Search results for: single element
65 An Experimental Investigation of Petrodiesel and Cotton Seed Biodiesel (CSOME) in Diesel Engine
Authors: P. V. Rao, Jaedaa Abdulhamid
Abstract:
Biodiesel is widely investigated to solve the twin problem of depletion of fossil fuel and environmental degradation. The main objective of the present work is to compare performance, emissions, and combustion characteristics of biodiesel derived from cotton seed oil in a diesel engine with the baseline results of petrodiesel fuel. Tests have been conducted on a single cylinder, four stroke CIDI diesel engine with a speed of 1500 rpm and a fixed compression ratio of 17.5 at different load conditions. The performance parameters evaluated include brake thermal efficiency, brake specific fuel consumption, brake power, indicated mean effective pressure, mechanical efficiency, and exhaust gas temperature. Regarding combustion study, cylinder pressure, rate of pressure rise, net heat release rate, cumulative heat release, mean gas temperature, mass fraction burned, and fuel line pressure were evaluated. The emission parameters such as carbon monoxide, carbon dioxide, un-burnt hydrocarbon, oxides of nitrogen, and smoke opacity were also measured by a smoke meter and an exhaust gas analyzer and compared with baseline results. The brake thermal efficiency of cotton seed oil methyl ester (CSOME) was lower than that of petrodiesel and brake specific fuel consumption was found to be higher. However, biodiesel resulted in the reduction of carbon dioxide, un-burnt hydrocarbon, and smoke opacity at the expense of nitrogen oxides. Carbon monoxide emissions for biodiesel was higher at maximum output power. It has been found that the combustion characteristics of cotton seed oil methyl ester closely followed those of standard petrodiesel. The experimental results suggested that biodiesel derived from cotton seed oil could be used as a good substitute to petrodiesel fuel in a conventional diesel without any modification.Keywords: Diesel engine, Cotton seed, Biodiesel, performance, combustion, emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 134064 Self-Sensing Concrete Nanocomposites for Smart Structures
Authors: A. D'Alessandro, F. Ubertini, A. L. Materazzi
Abstract:
In the field of civil engineering, Structural Health Monitoring is a topic of growing interest. Effective monitoring instruments permit the control of the working conditions of structures and infrastructures, through the identification of behavioral anomalies due to incipient damages, especially in areas of high environmental hazards as earthquakes. While traditional sensors can be applied only in a limited number of points, providing a partial information for a structural diagnosis, novel transducers may allow a diffuse sensing. Thanks to the new tools and materials provided by nanotechnology, new types of multifunctional sensors are developing in the scientific panorama. In particular, cement-matrix composite materials capable of diagnosing their own state of strain and tension, could be originated by the addition of specific conductive nanofillers. Because of the nature of the material they are made of, these new cementitious nano-modified transducers can be inserted within the concrete elements, transforming the same structures in sets of widespread sensors. This paper is aimed at presenting the results of a research about a new self-sensing nanocomposite and about the implementation of smart sensors for Structural Health Monitoring. The developed nanocomposite has been obtained by inserting multi walled carbon nanotubes within a cementitious matrix. The insertion of such conductive carbon nanofillers provides the base material with piezoresistive characteristics and peculiar sensitivity to mechanical modifications. The self-sensing ability is achieved by correlating the variation of the external stress or strain with the variation of some electrical properties, such as the electrical resistance or conductivity. Through the measurement of such electrical characteristics, the performance and the working conditions of an element or a structure can be monitored. Among conductive carbon nanofillers, carbon nanotubes seem to be particularly promising for the realization of self-sensing cement-matrix materials. Some issues related to the nanofiller dispersion or to the influence of the nano-inclusions amount in the cement matrix need to be carefully investigated: the strain sensitivity of the resulting sensors is influenced by such factors. This work analyzes the dispersion of the carbon nanofillers, the physical properties of the fresh dough, the electrical properties of the hardened composites and the sensing properties of the realized sensors. The experimental campaign focuses specifically on their dynamic characterization and their applicability to the monitoring of full-scale elements. The results of the electromechanical tests with both slow varying and dynamic loads show that the developed nanocomposite sensors can be effectively used for the health monitoring of structures.
Keywords: Carbon nanotubes, self-sensing nanocomposites, smart cement-matrix sensors, structural health monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 345863 Calcium Biochemical Indicators in a Group of Schoolchildren with Low Socioeconomic Status from Barranquilla, Colombia
Authors: Carmiña L. Vargas-Zapata, María A. Conde-Sarmiento, Maria Consuelo Maestre-Vargas
Abstract:
Calcium is an essential element for good growth and development of the organism, and its requirement is increased at school age. Low socio-economic populations of developing countries such as Colombia may have food deficiency of this mineral in schoolchildren that could be reflected in calcium biochemical indicators, bone alterations and anthropometric indicators. The objective of this investigation was to evaluate some calcium biochemical indicators in a group of schoolchildren of low socioeconomic level from Barranquilla city and to correlate with body mass index. 60 schoolchildren aged 7 to 15 years were selected from Jesus’s Heart Educational Institution in Barranquilla-Atlántico, apparently healthy, without suffering from infectious or gastrointestinal diseases, without habits of drinking alcohol or smoking another hallucinogenic substance and without taking supplementation with calcium in the last six months or another substance that compromises bone metabolism. The research was approved by the ethics committee at Universidad del Atlántico. The selected children were invited to donate a blood and urine sample in a fasting time of 12 hours, the serum was separated by centrifugation and frozen at ˗20 ℃ until analyzed and the same was done with the urine sample. On the day of the biological collections, the weight and height of the students were measured to determine the nutritional status by BMI using the WHO tables. Calcium concentrations in serum and urine (SCa, UCa), alkaline phosphatase activity total and of bone origin (SAPT, SBAP) and urinary creatinine (UCr) were determined by spectrophotometric methods using commercial kits. Osteocalcin and Cross-linked N-telopeptides of type I collagen (NTx-1) in serum were measured with an enzyme-linked inmunosorbent assay. For statistical analysis the Statgraphics software Centurium XVII was used. 63% (n = 38) and 37% (n = 22) of the participants were male and female, respectively. 78% (n = 47), 5% (n = 3) and 17% (n = 10) had a normal, malnutrition and high nutritional status, respectively. The averages of evaluated indicators levels were (mean ± SD): 9.50 ± 1.06 mg/dL for SCa; 181.3 ± 64.3 U/L for SAPT, 143.8 ± 73.9 U/L for SBAP; 9.0 ± 3.48 ng/mL for osteocalcin and 101.3 ± 12.8 ng/mL for NTx-1. UCa level was 12.8 ± 7.7 mg/dL that adjusted with creatinine ranged from 0.005 to 0.395 mg/mg. Considering serum calcium values, approximately 7% of school children were hypocalcemic, 16% hypercalcemic and 77% normocalcemic. The indicators evaluated did not correlate with the BMI. Low values were observed in calcium urinary excretion and high in NTx-1, suggesting that mechanisms such as increase in renal retention of calcium and in bone remodeling may be contributing to calcium homeostasis.
Keywords: Calcium, calcium biochemical, indicators, school children, low socioeconomic status.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53362 International E-Learning for Assuring Ergonomic Working Conditions of Orthopaedic Surgeons: First Research Outcomes from Train4OrthoMIS
Authors: J. Bartnicka, J. A. Piedrabuena, R. Portilla, L. Moyano - Cuevas, J. B. Pagador, P. Augat, J. Tokarczyk, F. M. Sánchez Margallo
Abstract:
Orthopaedic surgeries are characterized by a high degree of complexity. This is reflected by four main groups of resources: 1) surgical team which is consisted of people with different competencies, educational backgrounds and positions; 2) information and knowledge about medical and technical aspects of surgery; 3) medical equipment including surgical tools and materials; 4) space infrastructure which is important from an operating room layout point of view. These all components must be integrated and build a homogeneous organism for achieving an efficient and ergonomically correct surgical workflow. Taking this as a background, there was formulated a concept of international project, called “Online Vocational Training course on ergonomics for orthopaedic Minimally Invasive” (Train4OrthoMIS), which aim is to develop an e-learning tool available in 4 languages (English, Spanish, Polish and German). In the article, there is presented the first project research outcomes focused on three aspects: 1) ergonomic needs of surgeons who work in hospitals around different European countries, 2) the concept of structure of e-learning course, 3) the definition of tools and methods for knowledge assessment adjusted to users’ expectation. The methodology was based on the expert panels and two types of surveys: 1) on training needs, 2) on evaluation and self-assessment preferences. The major findings of the study allowed describing the subjects of four training modules and learning sessions. According to peoples’ opinion there were defined most expected test methods which are single choice test and right after quizzes: “True or False” and “Link elements” The first project outcomes confirmed the necessity of creating a universal training tool for orthopaedic surgeons regardless of the country in which they work. Because of limited time that surgeons have, the e-learning course should be strictly adjusted to their expectation in order to be useful.Keywords: International e-learning, ergonomics, orthopaedic surgery, Train4OrthoMIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143961 Security Model of a Unified Communications and Integrated Collaborations System in the Health Sector Environment of Developing Countries: A Case of Uganda
Authors: Excellence Favor, Bakari M. M. Mwinyiwiwa
Abstract:
Access to information holds the key to the empowerment of everybody despite where they are living. This research has been carried out in respect of the people living in developing countries, considering their plight and complex geographical, demographic, social-economic conditions surrounding the areas they live, which hinder access to information and of professionals providing services such as medical workers, which has led to high death rates and development stagnation. Research on Unified Communications and Integrated Collaborations (UCIC) system in the health sector of developing countries aims at creating a possible solution of bridging the digital canyon among the communities. The system is meant to deliver services in a seamless manner to assist health workers situated anywhere to be accessed easily and access information which will enhance service delivery. The proposed UCIC provides the most immersive telepresence experience for one-to-one or many-to-many meetings. Extending to locations anywhere in the world, the transformative platform delivers Ultra-low operating costs through the use of general purpose networks and using special lenses and track systems. The essence of this study is to create a security model for the deployment of the UCIC system in the health sector of developing countries. The model approach used for building the UCIC system security carefully considers the specific requirements for the health sector environment organization such as data centre, national, regional and district hospitals, and health centers IV, III, II and I and then builds the single best possible secure network to meet their needs. The security model demonstrates on how the components of the UCIC system will be protected physically and logically in the health sector environment. The UCIC system once adopted and implemented correctly will bring enhancement to the speed and quality of services offered by health workers. The capacities of UCIC will help health workers shorten decision cycles, accelerate service delivery and save lives by speeding access to information and by making it possible for all health workers and patients to collaborate ubiquitously.
Keywords: Developing Countries, Health Sector Environment, Security, Unified Communications and Integrated Collaborations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152960 Application of Micro-Tunneling Technique to Rectify Tilted Structures Constructed on Cohesive Soil
Authors: Yasser R. Tawfic, Mohamed A. Eid
Abstract:
Foundation differential settlement and supported structure tilting are an occasionally occurred engineering problem. This may be caused by overloading, changes in ground soil properties or unsupported nearby excavations. Engineering thinking points directly toward the logic solution for such problem by uplifting the settled side. This can be achieved with deep foundation elements such as micro-piles and macro-piles™, jacked piers, and helical piers, jet grouted mortar columns, compaction grout columns, cement grouting or with chemical grouting, or traditional pit underpinning with concrete and mortar. Although, some of these techniques offer economic, fast and low noise solutions, many of them are quite the contrary. For tilted structures, with the limited inclination, it may be much easier to cause a balancing settlement on the less-settlement side which shall be done carefully in a proper rate. This principal has been applied in Leaning Tower of Pisa stabilization with soil extraction from the ground surface. In this research, the authors attempt to introduce a new solution with a different point of view. So, the micro-tunneling technique is presented in here as an intended ground deformation cause. In general, micro-tunneling is expected to induce limited ground deformations. Thus, the researchers propose to apply the technique to form small size ground unsupported holes to produce the target deformations. This shall be done in four phases: 1. Application of one or more micro-tunnels, regarding the existing differential settlement value, under the raised side of the tilted structure. 2. For each individual tunnel, the lining shall be pulled out from both sides (from jacking and receiving shafts) in the slow rate. 3. If required, according to calculations and site records, an additional surface load can be applied on the raised foundation side. 4. Finally, a strengthening soil grouting shall be applied for stabilization after adjustment. A finite element based numerical model is presented to simulate the proposed construction phases for different tunneling positions and tunnels group. For each case, the surface settlements are calculated and induced plasticity points are checked. These results show the impact of the suggested procedure on the tilted structure and its feasibility. Comparing results also show the importance of the position selection and tunnels group gradual effect. Thus, a new engineering solution is presented to one of the structural and geotechnical engineering challenges.Keywords: Differential settlement, micro-tunnel, soil-structure interaction, tilted structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 277059 Evaluation of Video Quality Metrics and Performance Comparison on Contents Taken from Most Commonly Used Devices
Authors: Pratik Dhabal Deo, Manoj P.
Abstract:
With the increasing number of social media users, the amount of video content available has also significantly increased. Currently, the number of smartphone users is at its peak, and many are increasingly using their smartphones as their main photography and recording devices. There have been a lot of developments in the field of video quality assessment in since the past years and more research on various other aspects of video and image are being done. Datasets that contain a huge number of videos from different high-end devices make it difficult to analyze the performance of the metrics on the content from most used devices even if they contain contents taken in poor lighting conditions using lower-end devices. These devices face a lot of distortions due to various factors since the spectrum of contents recorded on these devices is huge. In this paper, we have presented an analysis of the objective Video Quality Analysis (VQA) metrics on contents taken only from most used devices and their performance on them, focusing on full-reference metrics. To carry out this research, we created a custom dataset containing a total of 90 videos that have been taken from three most commonly used devices, and Android smartphone, an iOS smartphone and a Digital Single-Lens Reflex (DSLR) camera. On the videos taken on each of these devices, the six most common types of distortions that users face have been applied in addition to already existing H.264 compression based on four reference videos. These six applied distortions have three levels of degradation each. A total of the five most popular VQA metrics have been evaluated on this dataset and the highest values and the lowest values of each of the metrics on the distortions have been recorded. Finally, it is found that blur is the artifact on which most of the metrics did not perform well. Thus, in order to understand the results better the amount of blur in the data set has been calculated and an additional evaluation of the metrics was done using High Efficiency Video Coding (HEVC) codec, which is the next version of H.264 compression, on the camera that proved to be the sharpest among the devices. The results have shown that as the resolution increases, the performance of the metrics tends to become more accurate and the best performing metric among them is VQM with very few inconsistencies and inaccurate results when the compression applied is H.264, but when the compression is applied is HEVC, Structural Similarity (SSIM) metric and Video Multimethod Assessment Fusion (VMAF) have performed significantly better.
Keywords: Distortion, metrics, recording, frame rate, video quality assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36658 A Multi-Level WEB Based Parallel Processing System A Hierarchical Volunteer Computing Approach
Authors: Abdelrahman Ahmed Mohamed Osman
Abstract:
Over the past few years, a number of efforts have been exerted to build parallel processing systems that utilize the idle power of LAN-s and PC-s available in many homes and corporations. The main advantage of these approaches is that they provide cheap parallel processing environments for those who cannot afford the expenses of supercomputers and parallel processing hardware. However, most of the solutions provided are not very flexible in the use of available resources and very difficult to install and setup. In this paper, a multi-level web-based parallel processing system (MWPS) is designed (appendix). MWPS is based on the idea of volunteer computing, very flexible, easy to setup and easy to use. MWPS allows three types of subscribers: simple volunteers (single computers), super volunteers (full networks) and end users. All of these entities are coordinated transparently through a secure web site. Volunteer nodes provide the required processing power needed by the system end users. There is no limit on the number of volunteer nodes, and accordingly the system can grow indefinitely. Both volunteer and system users must register and subscribe. Once, they subscribe, each entity is provided with the appropriate MWPS components. These components are very easy to install. Super volunteer nodes are provided with special components that make it possible to delegate some of the load to their inner nodes. These inner nodes may also delegate some of the load to some other lower level inner nodes .... and so on. It is the responsibility of the parent super nodes to coordinate the delegation process and deliver the results back to the user. MWPS uses a simple behavior-based scheduler that takes into consideration the current load and previous behavior of processing nodes. Nodes that fulfill their contracts within the expected time get a high degree of trust. Nodes that fail to satisfy their contract get a lower degree of trust. MWPS is based on the .NET framework and provides the minimal level of security expected in distributed processing environments. Users and processing nodes are fully authenticated. Communications and messages between nodes are very secure. The system has been implemented using C#. MWPS may be used by any group of people or companies to establish a parallel processing or grid environment.Keywords: Volunteer computing, Parallel Processing, XMLWebServices, .NET Remoting, Tuplespace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149457 Submicron Laser-Induced Dot, Ripple and Wrinkle Structures and Their Applications
Authors: P. Slepicka, N. Slepickova Kasalkova, I. Michaljanicova, O. Nedela, Z. Kolska, V. Svorcik
Abstract:
Polymers exposed to laser or plasma treatment or modified with different wet methods which enable the introduction of nanoparticles or biologically active species, such as amino-acids, may find many applications both as biocompatible or anti-bacterial materials or on the contrary, can be applied for a decrease in the number of cells on the treated surface which opens application in single cell units. For the experiments, two types of materials were chosen, a representative of non-biodegradable polymers, polyethersulphone (PES) and polyhydroxybutyrate (PHB) as biodegradable material. Exposure of solid substrate to laser well below the ablation threshold can lead to formation of various surface structures. The ripples have a period roughly comparable to the wavelength of the incident laser radiation, and their dimensions depend on many factors, such as chemical composition of the polymer substrate, laser wavelength and the angle of incidence. On the contrary, biopolymers may significantly change their surface roughness and thus influence cell compatibility. The focus was on the surface treatment of PES and PHB by pulse excimer KrF laser with wavelength of 248 nm. The changes of physicochemical properties, surface morphology, surface chemistry and ablation of exposed polymers were studied both for PES and PHB. Several analytical methods involving atomic force microscopy, gravimetry, scanning electron microscopy and others were used for the analysis of the treated surface. It was found that the combination of certain input parameters leads not only to the formation of optimal narrow pattern, but to the combination of a ripple and a wrinkle-like structure, which could be an optimal candidate for cell attachment. The interaction of different types of cells and their interactions with the laser exposed surface were studied. It was found that laser treatment contributes as a major factor for wettability/contact angle change. The combination of optimal laser energy and pulse number was used for the construction of a surface with an anti-cellular response. Due to the simple laser treatment, we were able to prepare a biopolymer surface with higher roughness and thus significantly influence the area of growth of different types of cells (U-2 OS cells).
Keywords: Polymer treatment, laser, periodic pattern, cell response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 78256 Study The Effects of Conventional and Low Input Production System on Energy Efficiency of Silybum marianum L.
Authors: M. Haj Seyed Hadi, M. Darzi, E. Sharifi Ashoorabadi
Abstract:
Medicinal plants are most suitable crops for ecological production systems because of their role in human health and the aim of sustainable agriculture to improve ecosystem efficiency and its products quality. Calculations include energy output (contents of energy in seed) and energy inputs (consumption of fertilizers, pesticides, labor, machines, fuel and electricity). The ratio of output of the production to inputs is called the energy outputs / inputs ratio or energy efficiency. One way to quantify essential parts of agricultural development is the energy flow method. The output / input energy ratio is proposed as the most comprehensive single factor in pursuing the objective of sustainability. Sylibum marianum L. is one of the most important medicinal plants in Iran and has effective role on health of growing population in Iran. The objective of this investigation was to find out energy efficiency in conventional and low input production system of Milk thistle. This investigation was carried out in the spring of 2005 – 2007 in the Research Station of Rangelands in Hamand - Damavand region of IRAN. This experiment was done in split-split plot based on randomized complete block design with 3 replications. Treatments were 2 production systems (Conventional and Low input system) in the main plots, 3 planting time (25 of March, 4 and 14 of April) in the sub plots and 2 seed types (Improved and Native of Khoozestan) in the sub-sub plots. Results showed that in conventional production system energy efficiency, because of higher inputs and less seed yield, was less than low input production system. Seed yield was 1199.5 and 1888 kg/ha in conventional and low input systems, respectively. Total energy inputs and out puts for conventional system was 10068544.5 and 7060515.9 kcal. These amounts for low input system were 9533885.6 and 11113191.8 kcal. Results showed that energy efficiency for seed production in conventional and low input system was 0.7 and 1.16, respectively. So, milk thistle seed production in low input system has 39.6 percent higher energy efficiency than conventional production system. Also, higher energy efficiency were found in sooner planting time (25 of March) and native seed of Khoozestan.
Keywords: energy efficiency, milk thistle, production system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162255 Reflective Thinking and Experiential Learning: A Quasi-Experimental Quanti-Quali Response to Greater Diversification of Activities and Greater Integration of Student Profiles
Authors: P. Bogas
Abstract:
As a scientific contribution to this discussion, a pedagogical intervention of a quasi-experimental nature was developed, with a mixed methodology, evaluating the intervention within a single curricular unit of Marketing, using cases based on real challenges of brands, business simulation and customer projects. Primary and secondary experiences were incorporated in the intervention: the primary experiences are the experiential activities themselves; the secondary experiences resulted from the primary experience, such as reflection and discussion in work teams. A diversified learning relationship was encouraged through the various connections between the different members of the learning community. The present study concludes that in the same context, the students' response can be described as: students who reinforce the initial deep approach, students who maintain the initial deep approach level and others who change from an emphasis on the deep approach to one closer to superficial. This typology did not always confirm studies reported in the literature, namely, whether the initial level of deep processing would influence the superficial and the opposite. The result of this investigation points to the inclusion of pedagogical and didactic activities that integrate different motivations and initial strategies, leading to a possible adoption of deep approaches to learning, since it revealed statistically significant differences in the difference in the scores of the deep/superficial approach and the experiential level. In the case of real challenges, the categories of “attribution of meaning and meaning of studied” and the possibility of “contact with an aspirational context” for their future professional stand out. In this category, the dimensions of autonomy that will be required of them were also revealed when comparing the classroom context of real cases and the future professional context and the impact they may have on the world. Regarding to the simulated practice, two categories of response stand out: on the one hand, the motivation associated with the possibility of measuring the results of the decisions taken, an awareness of oneself and, on the other hand, the additional effort that this practice required for some of the students.
Keywords: Experiential learning, higher education, marketing, mixed methods, reflective thinking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30554 Developing a Web-Based Tender Evaluation System Based on Fuzzy Multi-Attributes Group Decision Making for Nigerian Public Sector Tendering
Authors: Bello Abdullahi, Yahaya M. Ibrahim, Ahmed D. Ibrahim, Kabir Bala
Abstract:
Public sector tendering has traditionally been conducted using manual paper-based processes which are known to be inefficient, less transparent and more prone to manipulations and errors. The advent of the Internet and the World Wide Web has led to the development of numerous e-Tendering systems that addressed some of the problems associated with the manual paper-based tendering system. However, most of these systems rarely support the evaluation of tenders and where they do it is mostly based on the single decision maker which is not suitable in public sector tendering, where for the sake of objectivity, transparency, and fairness, it is required that the evaluation is conducted through a tender evaluation committee. Currently, in Nigeria, the public tendering process in general and the evaluation of tenders, in particular, are largely conducted using manual paper-based processes. Automating these manual-based processes to digital-based processes can help in enhancing the proficiency of public sector tendering in Nigeria. This paper is part of a larger study to develop an electronic tendering system that supports the whole tendering lifecycle based on Nigerian procurement law. Specifically, this paper presents the design and implementation of part of the system that supports group evaluation of tenders based on a technique called fuzzy multi-attributes group decision making. The system was developed using Object-Oriented methodologies and Unified Modelling Language and hypothetically applied in the evaluation of technical and financial proposals submitted by bidders. The system was validated by professionals with extensive experiences in public sector procurement. The results of the validation showed that the system called NPS-eTender has an average rating of 74% with respect to correct and accurate modelling of the existing manual tendering domain and an average rating of 67.6% with respect to its potential to enhance the proficiency of public sector tendering in Nigeria. Thus, based on the results of the validation, the automation of the evaluation process to support tender evaluation committee is achievable and can lead to a more proficient public sector tendering system.
Keywords: e-Tendering, e-Procurement, public tendering, tender evaluation, tender evaluation committee, web-based group decision support system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 74453 Streamwise Vorticity in the Wake of a Sliding Bubble
Authors: R. O’Reilly Meehan, D. B. Murray
Abstract:
In many practical situations, bubbles are dispersed in a liquid phase. Understanding these complex bubbly flows is therefore a key issue for applications such as shell and tube heat exchangers, mineral flotation and oxidation in water treatment. Although a large body of work exists for bubbles rising in an unbounded medium, that of bubbles rising in constricted geometries has received less attention. The particular case of a bubble sliding underneath an inclined surface is common to two-phase flow systems. The current study intends to expand this knowledge by performing experiments to quantify the streamwise flow structures associated with a single sliding air bubble under an inclined surface in quiescent water. This is achieved by means of two-dimensional, two-component particle image velocimetry (PIV), performed with a continuous wave laser and high-speed camera. PIV vorticity fields obtained in a plane perpendicular to the sliding surface show that there is significant bulk fluid motion away from the surface. The associated momentum of the bubble means that this wake motion persists for a significant time before viscous dissipation. The magnitude and direction of the flow structures in the streamwise measurement plane are found to depend on the point on its path through which the bubble enters the plane. This entry point, represented by a phase angle, affects the nature and strength of the vortical structures. This study reconstructs the vorticity field in the wake of the bubble, converting the field at different instances in time to slices of a large-scale wake structure. This is, in essence, Taylor’s ”frozen turbulence” hypothesis. Applying this to the vorticity fields provides a pseudo three-dimensional representation from 2-D data, allowing for a more intuitive understanding of the bubble wake. This study provides insights into the complex dynamics of a situation common to many engineering applications, particularly shell and tube heat exchangers in the nucleate boiling regime.Keywords: Bubbly flow, particle image velocimetry, two-phase flow, wake structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192152 Aerodynamic Interaction between Two Speed Skaters Measured in a Closed Wind Tunnel
Authors: Ola Elfmark, Lars M. Bardal, Luca Oggiano, H˚avard Myklebust
Abstract:
Team pursuit is a relatively new event in international long track speed skating. For a single speed skater the aerodynamic drag will account for up to 80% of the braking force, thus reducing the drag can greatly improve the performance. In a team pursuit the interactions between athletes in near proximity will also be essential, but is not well studied. In this study, systematic measurements of the aerodynamic drag, body posture and relative positioning of speed skaters have been performed in the low speed wind tunnel at the Norwegian University of Science and Technology, in order to investigate the aerodynamic interaction between two speed skaters. Drag measurements of static speed skaters drafting, leading, side-by-side, and dynamic drag measurements in a synchronized and unsynchronized movement at different distances, were performed. The projected frontal area was measured for all postures and movements and a blockage correction was performed, as the blockage ratio ranged from 5-15% in the different setups. The static drag measurements where performed on two test subjects in two different postures, a low posture and a high posture, and two different distances between the test subjects 1.5T and 3T where T being the length of the torso (T=0.63m). A drag reduction was observed for all distances and configurations, from 39% to 11.4%, for the drafting test subject. The drag of the leading test subject was only influenced at -1.5T, with the biggest drag reduction of 5.6%. An increase in drag was seen for all side-by-side measurements, the biggest increase was observed to be 25.7%, at the closest distance between the test subjects, and the lowest at 2.7% with ∼ 0.7 m between the test subjects. A clear aerodynamic interaction between the test subjects and their postures was observed for most measurements during static measurements, with results corresponding well to recent studies. For the dynamic measurements, the leading test subject had a drag reduction of 3% even at -3T. The drafting showed a drag reduction of 15% when being in a synchronized (sync) motion with the leading test subject at 4.5T. The maximal drag reduction for both the leading and the drafting test subject were observed when being as close as possible in sync, with a drag reduction of 8.5% and 25.7% respectively. This study emphasize the importance of keeping a synchronized movement by showing that the maximal gain for the leading and drafting dropped to 3.2% and 3.3% respectively when the skaters are in opposite phase. Individual differences in technique also appear to influence the drag of the other test subject.Keywords: Aerodynamic interaction, drag cycle, drag force, frontal area, speed skating.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 103851 Conflation Methodology Applied to Flood Recovery
Authors: E. L. Suarez, D. E. Meeroff, Y. Yong
Abstract:
Current flooding risk modeling focuses on resilience, defined as the probability of recovery from a severe flooding event. However, the long-term damage to property and well-being by nuisance flooding and its long-term effects on communities are not typically included in risk assessments. An approach was developed to address the probability of recovering from a severe flooding event combined with the probability of community performance during a nuisance event. A consolidated model, namely the conflation flooding recovery (&FR) model, evaluates risk-coping mitigation strategies for communities based on the recovery time from catastrophic events, such as hurricanes or extreme surges, and from everyday nuisance flooding events. The &FR model assesses the variation contribution of each independent input and generates a weighted output that favors the distribution with minimum variation. This approach is especially useful if the input distributions have dissimilar variances. The &FR is defined as a single distribution resulting from the product of the individual probability density functions. The resulting conflated distribution resides between the parent distributions, and it infers the recovery time required by a community to return to basic functions, such as power, utilities, transportation, and civil order, after a flooding event. The &FR model is more accurate than averaging individual observations before calculating the mean and variance or averaging the probabilities evaluated at the input values, which assigns the same weighted variation to each input distribution. The main disadvantage of these traditional methods is that the resulting measure of central tendency is exactly equal to the average of the input distribution’s means without the additional information provided by each individual distribution variance. When dealing with exponential distributions, such as resilience from severe flooding events and from nuisance flooding events, conflation results are equivalent to the weighted least squares method or best linear unbiased estimation. The combination of severe flooding risk with nuisance flooding improves flood risk management for highly populated coastal communities, such as in South Florida, USA, and provides a method to estimate community flood recovery time more accurately from two different sources, severe flooding events and nuisance flooding events.
Keywords: Community resilience, conflation, flood risk, nuisance flooding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13850 The Politics of Foreign Direct Investment for Socio-Economic Development in Nigeria: An Assessment of the Fourth Republic Strategies (1999 - 2014)
Authors: Muritala Babatunde Hassan
Abstract:
In the contemporary global political economy, foreign direct investment (FDI) is gaining currency on daily basis. Notably, the end of the Cold War has brought about the dominance of neoliberal ideology with its mantra of private-sector-led economy. As such, nation-states now see FDI attraction as an important element in their approach to national development. Governments and policy makers are preoccupying themselves with unraveling the best strategies to not only attract more FDI but also to attain the desired socio-economic development status. In Nigeria, the perceived development potentials of FDI have brought about aggressive hunt for foreign investors, most especially since transition to civilian rule in May 1999. Series of liberal and market oriented strategies are being adopted not only to attract foreign investors but largely to stimulate private sector participation in the economy. It is on this premise that this study interrogates the politics of FDI attraction for domestic development in Nigeria between 1999 and 2014, with the ultimate aim of examining the nexus between regime type and the ability of a state to attract and benefit from FDI. Building its analysis within the framework of institutional utilitarianism, the study posits that the essential FDI strategies for achieving the greatest happiness for the greatest number of Nigerians are political not economic. Both content analysis and descriptive survey methodology were employed in carrying out the study. Content analysis involves desk review of literatures that culminated in the development of the study’s conceptual and theoretical framework of analysis. The study finds no significant relationship between transition to democracy and FDI inflows in Nigeria, as most of the attracted investments during the period of the study were market and resource seeking as was the case during the military regime, thereby contributing minimally to the socio-economic development of the country. It is also found that the country placed much emphasis on liberalization and incentives for FDI attraction at the neglect of improving the domestic investment environment. Consequently, poor state of infrastructure, weak institutional capability and insecurity were identified as the major factors seriously hindering the success of Nigeria in exploiting FDI for domestic development. Given the reality of the currency of FDI as a vector of economic globalization and that Nigeria is trailing the line of private-sector-led approach to development, it is recommended that emphasis should be placed on those measures aimed at improving the infrastructural facilities, building solid institutional framework, enhancing skill and technological transfer and coordinating FDI promotion activities by different agencies and at different levels of government.
Keywords: Foreign capital, politics, socio-economic development, FDI attraction strategies, Redemocratization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 90149 Identification of the Best Blend Composition of Natural Rubber-High Density Polyethylene Blends for Roofing Applications
Authors: W. V. W. H. Wickramaarachchi, S. Walpalage, S. M. Egodage
Abstract:
Thermoplastic elastomer (TPE) is a multifunctional polymeric material which possesses a combination of excellent properties of parent materials. Basically, TPE has a rubber phase and a thermoplastic phase which gives processability as thermoplastics. When the rubber phase is partially or fully crosslinked in the thermoplastic matrix, TPE is called as thermoplastic elastomer vulcanizate (TPV). If the rubber phase is non-crosslinked, it is called as thermoplastic elastomer olefin (TPO). Nowadays TPEs are introduced into the commercial market with different products. However, the application of TPE as a roofing material is limited. Out of the commercially available roofing products from different materials, only single ply roofing membranes and plastic roofing sheets are produced from rubbers and plastics. Natural rubber (NR) and high density polyethylene (HDPE) are used in various industrial applications individually with some drawbacks. Therefore, this study was focused to develop both TPO and TPV blends from NR and HDPE at different compositions and then to identify the best blend composition to use as a roofing material. A series of blends by varying NR loading from 10 wt% to 50 wt%, at 10 wt% intervals, were prepared using a twin screw extruder. Dicumyl peroxide was used as a crosslinker for TPV. The standard properties for a roofing material like tensile properties tear strength, hardness, impact strength, water absorption, swell/gel analysis and thermal characteristics of the blends were investigated. Change of tensile strength after exposing to UV radiation was also studied. Tensile strength, hardness, tear strength, melting temperature and gel content of TPVs show higher values compared to TPOs at every loading studied, while water absorption and swelling index show lower values, suggesting TPVs are more suitable than TPOs for roofing applications. Most of the optimum properties were shown at 10/90 (NR/HDPE) composition. However, high impact strength and gel content were shown at 20/80 (NR/HDPE) composition. Impact strength, as being an energy absorbing property, is the most important for a roofing material in order to resist impact loads. Therefore, 20/80 (NR/HDPE) is identified as the best blend composition. UV resistance and other properties required for a roofing material could be achieved by incorporating suitable additives to TPVs.
Keywords: Thermoplastic elastomer, natural rubber, high density polyethylene, roofing material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95848 Leveraging xAPI in a Corporate e-Learning Environment to Facilitate the Tracking, Modelling, and Predictive Analysis of Learner Behaviour
Authors: Libor Zachoval, Daire O Broin, Oisin Cawley
Abstract:
E-learning platforms, such as Blackboard have two major shortcomings: limited data capture as a result of the limitations of SCORM (Shareable Content Object Reference Model), and lack of incorporation of Artificial Intelligence (AI) and machine learning algorithms which could lead to better course adaptations. With the recent development of Experience Application Programming Interface (xAPI), a large amount of additional types of data can be captured and that opens a window of possibilities from which online education can benefit. In a corporate setting, where companies invest billions on the learning and development of their employees, some learner behaviours can be troublesome for they can hinder the knowledge development of a learner. Behaviours that hinder the knowledge development also raise ambiguity about learner’s knowledge mastery, specifically those related to gaming the system. Furthermore, a company receives little benefit from their investment if employees are passing courses without possessing the required knowledge and potential compliance risks may arise. Using xAPI and rules derived from a state-of-the-art review, we identified three learner behaviours, primarily related to guessing, in a corporate compliance course. The identified behaviours are: trying each option for a question, specifically for multiple-choice questions; selecting a single option for all the questions on the test; and continuously repeating tests upon failing as opposed to going over the learning material. These behaviours were detected on learners who repeated the test at least 4 times before passing the course. These findings suggest that gauging the mastery of a learner from multiple-choice questions test scores alone is a naive approach. Thus, next steps will consider the incorporation of additional data points, knowledge estimation models to model knowledge mastery of a learner more accurately, and analysis of the data for correlations between knowledge development and identified learner behaviours. Additional work could explore how learner behaviours could be utilised to make changes to a course. For example, course content may require modifications (certain sections of learning material may be shown to not be helpful to many learners to master the learning outcomes aimed at) or course design (such as the type and duration of feedback).
Keywords: Compliance Course, Corporate Training, Learner Behaviours, xAPI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56147 Influence of Sire Breed, Protein Supplementation and Gender on Wool Spinning Fineness in First-Cross Merino Lambs
Authors: A. E. O. Malau-Aduli, B. W. B. Holman, P. A. Lane
Abstract:
Our objectives were to evaluate the effects of sire breed, type of protein supplement, level of supplementation and sex on wool spinning fineness (SF), its correlations with other wool characteristics and prediction accuracy in F1 Merino crossbred lambs. Texel, Coopworth, White Suffolk, East Friesian and Dorset rams were mated with 500 purebred Merino dams at a ratio of 1:100 in separate paddocks within a single management system. The F1 progeny were raised on ryegrass pasture until weaning, before forty lambs were randomly allocated to treatments in a 5 x 2 x 2 x 2 factorial experimental design representing 5 sire breeds, 2 supplementary feeds (canola or lupins), 2 levels of supplementation (1% or 2% of liveweight) and sex (wethers or ewes). Lambs were supplemented for six weeks after an initial three weeks of adjustment, wool sampled at the commencement and conclusion of the feeding trial and analyzed for SF, mean fibre diameter (FD), coefficient of variation (CV), standard deviation, comfort factor (CF), fibre curvature (CURV), and clean fleece yield. Data were analyzed using mixed linear model procedures with sire fitted as a random effect, and sire breed, sex, supplementary feed type, level of supplementation and their second-order interactions as fixed effects. Sire breed (P<0.001), sex (P<0.004), sire breed x level of supplementation (P<0.004), and sire breed x sex (P<0.019) interactions significantly influenced SF. SF ranged from 22.7 ± 0.2μm in White Suffolk-sired lambs to 25.1 ± 0.2μm in East Friesian crossbred lambs. Ewes had higher SF than wethers. There were significant (P<0.001) correlations between SF and FD (0.93), CV (0.40), CF (-0.94) and CURV (-0.12). Its strong relationship with other wool quality traits enabled accurate predictions explaining up to about 93% of the observed variation. The interactions between sire breed genetics and nutrition will have an impact on the choices that dual-purpose sheep producers make when selecting sire breeds and protein supplementary feed levels to achieve optimal wool spinning fineness at the farmgate level. This will facilitate selective breeding programs being able to better account for SF and its interactions with other wool characteristics.Keywords: Merino crossbred sheep, protein supplementation, sire breed, wool quality, wool spinning fineness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 217946 Exploring the Role of Hydrogen to Achieve the Italian Decarbonization Targets Using an Open-Source Energy System Optimization Model
Authors: A. Balbo, G. Colucci, M. Nicoli, L. Savoldi
Abstract:
Hydrogen is expected to become an undisputed player in the ecological transition throughout the next decades. The decarbonization potential offered by this energy vector provides various opportunities for the so-called “hard-to-abate” sectors, including industrial production of iron and steel, glass, refineries and the heavy-duty transport. In this regard, Italy, in the framework of decarbonization plans for the whole European Union, has been considering a wider use of hydrogen to provide an alternative to fossil fuels in hard-to-abate sectors. This work aims to assess and compare different options concerning the pathway to be followed in the development of the future Italian energy system in order to meet decarbonization targets as established by the Paris Agreement and by the European Green Deal, and to infer a techno-economic analysis of the required asset alternatives to be used in that perspective. To accomplish this objective, the Energy System Optimization Model TEMOA-Italy is used, based on the open-source platform TEMOA and developed at PoliTo as a tool to be used for technology assessment and energy scenario analysis. The adopted assessment strategy includes two different scenarios to be compared with a business-as-usual one, which considers the application of current policies in a time horizon up to 2050. The studied scenarios are based on the up-to-date hydrogen-related targets and planned investments included in the National Hydrogen Strategy and in the Italian National Recovery and Resilience Plan, with the purpose of providing a critical assessment of what they propose. One scenario imposes decarbonization objectives for the years 2030, 2040 and 2050, without any other specific target. The second one (inspired to the national objectives on the development of the sector) promotes the deployment of the hydrogen value-chain. These scenarios provide feedback about the applications hydrogen could have in the Italian energy system, including transport, industry and synfuels production. Furthermore, the decarbonization scenario where hydrogen production is not imposed, will make use of this energy vector as well, showing the necessity of its exploitation in order to meet pledged targets by 2050. The distance of the planned policies from the optimal conditions for the achievement of Italian objectives is clarified, revealing possible improvements of various steps of the decarbonization pathway, which seems to have as a fundamental element Carbon Capture and Utilization technologies for its accomplishment. In line with the European Commission open science guidelines, the transparency and the robustness of the presented results are ensured by the adoption of the open-source open-data model such as the TEMOA-Italy.
Keywords: Decarbonization, energy system optimization models, hydrogen, open-source modeling, TEMOA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69645 Specification Requirements for a Combined Dehumidifier/Cooling Panel: A Global Scale Analysis
Authors: Damien Gondre, Hatem Ben Maad, Abdelkrim Trabelsi, Frédéric Kuznik, Joseph Virgone
Abstract:
The use of a radiant cooling solution would enable to lower cooling needs which is of great interest when the demand is initially high (hot climate). But, radiant systems are not naturally compatibles with humid climates since a low-temperature surface leads to condensation risks as soon as the surface temperature is close to or lower than the dew point temperature. A radiant cooling system combined to a dehumidification system would enable to remove humidity for the space, thereby lowering the dew point temperature. The humidity removal needs to be especially effective near the cooled surface. This requirement could be fulfilled by a system using a single desiccant fluid for the removal of both excessive heat and moisture. This task aims at providing an estimation of the specification requirements of such system in terms of cooling power and dehumidification rate required to fulfill comfort issues and to prevent any condensation risk on the cool panel surface. The present paper develops a preliminary study on the specification requirements, performances and behavior of a combined dehumidifier/cooling ceiling panel for different operating conditions. This study has been carried using the TRNSYS software which allows nodal calculations of thermal systems. It consists of the dynamic modeling of heat and vapor balances of a 5m x 3m x 2.7m office space. In a first design estimation, this room is equipped with an ideal heating, cooling, humidification and dehumidification system so that the room temperature is always maintained in between 21◦C and 25◦C with a relative humidity in between 40% and 60%. The room is also equipped with a ventilation system that includes a heat recovery heat exchanger and another heat exchanger connected to a heat sink. Main results show that the system should be designed to meet a cooling power of 42W.m−2 and a desiccant rate of 45 gH2O.h−1. In a second time, a parametric study of comfort issues and system performances has been achieved on a more realistic system (that includes a chilled ceiling) under different operating conditions. It enables an estimation of an acceptable range of operating conditions. This preliminary study is intended to provide useful information for the system design.Keywords: Dehumidification, nodal calculation, radiant cooling panel, system sizing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73244 Relationship between Iron-Related Parameters and Soluble Tumor Necrosis Factor-Like Weak Inducer of Apoptosis in Obese Children
Authors: Mustafa M. Donma, Orkide Donma, Savas Guzel
Abstract:
Iron is physiologically essential. However, it also participates in the catalysis of free radical formation reactions. Its deficiency is associated with amplified health risks. This trace element establishes some links with another physiological process related to cell death, apoptosis. Both iron deficiency and iron overload are closely associated with apoptosis. Soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) has the ability to trigger apoptosis and plays a dual role in the physiological versus pathological inflammatory responses of tissues. The aim of this study was to investigate the status of these parameters as well as the associations among them in children with obesity, a low-grade inflammatory state. The study was performed on groups of children with normal body mass index (N-BMI) and obesity. 43 children were included in each group. Based upon age- and sex-adjusted BMI percentile tables prepared by the World Health Organization, children whose values varied between 85 and 15 were included in N-BMI group. Children, whose BMI percentile values were between 99 and 95, comprised obese (OB) group. Institutional ethical committee approval and informed consent forms were taken prior to the study. Anthropometric measurements (weight, height, waist circumference, hip circumference, head circumference, neck circumference) and blood pressure values (systolic blood pressure and diastolic blood pressure) were recorded. Routine biochemical analyses, including serum iron, total iron binding capacity (TIBC), transferrin saturation percent (Tf Sat %) and ferritin, were performed. sTWEAK levels were determined by enzyme-linked immunosorbent assay. study data were evaluated using appropriate statistical tests performed by the statistical program SPSS. Serum iron levels were 91 ± 34 mcrg/dl and 75 ± 31 mcrg/dl in N-BMI and OB children, respectively. The corresponding values for TIBC, Tf Sat %, ferritin were 265 mcrg/dl vs. 299 mcrg/dl, 37.2 ± 19.1% vs. 26.7 ± 14.6%, and 41 ± 25 ng/ml vs 44 ± 26 ng/ml. In N-BMI and OB groups, sTWEAK concentrations were measured as 351 ng/L and 325 ng/L, respectively (p > 0.05). Correlation analysis revealed significant associations between sTWEAK levels and iron related parameters (p < 0.05) except ferritin. In conclusion, iron contributes to apoptosis. Children with iron deficiency have decreased apoptosis rate in comparison with that of healthy children. sTWEAK is an inducer of apoptosis. OB children had lower levels of both iron and sTWEAK. Low levels of sTWEAK are associated with several types of cancers and poor survival. Although iron deficiency state was not observed in this study, the correlations detected between decreased sTWEAK and decreased iron as well as Tf Sat % values were valuable findings, which point out decreased apoptosis. This may induce a proinflammatory state, potentially leading to malignancies in the future lives of OB children.
Keywords: Apoptosis, children, iron-related parameters, obesity, soluble tumor necrosis factor-like weak inducer of apoptosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51543 Economic Evaluation of Degradation by Corrosion of an on-Grid Battery Energy Storage System: A Case Study in Algeria Territory
Authors: Fouzia Brihmat
Abstract:
Economic planning models, which are used to build microgrids and Distributed Energy Resources (DER), are the current norm for expressing such confidence. These models often decide both short-term DER dispatch and long-term DER investments. This research investigates the most cost-effective hybrid (photovoltaic-diesel) renewable energy system (HRES) based on Total Net Present Cost (TNPC) in an Algerian Saharan area, which has a high potential for solar irradiation and has a production capacity of 1 GW/h. Lead-acid batteries have been around much longer and are easier to understand, but have limited storage capacity. Lithium-ion batteries last longer, are lighter, but generally more expensive. By combining the advantages of each chemistry, we produce cost-effective high-capacity battery banks that operate solely on AC coupling. The financial implications of this research describe the corrosion process that occurs at the interface between the active material and grid material of the positive plate of a lead-acid battery. The best cost study for the HRES is completed with the assistance of the HOMER Pro MATLAB Link. Additionally, during the course of the project's 20 years, the system is simulated for each time step. In this model, which takes into consideration decline in solar efficiency, changes in battery storage levels over time, and rises in fuel prices above the rate of inflation, the trade-off is that the model is more accurate, but the computation takes longer. We initially utilized the optimizer to run the model without multi-year in order to discover the best system architecture. The optimal system for the single-year scenario is the Danvest generator, which has 760 kW, 200 kWh of the necessary quantity of lead-acid storage, and a somewhat lower Cost Of Energy (COE) of $0.309/kWh. Different scenarios that account for fluctuations in the gasified biomass generator's production of electricity have been simulated, and various strategies to guarantee the balance between generation and consumption have been investigated.
Keywords: Battery, Corrosion, Diesel, Economic planning optimization, Hybrid energy system, HES, Lead-acid battery, Li-ion battery, multi-year planning, microgrid, price forecast, total net present cost, wind.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16542 The Examination of Prospective ICT Teachers’ Attitudes towards Application of Computer Assisted Instruction
Authors: Agâh Tuğrul Korucu, Ismail Fatih Yavuzaslan, Lale Toraman
Abstract:
Nowadays, thanks to development of technology, integration of technology into teaching and learning activities is spreading. Increasing technological literacy which is one of the expected competencies for individuals of 21st century is associated with the effective use of technology in education. The most important factor in effective use of technology in education institutions is ICT teachers. The concept of computer assisted instruction (CAI) refers to the utilization of information and communication technology as a tool aided teachers in order to make education more efficient and improve its quality in the process of educational. Teachers can use computers in different places and times according to owned hardware and software facilities and characteristics of the subject and student in CAI. Analyzing teachers’ use of computers in education is significant because teachers are the ones who manage the course and they are the most important element in comprehending the topic by students. To accomplish computer-assisted instruction efficiently is possible through having positive attitude of teachers. Determination the level of knowledge, attitude and behavior of teachers who get the professional knowledge from educational faculties and elimination of deficiencies if any are crucial when teachers are at the faculty. Therefore, the aim of this paper is to identify ICT teachers' attitudes toward computer-assisted instruction in terms of different variables. Research group consists of 200 prospective ICT teachers studying at Necmettin Erbakan University Ahmet Keleşoğlu Faculty of Education CEIT department. As data collection tool of the study; “personal information form” developed by the researchers and used to collect demographic data and "the attitude scale related to computer-assisted instruction" are used. The scale consists of 20 items. 10 of these items show positive feature, while 10 of them show negative feature. The Kaiser-Meyer-Olkin (KMO) coefficient of the scale is found 0.88 and Barlett test significance value is found 0.000. The Cronbach’s alpha reliability coefficient of the scale is found 0.93. In order to analyze the data collected by data collection tools computer-based statistical software package used; statistical techniques such as descriptive statistics, t-test, and analysis of variance are utilized. It is determined that the attitudes of prospective instructors towards computers do not differ according to their educational branches. On the other hand, the attitudes of prospective instructors who own computers towards computer-supported education are determined higher than those of the prospective instructors who do not own computers. It is established that the departments of students who previously received computer lessons do not affect this situation so much. The result is that; the computer experience affects the attitude point regarding the computer-supported education positively.
Keywords: Attitude, computer based instruction, information and communication technologies, technology based instruction, teacher candidate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173941 Electron Density Discrepancy Analysis of Energy Metabolism Coenzymes
Authors: Alan Luo, Hunter N. B. Moseley
Abstract:
Many macromolecular structure entries in the Protein Data Bank (PDB) have a range of regional (localized) quality issues, be it derived from X-ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, or other experimental approaches. However, most PDB entries are judged by global quality metrics like R-factor, R-free, and resolution for X-ray crystallography or backbone phi-psi distribution statistics and average restraint violations for NMR. Regional quality is often ignored when PDB entries are re-used for a variety of structurally based analyses. The binding of ligands, especially ligands involved in energy metabolism, is of particular interest in many structurally focused protein studies. Using a regional quality metric that provides chemically interpretable information from electron density maps, a significant number of outliers in regional structural quality was detected across X-ray crystallographic PDB entries for proteins bound to biochemically critical ligands. In this study, a series of analyses was performed to evaluate both specific and general potential factors that could promote these outliers. In particular, these potential factors were the minimum distance to a metal ion, the minimum distance to a crystal contact, and the isotropic atomic b-factor. To evaluate these potential factors, Fisher’s exact tests were performed, using regional quality criteria of outlier (top 1%, 2.5%, 5%, or 10%) versus non-outlier compared to a potential factor metric above versus below a certain outlier cutoff. The results revealed a consistent general effect from region-specific normalized b-factors but no specific effect from metal ion contact distances and only a very weak effect from crystal contact distance as compared to the b-factor results. These findings indicate that no single specific potential factor explains a majority of the outlier ligand-bound regions, implying that human error is likely as important as these other factors. Thus, all factors, including human error, should be considered when regions of low structural quality are detected. Also, the downstream re-use of protein structures for studying ligand-bound conformations should screen the regional quality of the binding sites. Doing so prevents misinterpretation due to the presence of structural uncertainty or flaws in regions of interest.
Keywords: Biomacromolecular structure, coenzyme, electron density discrepancy analysis, X-ray crystallography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25540 Thermodynamic Analyses of Information Dissipation along the Passive Dendritic Trees and Active Action Potential
Authors: Bahar Hazal Yalçınkaya, Bayram Yılmaz, Mustafa Özilgen
Abstract:
Brain information transmission in the neuronal network occurs in the form of electrical signals. Neural work transmits information between the neurons or neurons and target cells by moving charged particles in a voltage field; a fraction of the energy utilized in this process is dissipated via entropy generation. Exergy loss and entropy generation models demonstrate the inefficiencies of the communication along the dendritic trees. In this study, neurons of 4 different animals were analyzed with one dimensional cable model with N=6 identical dendritic trees and M=3 order of symmetrical branching. Each branch symmetrically bifurcates in accordance with the 3/2 power law in an infinitely long cylinder with the usual core conductor assumptions, where membrane potential is conserved in the core conductor at all branching points. In the model, exergy loss and entropy generation rates are calculated for each branch of equivalent cylinders of electrotonic length (L) ranging from 0.1 to 1.5 for four different dendritic branches, input branch (BI), and sister branch (BS) and two cousin branches (BC-1 & BC-2). Thermodynamic analysis with the data coming from two different cat motoneuron studies show that in both experiments nearly the same amount of exergy is lost while generating nearly the same amount of entropy. Guinea pig vagal motoneuron loses twofold more exergy compared to the cat models and the squid exergy loss and entropy generation were nearly tenfold compared to the guinea pig vagal motoneuron model. Thermodynamic analysis show that the dissipated energy in the dendritic tress is directly proportional with the electrotonic length, exergy loss and entropy generation. Entropy generation and exergy loss show variability not only between the vertebrate and invertebrates but also within the same class. Concurrently, single action potential Na+ ion load, metabolic energy utilization and its thermodynamic aspect contributed for squid giant axon and mammalian motoneuron model. Energy demand is supplied to the neurons in the form of Adenosine triphosphate (ATP). Exergy destruction and entropy generation upon ATP hydrolysis are calculated. ATP utilization, exergy destruction and entropy generation showed differences in each model depending on the variations in the ion transport along the channels.
Keywords: ATP utilization, entropy generation, exergy loss, neuronal information transmittance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 101439 Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Partitioned Solution Approach and an Exponential Model
Authors: Nicolò Vaiana, Filip C. Filippou, Giorgio Serino
Abstract:
The solution of the nonlinear dynamic equilibrium equations of base-isolated structures adopting a conventional monolithic solution approach, i.e. an implicit single-step time integration method employed with an iteration procedure, and the use of existing nonlinear analytical models, such as differential equation models, to simulate the dynamic behavior of seismic isolators can require a significant computational effort. In order to reduce numerical computations, a partitioned solution method and a one dimensional nonlinear analytical model are presented in this paper. A partitioned solution approach can be easily applied to base-isolated structures in which the base isolation system is much more flexible than the superstructure. Thus, in this work, the explicit conditionally stable central difference method is used to evaluate the base isolation system nonlinear response and the implicit unconditionally stable Newmark’s constant average acceleration method is adopted to predict the superstructure linear response with the benefit in avoiding iterations in each time step of a nonlinear dynamic analysis. The proposed mathematical model is able to simulate the dynamic behavior of seismic isolators without requiring the solution of a nonlinear differential equation, as in the case of widely used differential equation model. The proposed mixed explicit-implicit time integration method and nonlinear exponential model are adopted to analyze a three dimensional seismically isolated structure with a lead rubber bearing system subjected to earthquake excitation. The numerical results show the good accuracy and the significant computational efficiency of the proposed solution approach and analytical model compared to the conventional solution method and mathematical model adopted in this work. Furthermore, the low stiffness value of the base isolation system with lead rubber bearings allows to have a critical time step considerably larger than the imposed ground acceleration time step, thus avoiding stability problems in the proposed mixed method.
Keywords: Base-isolated structures, earthquake engineering, mixed time integration, nonlinear exponential model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158238 Records of Lepidopteron Borers (Lepidoptera) on Stored Seeds of Indian Himalayan Conifers
Authors: Pawan Kumar, Pitamber Singh Negi
Abstract:
Many of the regeneration failures in conifers are often being attributed to heavy insect attack and pathogens during the period of seed formation and under storage conditions. Conifer berries and seed insects occur throughout the known range of the hosts and also limit the production of seed for nursery stock. On occasion, even entire seed crops are lost due to insect attacks. The berry and seeds of both the species have been found to be infected with insects. Recently, heavy damage to the berry and seeds of Juniper and Chilgoza Pine was observed in the field as well as in stored conditions, leading to reduction in the viability of seeds to germinate. Both the species are under great threat and regeneration of the species is very low. Due to lack of adequate literature, the study on the damage potential of seed insects was urgently required to know the exact status of the insect-pests attacking seeds/berries of both the pine species so as to develop pest management practices against the insect pests attack. As both the species are also under threat and are fighting for survival, so the study is important to develop management practices for the insect-pests of seeds/berries of Juniper and Chilgoza pine so as to evaluate in the nursery, as these species form major vegetation of their distribution zones. A six-year study on the management of insect pests of seeds of Chilgoza revealed that seeds of this species are prone to insect pests mainly borers. During present investigations, it was recorded that cones of are heavily attacked only by Dioryctria abietella (Lepidoptera: Pyralidae) in natural conditions, but seeds which are economically important are heavily infected, (sometimes up to 100% damage was also recorded) by insect borer, Plodia interpunctella (Lepidoptera: Pyralidae) and is recorded for the first time ‘to author’s best knowledge’ infesting the stored Chilgoza seeds. Similarly, Juniper berries and seeds were heavily attacked only by a single borer, Homaloxestis cholopis (Lepidoptera: Lecithoceridae) recorded as a new report in natural habitat as well as in stored conditions. During the present investigation details of insect pest attack on Juniper and Chilgoza pine seeds and berries was observed and suitable management practices were also developed to contain the insect-pests attack.
Keywords: Borer, conifer, cones, chilgoza pine, lepidoptera, juniper, management, seed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 86737 Importance of Macromineral Ratios and Products in Association with Vitamin D in Pediatric Obesity Including Metabolic Syndrome
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Metabolisms of macrominerals, those of calcium, phosphorus and magnesium, are closely associated with the metabolism of vitamin D. Particularly magnesium, the second most abundant intracellular cation, is related to biochemical and metabolic processes in the body, such as those of carbohydrates, proteins and lipids. The status of each mineral was investigated in obesity to some extent. Their products and ratios may possibly give much more detailed information about the matter. The aim of this study is to investigate possible relations between each macromineral and some obesity-related parameters. This study was performed on 235 children, whose ages were between 06-18 years. Aside from anthropometric measurements, hematological analyses were performed. TANITA body composition monitor using bioelectrical impedance analysis technology was used to establish some obesity-related parameters including basal metabolic rate (BMR), total fat, mineral and muscle masses. World Health Organization body mass index (BMI) percentiles for age and sex were used to constitute the groups. The values above 99th percentile were defined as morbid obesity. Those between 95th and 99th percentiles were included into the obese group. The overweight group comprised of children whose percentiles were between 95 and 85. Children between the 85th and 15th percentiles were defined as normal. Metabolic syndrome (MetS) components (waist circumference, fasting blood glucose, triacylglycerol, high density lipoprotein cholesterol, systolic pressure, diastolic pressure) were determined. High performance liquid chromatography was used to determine Vitamin D status by measuring 25-hydroxy cholecalciferol (25-hydroxy vitamin D3, 25(OH)D). Vitamin D values above 30.0 ng/ml were accepted as sufficient. SPSS statistical package program was used for the evaluation of data. The statistical significance degree was accepted as p < 0.05. The important points were the correlations found between vitamin D and magnesium as well as phosphorus (p < 0.05) that existed in the group with normal BMI values. These correlations were lost in the other groups. The ratio of phosphorus to magnesium was even much more highly correlated with vitamin D (p < 0.001). The negative correlation between magnesium and total fat mass (p < 0.01) was confined to the MetS group showing the inverse relationship between magnesium levels and obesity degree. In this group, calcium*magnesium product exhibited the highest correlation with total fat mass (p < 0.001) among all groups. Only in the MetS group was a negative correlation found between BMR and calcium*magnesium product (p < 0.05). In conclusion, magnesium is located at the center of attraction concerning its relationships with vitamin D, fat mass and MetS. The ratios and products derived from macrominerals including magnesium have pointed out stronger associations other than each element alone. Final considerations have shown that unique correlations of magnesium as well as calcium*magnesium product with total fat mass have drawn attention particularly in the MetS group, possibly due to the derangements in some basic elements of carbohydrate as well as lipid metabolism.Keywords: Macrominerals, metabolic syndrome, pediatric obesity, vitamin D.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80436 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review
Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha
Abstract:
Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision making has not been far-fetched. Proper classification of these textual information in a given context has also been very difficult. As a result, a systematic review was conducted from previous literature on sentiment classification and AI-based techniques. The study was done in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that could correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy using the knowledge gain from the evaluation of different artificial intelligence techniques reviewed. The study evaluated over 250 articles from digital sources like ACM digital library, Google Scholar, and IEEE Xplore; and whittled down the number of research to 52 articles. Findings revealed that deep learning approaches such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional Encoder Representations from Transformer (BERT), and Long Short-Term Memory (LSTM) outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also required to develop a robust sentiment classifier. Results also revealed that data can be obtained from places like Twitter, movie reviews, Kaggle, Stanford Sentiment Treebank (SST), and SemEval Task4 based on the required domain. The hybrid deep learning techniques like CNN+LSTM, CNN+ Gated Recurrent Unit (GRU), CNN+BERT outperformed single deep learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of development simplicity and AI-based library functionalities. Finally, the study recommended the findings obtained for building robust sentiment classifier in the future.
Keywords: Artificial Intelligence, Natural Language Processing, Sentiment Analysis, Social Network, Text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594