Search results for: flow coefficient.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2988

Search results for: flow coefficient.

2928 Study of Natural Convection Heat Transfer of Plate-Fin Heat Sink in a Closed Enclosure

Authors: Han-Taw Chen, Tzu-Hsiang Lin, Chung-Hou Lai

Abstract:

The present study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a rectangular closed enclosure. The inverse method with the finite difference method and the experimental temperature data is applied to determine the approximate heat transfer coefficient. Later, based on the obtained results, the zero-equation turbulence model is used to obtain the heat transfer and fluid flow characteristics between two fins. T0 validate the accuracy of the results obtained, the comparison of the heat transfer coefficient is made. The obtained temperature at selected measurement locations of the fin is also compared with experimental data. The effect of the height of the rectangular enclosure on the obtained results is discussed.

Keywords: Inverse method, FLUENT, Plate-fin heat sink, Heat transfer characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
2927 The Comparative Analysis of Two Typical Fluidic Thrust Vectoring Exhaust Nozzles on Aerodynamic Characteristics

Authors: Xin H. Zou, Qiang Wang

Abstract:

The comparisons of two typical fluidic thrust vectoring exhaust nozzles including two-dimensional(2-D) nozzle and axisymmetric nozzle on aerodynamic characteristics was presented by numerical simulation. The results show: the thrust vector angles increased with the increasing secondary flow but decreased with the nozzle pressure ratio (NPR) increasing. With the same secondary flow and NPR, the thrust vector angles of 2-D nozzle were higher than the axisymmetric nozzle-s. So with the lower NPR and more secondary weight flow, the much higher thrust vector angle was caused by 2-D fluidic nozzle. And with the higher NPR and less secondary weight flow, there was not much difference in angular dimension between two nozzles.

Keywords: Aerodynamic characteristics, fluidic nozzle, vector angle, thrust coefficient comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
2926 Oxygen Transfer by Multiple Inclined Plunging Water Jets

Authors: Surinder Deswal

Abstract:

There has been a growing interest in the oxygenation by plunging water jets in the last few years due to their inherent advantages, like energy-efficient, low operation cost, etc. Though a lot of work has been reported on the oxygen-transfer by single plunging water jets but very few studies have been carried out using multiple plunging jets. In this paper, volumetric oxygen-transfer coefficient and oxygen-transfer efficiency has been studied experimentally for multiple inclined plunging jets (having jet plunge angle of 60 0 ) in a pool of water for different configurations, in terms of varying number of jets and jet diameters. This research suggests that the volumetric oxygen-transfer coefficient and oxygentransfer efficiency of the multiple inclined plunging jets for air-water system are significantly higher than those of a single vertical as well as inclined plunging jet for same flow area and other similar conditions. The study also reveals that the oxygen-transfer increase with increase in number of multiple jets under similar conditions, which will be most advantageous and energy-efficient in practical situations when large volumes of wastewaters are to be treated. A relationship between volumetric oxygen-transfer coefficient and jet parameters is also proposed. The suggested relationship predicts the volumetric oxygen-transfer coefficient for multiple inclined plunging jet(s) within a scatter of ±15 percent. The relationship will be quite useful in scale-up and in deciding optimum configuration of multiple inclined plunging jet aeration system.

Keywords: Multiple inclined plunging jets, jet plunge angle, volumetric oxygen-transfer coefficient, oxygen-transfer efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
2925 Computer-Aided Analysis of Flow in a Rotating Single Disk

Authors: Mohammad Shanbghazani, Vahid Heidarpour, Iraj Mirzaee

Abstract:

In this study a two dimensional axisymmetric, steady state and incompressible laminar flow in a rotating single disk is numerically investigated. The finite volume method is used for solving the momentum equations. The numerical model and results are validated by comparing it to previously reported experimental data for velocities, angles and moment coefficients. It is demonstrated that increasing the axial distance increases the value of axial velocity and vice versa for tangential and total velocities. However, the maximum value of nondimensional radial velocity occurs near the disk wall. It is also found that with increase rotational Reynolds number, moment coefficient decreases.

Keywords: Rotating disk, Laminar flow, Numerical, Momentum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
2924 Numerical Simulations of Cross-Flow around Four Square Cylinders in an In-Line Rectangular Configuration

Authors: Shams Ul Islam, Chao Ying Zhou, Farooq Ahmad

Abstract:

A two-dimensional numerical simulation of crossflow around four cylinders in an in-line rectangular configuration is studied by using the lattice Boltzmann method (LBM). Special attention is paid to the effect of the spacing between the cylinders. The Reynolds number ( Re ) is chosen to be e 100 R = and the spacing ratio L / D is set at 0.5, 1.5, 2.5, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 and 10.0. Results show that, as in the case of four cylinders in an inline rectangular configuration , flow fields show four different features depending on the spacing (single square cylinder, stable shielding flow, wiggling shielding flow and a vortex shedding flow) are observed in this study. The effects of spacing ratio on physical quantities such as mean drag coefficient, Strouhal number and rootmean- square value of the drag and lift coefficients are also presented. There is more than one shedding frequency at small spacing ratios. The mean drag coefficients for downstream cylinders are less than that of the single cylinder for all spacing ratios. The present results using the LBM are compared with some existing experimental data and numerical studies. The comparison shows that the LBM can capture the characteristics of the bluff body flow reasonably well and is a good tool for bluff body flow studies.

Keywords: Four square cylinders, Lattice Boltzmann method, rectangular configuration, spacing ratios, vortex shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2660
2923 Numerical Study of the Influence of the Primary Stream Pressure on the Performance of the Ejector Refrigeration System Based on Heat Exchanger Modeling

Authors: Elhameh Narimani, Mikhail Sorin, Philippe Micheau, Hakim Nesreddine

Abstract:

Numerical models of the heat exchangers in ejector refrigeration system (ERS) were developed and validated with the experimental data. The models were based on the switched heat exchangers model using the moving boundary method, which were capable of estimating the zones’ lengths, the outlet temperatures of both sides and the heat loads at various experimental points. The developed models were utilized to investigate the influence of the primary flow pressure on the performance of an R245fa ERS based on its coefficient of performance (COP) and exergy efficiency. It was illustrated numerically and proved experimentally that increasing the primary flow pressure slightly reduces the COP while the exergy efficiency goes through a maximum before decreasing.

Keywords: Coefficient of performance, ejector refrigeration system, exergy efficiency, heat exchangers modeling, moving boundary method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 507
2922 Thermodynamic Performance of a Combined Power and Ejector Refrigeration Cycle

Authors: Hyung Jong Ko, Kyoung Hoon Kim

Abstract:

In this study thermodynamic performance analysis of a combined organic Rankine cycle and ejector refrigeration cycle is carried out for use of low-grade heat source in the form of sensible energy. Special attention is paid to the effects of system parameters including the turbine inlet temperature and turbine inlet pressure on the characteristics of the system such as ratios of mass flow rate, net work production, and refrigeration capacity as well as the coefficient of performance and exergy efficiency of the system. Results show that for a given source the coefficient of performance increases with increasing of the turbine inlet pressure. However, the exergy efficiency has an optimal condition with respect to the turbine inlet pressure.

Keywords: Coefficient of performance, ejector refrigeration cycle, exergy efficiency, low-grade energy, organic rankine cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
2921 Soil Moisture Regulation in Irrigated Agriculture

Authors: I. Kruashvili, I. Inashvili, K. Bziava, M. Lomishvili

Abstract:

Seepage capillary anomalies in the active layer of soil, related to the soil water movement, often cause variation of soil hydrophysical properties and become one of the main objectives of the hydroecology. It is necessary to mention that all existing equations for computing the seepage flow particularly from soil channels, through dams, bulkheads, and foundations of hydraulic engineering structures are preferable based on the linear seepage law. Regarding the existing beliefs, anomalous seepage is based on postulates according to which the fluid in free volume is characterized by resistance against shear deformation and is presented in the form of initial gradient. According to the above-mentioned information, we have determined: Equation to calculate seepage coefficient when the velocity of transition flow is equal to seepage flow velocity; by means of power function, equations for the calculation of average and maximum velocities of seepage flow have been derived; taking into consideration the fluid continuity condition, average velocity for calculation of average velocity in capillary tube has been received.

Keywords: Seepage, soil, velocity, water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 968
2920 Incident Shock Wave Interaction with an Axisymmetric Cone Body Placed in Shock Tube

Authors: Rabah Haoui

Abstract:

This work presents a numerical simulation of the interaction of an incident shock wave propagates from the left to the right with a cone placed in a tube at shock. The Mathematical model is based on a non stationary, viscous and axisymmetric flow. The Discretization of the Navier-stokes equations is carried out by the finite volume method in the integral form along with the Flux Vector Splitting method of Van Leer. Here, adequate combination of time stepping parameter, CFL coefficient and mesh size level is selected to ensure numerical convergence. The numerical simulation considers a shock tube filled with air. The incident shock wave propagates to the right with a determined Mach number and crosses the cone by leaving behind it a stationary detached shock wave in front of the nose cone. This type of interaction is observed according to the time of flow.

Keywords: Supersonic flow, viscous flow, finite volume, cone body

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
2919 Sensitivity of the SHARC Model to Variations of Manning Coefficient and Effect of “n“ on the Sediment Materials Entry into the Eastern Water intake- A Case in the Dez Diversion Weir in Iran

Authors: M.R.Mansoujian, A.Rohani, N.Hedayat , M.Qamari, M. Osroosh

Abstract:

Permanent rivers are the main sources of renewable water supply for the croplands under the irrigation and drainage schemes. They are also the major source of sediment loads transport into the storage reservoirs of the hydro-electrical dams, diversion weirs and regulating dams. Sedimentation process results from soil erosion which is related to poor watershed management and human intervention ion in the hydraulic regime of the rivers. These could change the hydraulic behavior and as such, leads to riverbed and river bank scouring, the consequences of which would be sediment load transport into the dams and therefore reducing the flow discharge in water intakes. The present paper investigate sedimentation process by varying the Manning coefficient "n" by using the SHARC software along the watercourse in the Dez River. Results indicated that the optimum "n" within that river range is 0.0315 at which quantity minimum sediment loads are transported into the Eastern intake. Comparison of the model results with those obtained by those from the SSIIM software within the same river reach showed a very close proximity between them. This suggests a relative accuracy with which the model can simulate the hydraulic flow characteristics and therefore its suitability as a powerful analytical tool for project feasibility studies and project implementation.

Keywords: Sediment transport, Manning coefficient, Eastern Intake, SHARC, Dez River.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
2918 A New Correlation for Overall Sherwood Number in Packed Liquid-Liquid Extraction Column

Authors: S. GhaffariTooran, H. Abolghasemi, H. Bahmanyar, M. Esmaeili, A. Safari

Abstract:

Using plug flow model in conjunction with experimental solute concentration profiles, overall volumetric mass transfer coefficient based on continuous phase (Koca), in a packed liquid-liquid extraction column has been optimized. Number of 12 experiments has been done using standard system of water/acid acetic/toluene in a 6 cm diameter, 120 cm height column. Thorough consideration of influencing parameters we intended to correlate dimensionless parameters in term of overall Sherwood number which has an acceptable average error of about 15.8%.

Keywords: Packed column, mass transfer coefficient, solvent extraction, Sherwood number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101
2917 Mixed Convection Boundary Layer Flows Induced by a Permeable Continuous Surface Stretched with Prescribed Skin Friction

Authors: Mohamed Ali

Abstract:

The boundary layer flow and heat transfer on a stretched surface moving with prescribed skin friction is studied for permeable surface. The surface temperature is assumed to vary inversely with the vertical direction x for n = -1. The skin friction at the surface scales as (x-1/2) at m = 0. The constants m and n are the indices of the power law velocity and temperature exponent respectively. Similarity solutions are obtained for the boundary layer equations subject to power law temperature and velocity variation. The effect of various governing parameters, such as the buoyancy parameter λ and the suction/injection parameter fw for air (Pr = 0.72) are studied. The choice of n and m ensures that the used similarity solutions are x independent. The results show that, assisting flow (λ > 0) enhancing the heat transfer coefficient along the surface for any constant value of fw. Furthermore, injection increases the heat transfer coefficient but suction reduces it at constant λ.

Keywords: Stretching surface, Boundary layers, Prescribed skin friction, Suction or injection, similarity solutions, buoyancy effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
2916 Effects of Solar Absorption Coefficient of External Wall on Building Energy Consumption

Authors: Jian Yao, Chengwen Yan

Abstract:

The principle concern of this paper is to determine the impact of solar absorption coefficient of external wall on building energy consumption. Simulations were carried out on a typical residential building by using the simulation Toolkit DeST-h. Results show that reducing solar absorption coefficient leads to a great reduction in building energy consumption and thus light-colored materials are suitable.

Keywords: Solar absorption coefficient, External wall, Buildingenergy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4368
2915 Bending Gradient Coefficient Correction for I-Beams

Authors: H. R. Kazemi Nia, A. Yeganeh Fallah

Abstract:

Without uncertainty by applying external loads on beams, bending is created. The created bending in I-beams, puts one of the flanges in tension and the other one in compression. With increasing of bending, compression flange buckled and beam in out of its plane direction twisted, this twisting well-known as Lateral Torsional Buckling. Providing bending moment varieties along the beam, the critical moment is greater than the case its under pure bending. In other words, the value of bending gradient coefficient is always greater than unite. In this article by the use of " ANSYS 10.0" software near 80 3-D finite element models developed for the propose of analyzing beams` lateral torsional buckling and surveying influence of slenderness on beams' bending gradient coefficient. Results show that, presented Cb coefficient via AISC is not correct for some of beams and value of this coefficient is smaller than what proposed by AISC. Therefore instead of using a constant Cb for each case of loading , a function with two criterion for calculation of Cb coefficient for some cases is proposed.

Keywords: Beams critical moment, Bending Gradient Coefficient, finite element, Lateral Torsional Buckling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4466
2914 Measurement of Reverse Flow Generated at Cold Exit of Vortex Tube

Authors: Mohd Hazwan bin Yusof, Hiroshi Katanoda

Abstract:

In order to clarify the structure of the cold flow discharged from the vortex tube (VT), the pressure of the cold flow was measured, and a simple flow visualization technique using a 0.75mm-diameter needle and an oily paint is made to study the reverse flow at the cold exit. It is clear that a negative pressure and positive pressure region exist at a certain pressure and cold fraction area, and that a reverse flow is observed in the negative pressure region.

Keywords: Flow visualization, Pressure measurement, Reverse flow, Vortex tube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
2913 Numerical Study of Microscale Gas Flow-Separation Using Explicit Finite Volume Method

Authors: A. Chaudhuri, C. Guha, T. K. Dutta

Abstract:

Pressure driven microscale gas flow-separation has been investigated by solving the compressible Navier-Stokes (NS) system of equations. A two dimensional explicit finite volume (FV) compressible flow solver has been developed using modified advection upwind splitting methods (AUSM+) with no-slip/first order Maxwell-s velocity slip conditions to predict the flowseparation behavior in microdimensions. The effects of scale-factor of the flow geometry and gas species on the microscale gas flowseparation have been studied in this work. The intensity of flowseparation gets reduced with the decrease in scale of the flow geometry. In reduced dimension, flow-separation may not at all be present under similar flow conditions compared to the larger flow geometry. The flow-separation patterns greatly depend on the properties of the medium under similar flow conditions.

Keywords: AUSM+, FVM, Flow-separation, Microflow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
2912 Hydrological Method to Evaluate Environmental Flow (Case Study: Gharasou River, Ardabil)

Authors: Mehdi Fuladipanah, Mehdi Jorabloo

Abstract:

Water flow management is one of the most important parts of river engineering. Non-uniformity distribution of rainfall and various flow demand with unreasonable flow management will be caused destroyed of river ecosystem. Then, it is very serious to determine ecosystem flow requirement. In this paper, Flow duration curve indices method which has hydrological based was used to evaluate environmental flow in Gharasou River, Ardabil, Iran. Using flow duration curve, Q90 and Q95 for different return periods were calculated. Their magnitude were determined as 1-day, 3-day, 7-day and 30 day. According the second method, hydraulic alteration indices often had low and medium range. In order to maintain river at an acceptable ecological condition, minimum daily discharge of index Q95 is 0.7 m3.s-1.

Keywords: Ardabil, Environmental flow, Flow Duration Curve, Gharasou River.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236
2911 File Format of Flow Chart Simulation Software - CFlow

Authors: Syahanim Mohd Salleh, Zaihosnita Hood, Hairulliza Mohd Judi, Marini Abu Bakar

Abstract:

CFlow is a flow chart software, it contains facilities to draw and evaluate a flow chart. A flow chart evaluation applies a simulation method to enable presentation of work flow in a flow chart solution. Flow chart simulation of CFlow is executed by manipulating the CFlow data file which is saved in a graphical vector format. These text-based data are organised by using a data classification technic based on a Library classification-scheme. This paper describes the file format for flow chart simulation software of CFlow.

Keywords: CFlow, flow chart, file format.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2490
2910 Computational Investigation of Secondary Flow Losses in Linear Turbine Cascade by Modified Leading Edge Fence

Authors: K. N. Kiran, S. Anish

Abstract:

It is well known that secondary flow loses account about one third of the total loss in any axial turbine. Modern gas turbine height is smaller and have longer chord length, which might lead to increase in secondary flow. In order to improve the efficiency of the turbine, it is important to understand the behavior of secondary flow and device mechanisms to curtail these losses. The objective of the present work is to understand the effect of a stream wise end-wall fence on the aerodynamics of a linear turbine cascade. The study is carried out computationally by using commercial software ANSYS CFX. The effect of end-wall on the flow field are calculated based on RANS simulation by using SST transition turbulence model. Durham cascade which is similar to high-pressure axial flow turbine for simulation is used. The aim of fencing in blade passage is to get the maximum benefit from flow deviation and destroying the passage vortex in terms of loss reduction. It is observed that, for the present analysis, fence in the blade passage helps reducing the strength of horseshoe vortex and is capable of restraining the flow along the blade passage. Fence in the blade passage helps in reducing the under turning by 70 in comparison with base case. Fence on end-wall is effective in preventing the movement of pressure side leg of horseshoe vortex and helps in breaking the passage vortex. Computations are carried for different fence height whose curvature is different from the blade camber. The optimum fence geometry and location reduces the loss coefficient by 15.6% in comparison with base case.

Keywords: Boundary layer fence, horseshoe vortex, linear cascade, passage vortex, secondary flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
2909 CFD Simulation the Thermal-Hydraulic Characteristic within Fuel Rod Bundle near Grid Spacers

Authors: David Lávicka

Abstract:

This paper looks into detailed investigation of thermal-hydraulic characteristics of the flow field in a fuel rod model, especially near the spacer. The area investigate represents a source of information on the velocity flow field, vortex, and on the amount of heat transfer into the coolant all of which are critical for the design and improvement of the fuel rod in nuclear power plants. The flow field investigation uses three-dimensional Computational Fluid Dynamics (CFD) with the Reynolds stresses turbulence model (RSM). The fuel rod model incorporates a vertical annular channel where three different shapes of spacers are used; each spacer shape is addressed individually. These spacers are mutually compared in consideration of heat transfer capabilities between the coolant and the fuel rod model. The results are complemented with the calculated heat transfer coefficient in the location of the spacer and along the stainless-steel pipe.

Keywords: CFD, fuel rod model, heat transfer, spacer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
2908 Numerical Investigation of Two-dimensional Boundary Layer Flow Over a Moving Surface

Authors: Mahmoud Zarrini, R.N. Pralhad

Abstract:

In this chapter, we have studied Variation of velocity in incompressible fluid over a moving surface. The boundary layer equations are on a fixed or continuously moving flat plate in the same or opposite direction to the free stream with suction and injection. The boundary layer equations are transferred from partial differential equations to ordinary differential equations. Numerical solutions are obtained by using Runge-Kutta and Shooting methods. We have found numerical solution to velocity and skin friction coefficient.

Keywords: Boundary layer, continuously moving surface, shooting method, skin friction coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
2907 Oil Displacement by Water in Hauterivian Sandstone Reservoir of Kashkari Oil Field

Authors: A. J. Nazari, S. Honma

Abstract:

This paper evaluates oil displacement by water in Hauterivian sandstone reservoir of Kashkari oil field in North of Afghanistan. The core samples of this oil field were taken out from well No-21st, and the relative permeability and fractional flow are analyzed. Steady state flow laboratory experiments are performed to empirically obtain the fractional flow curves and relative permeability in different water saturation ratio. The relative permeability represents the simultaneous flow behavior in the reservoir. The fractional flow approach describes the individual phases as fractional of the total flow. The fractional flow curve interprets oil displacement by water, and from the tangent of fractional flow curve can find out the average saturation behind the water front flow saturation. Therefore, relative permeability and fractional flow curves are suitable for describing the displacement of oil by water in a petroleum reservoir. The effects of irreducible water saturation, residual oil saturation on the displaceable amount of oil are investigated through Buckley-Leveret analysis.

Keywords: Fractional flow, oil displacement, relative permeability, simultaneously flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1264
2906 Estimating the Flow Velocity Using Flow Generated Sound

Authors: Saeed Hosseini, Ali Reza Tahavvor

Abstract:

Sound processing is one the subjects that newly attracts a lot of researchers. It is efficient and usually less expensive than other methods. In this paper the flow generated sound is used to estimate the flow speed of free flows. Many sound samples are gathered. After analyzing the data, a parameter named wave power is chosen. For all samples the wave power is calculated and averaged for each flow speed. A curve is fitted to the averaged data and a correlation between the wave power and flow speed is found. Test data are used to validate the method and errors for all test data were under 10 percent. The speed of the flow can be estimated by calculating the wave power of the flow generated sound and using the proposed correlation.

Keywords: Flow generated sound, sound processing, speed, wave power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
2905 Numerical Simulation of Minimum Distance Jet Impingement Heat Transfer

Authors: Aman Agarwal, Georg Klepp

Abstract:

Impinging jets are used in various industrial areas as a cooling and drying technique. The current research is concerned with the means of improving the heat transfer for configurations with a minimum distance of the nozzle to the impingement surface. The impingement heat transfer is described using numerical methods over a wide range of parameters for an array of planar jets. These parameters include varying jet flow speed, width of nozzle, distance of nozzle, angle of the jet flow, velocity and geometry of the impingement surface. Normal pressure and shear stress are computed as additional parameters. Using dimensionless characteristic numbers the parameters and the results are correlated to gain generalized equations. The results demonstrate the effect of the investigated parameters on the flow.

Keywords: Heat Transfer Coefficient, Minimum distance jet impingement, Numerical simulation, Dimensionless coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317
2904 Mean Velocity Modeling of Open-Channel Flow with Submerged Rigid Vegetation

Authors: M. Morri, A. Soualmia, P. Belleudy

Abstract:

Vegetation affects the mean and turbulent flow structure. It may increase flood risks and sediment transport. Therefore, it is important to develop analytical approaches for the bed shear stress on vegetated bed, to predict resistance caused by vegetation. In the recent years, experimental and numerical models have both been developed to model the effects of submerged vegetation on open-channel flow. In this paper, different analytic models are compared and tested using the criteria of deviation, to explore their capacity for predicting the mean velocity and select the suitable one that will be applied in real case of rivers. The comparison between the measured data in vegetated flume and simulated mean velocities indicated, a good performance, in the case of rigid vegetation, whereas, Huthoff model shows the best agreement with a high coefficient of determination (R2=80%) and the smallest error in the prediction of the average velocities.

Keywords: Analytic Models, Comparison, Mean Velocity, Vegetation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2502
2903 Automatic Discrimimation of the Modes of Permanent Flow of a Liquid Simulating Blood

Authors: Malika.D Kedir-Talha, Mohamed Mehenni

Abstract:

In order to be able to automatically differentiate between two modes of permanent flow of a liquid simulating blood, it was imperative to put together a data bank. Thus, the acquisition of the various amplitude spectra of the Doppler signal of this liquid in laminar flow and other spectra in turbulent flow enabled us to establish an automatic difference between the two modes. According to the number of parameters and their nature, a comparative study allowed us to choose the best classifier.

Keywords: Doppler spectrum, flow mode, pattern recognition, permanent flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
2902 Investigation of Phytoextraction Coefficient Different Combination of Heavy Metals in Barley and Alfalfa

Authors: F. Zaefarian, M. Rezvani, F. Rejali, M.R. Ardakani

Abstract:

Two seperate experiments by barley and alfalfa were conducted to a 2×8 factorial completely randomised design, with four replicates. Factors were inoculation (M) with Gomus mosseae or uninoculation (M0) and seven levels of contaminants (Co, Cd, Pb and combinations) plus an uncontaminated control treatment (C). Heavy metals in plant tissues and soil were quantified by Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) (Variant- Liberty 150AX Turbo). Phytoextraction coefficient of contaminants calculated by concentration of heavy metals in the shoot (mgkg-1) / concentration of heavy metals in soil (mgkg-1). In the barley, the highest rate of phytoextraction coefficient of Pb, Cd and Co was in M0Pb, M0PbCoCd and MCo, respectively (P<0.05). In the alfalfa plants, the highest phytoextraction coefficient of Cd, Co and Pb obtained in the treatments M0CoCd, M0Co and M0PbCd, respectively.

Keywords: phytoextraction coefficient, heavy metals, barley, alfalfa

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
2901 Numerical Study of Heat Transfer and Laminar Flow over a Backward Facing Step with and without Obstacle

Authors: Hussein Togun, Tuqa Abdulrazzaq, S. N. Kazi, A. Badarudin, M. K. A. Ariffin, M. N. M. Zubir

Abstract:

Heat transfer and laminar fluid flow over backward facing step with and without obstacle numerically studied in this paper. The finite volume method adopted to solve continuity, momentum and energy equations in two dimensions. Backward facing step without obstacle and with different dimension of obstacle were presented. The step height and expansion ratio of channel were 4.8mm and 2 respectively, the range of Reynolds number varied from 75 to 225, constant heat flux subjected on downstream of wall was 2000W/m2, and length of obstacle was 1.5, 3, and 4.5mm with width 1.5mm. The separation length noticed increase with increase Reynolds number and height of obstacle. The result shows increase of heat transfer coefficient for backward facing step with obstacle in compared to those without obstacle. The maximum enhancement of heat transfer observed at 4.5mm of height obstacle due to increase recirculation flow after the obstacle in addition that at backward. Streamline of velocity showing the increase of recirculation region with used obstacle in compared without obstacle and highest recirculation region observed at obstacle height 4.5mm. The amount of enhancement heat transfer was varied between 3-5% compared to backward without obstacle.

Keywords: Separation flow, Backward facing step, Heat transfer, Laminar flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4262
2900 Power Performance Improvement of 500W Vertical Axis Wind Turbine with Salient Design Parameters

Authors: Young-Tae Lee, Hee-Chang Lim

Abstract:

This paper presents the performance characteristics of Darrieus-type vertical axis wind turbine (VAWT) with NACA airfoil blades. The performance of Darrieus-type VAWT can be characterized by torque and power. There are various parameters affecting the performance such as chord length, helical angle, pitch angle and rotor diameter. To estimate the optimum shape of Darrieustype wind turbine in accordance with various design parameters, we examined aerodynamic characteristics and separated flow occurring in the vicinity of blade, interaction between flow and blade, and torque and power characteristics derived from it. For flow analysis, flow variations were investigated based on the unsteady RANS (Reynolds-averaged Navier-Stokes) equation. Sliding mesh algorithm was employed in order to consider rotational effect of blade. To obtain more realistic results we conducted experiment and numerical analysis at the same time for three-dimensional shape. In addition, several parameters (chord length, rotor diameter, pitch angle, and helical angle) were considered to find out optimum shape design and characteristics of interaction with ambient flow. Since the NACA airfoil used in this study showed significant changes in magnitude of lift and drag depending on an angle of attack, the rotor with low drag, long cord length and short diameter shows high power coefficient in low tip speed ratio (TSR) range. On the contrary, in high TSR range, drag becomes high. Hence, the short-chord and long-diameter rotor produces high power coefficient. When a pitch angle at which airfoil directs toward inside equals to -2° and helical angle equals to 0°, Darrieus-type VAWT generates maximum power.

Keywords: Darrieus wind turbine, VAWT, NACA airfoil, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2919
2899 Influence of a Pulsatile Electroosmotic Flow on the Dispersivity of a Non-Reactive Solute through a Microcapillary

Authors: Jaime Muñoz, José Arcos, Oscar Bautista Federico Méndez

Abstract:

The influence of a pulsatile electroosmotic flow (PEOF) at the rate of spread, or dispersivity, for a non-reactive solute released in a microcapillary with slippage at the boundary wall (modeled by the Navier-slip condition) is theoretically analyzed. Based on the flow velocity field developed under such conditions, the present study implements an analytical scheme of scaling known as the Theory of Homogenization, in order to obtain a mathematical expression for the dispersivity, valid at a large time scale where the initial transients have vanished and the solute spreads under the Taylor dispersion influence. Our results show the dispersivity is a function of a slip coefficient, the amplitude of the imposed electric field, the Debye length and the angular Reynolds number, highlighting the importance of the latter as an enhancement/detrimental factor on the dispersivity, which allows to promote the PEOF as a strong candidate for chemical species separation at lab-on-a-chip devices.

Keywords: Dispersivity, microcapillary, Navier-slip condition, pulsatile electroosmotic flow, Taylor dispersion, Theory of Homogenization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 600