electromagnetic fields (EMF), human exposure limits, intentional radiator, cumulative exposure ratio, base transceiver station (BTS), radiation levels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27014455 Knowledge Modelling for a Hotel Recommendation System
Authors: B. A. Gobin, R. K. Subramanian
Abstract:
Knowledge modelling, a main activity for the development of Knowledge Based Systems, have no set standards and are mostly done in an ad hoc way. There is a lack of support for the transition from abstract level to implementation. In this paper, a methodology for the development of the knowledge model, which is inspired by both Software and Knowledge Engineering, is proposed. Use of UML which is the de-facto standard for modelling in the software engineering arena is explored for knowledge modelling. The methodology proposed, is used to develop a knowledge model of a knowledge based system for recommending suitable hotels for tourists visiting Mauritius.Keywords: Domain Modelling, Knowledge Based Systems, Knowledge Modelling, UML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37654454 Designing an Integrated Platform for Real-Time Recommendations Sharing among the Aged and People Living with Cancer
Authors: Adekunle O. Afolabi, Pekka Toivanen
Abstract:
The world is expected to experience growth in the number of ageing population, and this will bring about high cost of providing care for these valuable citizens. In addition, many of these live with chronic diseases that come with old age. Providing adequate care in the face of rising costs and dwindling personnel can be challenging. However, advances in technologies and emergence of the Internet of Things are providing a way to address these challenges while improving care giving. This study proposes the integration of recommendation systems into homecare to provide real-time recommendations for effective management of people receiving care at home and those living with chronic diseases. Using the simplified Training Logic Concept, stakeholders and requirements were identified. Specific requirements were gathered from people living with cancer. The solution designed has two components namely home and community, to enhance recommendations sharing for effective care giving. The community component of the design was implemented with the development of a mobile app called Recommendations Sharing Community for Aged and Chronically Ill People (ReSCAP). This component has illustrated the possibility of real-time recommendations, improved recommendations sharing among care receivers and between a physician and care receivers. Full implementation will increase access to health data for better care decision making.
Keywords: Recommendation systems, healthcare, internet of things, real-time, homecare.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9364453 An Activity Based Trajectory Search Approach
Authors: Mohamed Mahmoud Hasan, Hoda M. O. Mokhtar
Abstract:
With the gigantic increment in portable applications use and the spread of positioning and location-aware technologies that we are seeing today, new procedures and methodologies for location-based strategies are required. Location recommendation is one of the highly demanded location-aware applications uniquely with the wide accessibility of social network applications that are location-aware including Facebook check-ins, Foursquare, and others. In this paper, we aim to present a new methodology for location recommendation. The proposed approach coordinates customary spatial traits alongside other essential components including shortest distance, and user interests. We also present another idea namely, "activity trajectory" that represents trajectory that fulfills the set of activities that the user is intrigued to do. The approach dispatched acquaints the related distance value to select trajectory(ies) with minimum cost value (distance) and spatial-area to prune unneeded directions. The proposed calculation utilizes the idea of movement direction to prescribe most comparable N-trajectory(ies) that matches the client's required action design with least voyaging separation. To upgrade the execution of the proposed approach, parallel handling is applied through the employment of a MapReduce based approach. Experiments taking into account genuine information sets were built up and tested for assessing the proposed approach. The exhibited tests indicate how the proposed approach beets different strategies giving better precision and run time.
Keywords: Location-based recommendation, map-reduce, recommendation system, trajectory search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9794452 TRS: System for Recommending Semantic Web Service Composition Approaches
Authors: Sandeep Kumar, R. B. Mishra
Abstract:
A large number of semantic web service composition approaches are developed by the research community and one is more efficient than the other one depending on the particular situation of use. So a close look at the requirements of ones particular situation is necessary to find a suitable approach to use. In this paper, we present a Technique Recommendation System (TRS) which using a classification of state-of-art semantic web service composition approaches, can provide the user of the system with the recommendations regarding the use of service composition approach based on some parameters regarding situation of use. TRS has modular architecture and uses the production-rules for knowledge representation.Keywords: Classification, composition techniques, recommendation system, rule-based, semantic web service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13784451 Fast Approximate Bayesian Contextual Cold Start Learning (FAB-COST)
Authors: Jack R. McKenzie, Peter A. Appleby, Thomas House, Neil Walton
Abstract:
Cold-start is a notoriously difficult problem which can occur in recommendation systems, and arises when there is insufficient information to draw inferences for users or items. To address this challenge, a contextual bandit algorithm – the Fast Approximate Bayesian Contextual Cold Start Learning algorithm (FAB-COST) – is proposed, which is designed to provide improved accuracy compared to the traditionally used Laplace approximation in the logistic contextual bandit, while controlling both algorithmic complexity and computational cost. To this end, FAB-COST uses a combination of two moment projection variational methods: Expectation Propagation (EP), which performs well at the cold start, but becomes slow as the amount of data increases; and Assumed Density Filtering (ADF), which has slower growth of computational cost with data size but requires more data to obtain an acceptable level of accuracy. By switching from EP to ADF when the dataset becomes large, it is able to exploit their complementary strengths. The empirical justification for FAB-COST is presented, and systematically compared to other approaches on simulated data. In a benchmark against the Laplace approximation on real data consisting of over 670, 000 impressions from autotrader.co.uk, FAB-COST demonstrates at one point increase of over 16% in user clicks. On the basis of these results, it is argued that FAB-COST is likely to be an attractive approach to cold-start recommendation systems in a variety of contexts.Keywords: Cold-start, expectation propagation, multi-armed bandits, Thompson sampling, variational inference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5524450 Soccer Video Edition Using a Multimodal Annotation
Authors: Fendri Emna, Ben-Abdallah Hanêne, Ben-Hamadou Abdelmajid
Abstract:
In this paper, we present an approach for soccer video edition using a multimodal annotation. We propose to associate with each video sequence of a soccer match a textual document to be used for further exploitation like search, browsing and abstract edition. The textual document contains video meta data, match meta data, and match data. This document, generated automatically while the video is analyzed, segmented and classified, can be enriched semi automatically according to the user type and/or a specialized recommendation system.Keywords: XML, Multimodal Annotation, recommendation system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14394449 Understanding the Influence on Drivers’ Recommendation and Review-Writing Behavior in the P2P Taxi Service
Authors: Liwen Hou
Abstract:
The booming mobile business has been penetrating the taxi industry worldwide with P2P (peer to peer) taxi services, as an emerging business model, transforming the industry. Parallel with other mobile businesses, member recommendations and online reviews are believed to be very effective with regard to acquiring new users for P2P taxi services. Based on an empirical dataset of the taxi industry in China, this study aims to reveal which factors influence users’ recommendations and review-writing behaviors. Differing from the existing literature, this paper takes the taxi driver’s perspective into consideration and hence selects a group of variables related to the drivers. We built two models to reflect the factors that influence the number of recommendations and reviews posted on the platform (i.e., the app). Our models show that all factors, except the driver’s score, significantly influence the recommendation behavior. Likewise, only one factor, passengers’ bad reviews, is insignificant in generating more drivers’ reviews. In the conclusion, we summarize the findings and limitations of the research.Keywords: Online recommendation, P2P taxi service, review-writing, word of mouth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13784448 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics
Authors: Fabio Fabris, Alex A. Freitas
Abstract:
Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.Keywords: Algorithm recommendation, meta-learning, bioinformatics, hierarchical classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13704447 Development a Recommendation Library System Based On Android Application
Authors: Kunyanuth Kularbphettong, Kunnika Tenprakhon, Pattarapan Roonrakwit
Abstract:
In this paper, we present a recommendation library application on Android system. The objective of this system is to support and advice user to use library resources based on mobile application. We describe the design approaches and functional components of this system. The system was developed based on under association rules, Apriori algorithm. In this project, it was divided the result by the research purposes into 2 parts: developing the Mobile application for online library service and testing and evaluating the system. Questionnaires were used to measure user satisfaction with system usability by specialists and users. The results were satisfactory both specialists and users.
Keywords: Online library, Apriori algorithm, android application, black box.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40134446 Application of a Novel Audio Compression Scheme in Automatic Music Recommendation, Digital Rights Management and Audio Fingerprinting
Authors: Anindya Roy, Goutam Saha
Abstract:
Rapid progress in audio compression technology has contributed to the explosive growth of music available in digital form today. In a reversal of ideas, this work makes use of a recently proposed efficient audio compression scheme to develop three important applications in the context of Music Information Retrieval (MIR) for the effective manipulation of large music databases, namely automatic music recommendation (AMR), digital rights management (DRM) and audio finger-printing for song identification. The performance of these three applications has been evaluated with respect to a database of songs collected from a diverse set of genres.
Keywords: Audio compression, Music Information Retrieval, Digital Rights Management, Audio Fingerprinting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15404445 Destination Decision Model for Cruising Taxis Based on Embedding Model
Authors: Kazuki Kamada, Haruka Yamashita
Abstract:
In Japan, taxi is one of the popular transportations and taxi industry is one of the big businesses. However, in recent years, there has been a difficult problem of reducing the number of taxi drivers. In the taxi business, mainly three passenger catching methods are applied. One style is "cruising" that drivers catches passengers while driving on a road. Second is "waiting" that waits passengers near by the places with many requirements for taxies such as entrances of hospitals, train stations. The third one is "dispatching" that is allocated based on the contact from the taxi company. Above all, the cruising taxi drivers need the experience and intuition for finding passengers, and it is difficult to decide "the destination for cruising". The strong recommendation system for the cruising taxies supports the new drivers to find passengers, and it can be the solution for the decreasing the number of drivers in the taxi industry. In this research, we propose a method of recommending a destination for cruising taxi drivers. On the other hand, as a machine learning technique, the embedding models that embed the high dimensional data to a low dimensional space is widely used for the data analysis, in order to represent the relationship of the meaning between the data clearly. Taxi drivers have their favorite courses based on their experiences, and the courses are different for each driver. We assume that the course of cruising taxies has meaning such as the course for finding business man passengers (go around the business area of the city of go to main stations) and course for finding traveler passengers (go around the sightseeing places or big hotels), and extract the meaning of their destinations. We analyze the cruising history data of taxis based on the embedding model and propose the recommendation system for passengers. Finally, we demonstrate the recommendation of destinations for cruising taxi drivers based on the real-world data analysis using proposing method.Keywords: Taxi industry, decision making, recommendation system, embedding model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 423